Synergistic optimization of predictive models for water quality analysis in treatment plants using machine learning and evolutionary algorithms

Enhancing the assessment of water quality is essential for sustainable water management, given its critical impact on environmental health and human well-being. Accurate assessment presents several difficulties due to the complexity and variability of water ecosystems. Among the various machine lear...

Full description

Saved in:
Bibliographic Details
Published inEvolutionary intelligence Vol. 18; no. 2; p. 34
Main Authors Ghareeb, Ahmed, Nooruldeen, Orhan, Arslan, Chelang A., Kapp, Sean, Choi, Jun-Ki
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1864-5909
1864-5917
DOI10.1007/s12065-025-01022-0

Cover

Abstract Enhancing the assessment of water quality is essential for sustainable water management, given its critical impact on environmental health and human well-being. Accurate assessment presents several difficulties due to the complexity and variability of water ecosystems. Among the various machine learning techniques employed, Support Vector Regression and Adaptive Boosting have emerged as two of the most widely used and effective methods. In recent years, many evolutionary algorithms have been developed to find approximate solutions to optimization problems. In this study, we investigate how efficient new algorithms consisting of hybrids of machine learning methods and evolutionary algorithms can be for some problems. We extensively investigate Support Vector Regression with various kernels, including linear, radial basis function, polynomial, and sigmoid. In addition, we introduce Modified Support Vector Regression and Modified Adaboost where standalone ML models are combined with the swarm-based algorithms, such as Particle Swarm Optimization, Limited-memory Broyden–Fletcher–Goldfarb–Shanno, and Distributed Evolutionary Algorithms in Python. We apply the proposed hybrid algorithms to the problem of measuring water quality. Accurate modeling and assessment of river water quality are essential endeavors with multifaceted challenges. We focus on the Tigris River modeling in Baghdad Governorate, particularly at three water treatment plants: Eastern Tigris, AL-Karkh, and AL-Wathba. The dataset comprises multiple water quality parameters, with a total dissolved solids target. Incorporating swarm-based algorithms into the adopted models has synergistically enhanced their predictive capabilities, resulting in a significant augmentation of the overall predictive prowess of the ML models. The proposed hybrid algorithms successfully enhanced SVR model performance, with the L-BFGS-B algorithm yielding mean squared error reductions of 46.23% and 28.09% on the East Tigris and Karkh plants, respectively. In comparison, the MSVR-PSO approach reduced the Wathba plant by up to 85.96%. These findings have a significant impact on advancing water treatment plants. A thorough understanding of these variations is required when deciding on the optimal machine learning model for individual applications and generalization for Tigris River water quality scale evaluation and beyond.
AbstractList Enhancing the assessment of water quality is essential for sustainable water management, given its critical impact on environmental health and human well-being. Accurate assessment presents several difficulties due to the complexity and variability of water ecosystems. Among the various machine learning techniques employed, Support Vector Regression and Adaptive Boosting have emerged as two of the most widely used and effective methods. In recent years, many evolutionary algorithms have been developed to find approximate solutions to optimization problems. In this study, we investigate how efficient new algorithms consisting of hybrids of machine learning methods and evolutionary algorithms can be for some problems. We extensively investigate Support Vector Regression with various kernels, including linear, radial basis function, polynomial, and sigmoid. In addition, we introduce Modified Support Vector Regression and Modified Adaboost where standalone ML models are combined with the swarm-based algorithms, such as Particle Swarm Optimization, Limited-memory Broyden–Fletcher–Goldfarb–Shanno, and Distributed Evolutionary Algorithms in Python. We apply the proposed hybrid algorithms to the problem of measuring water quality. Accurate modeling and assessment of river water quality are essential endeavors with multifaceted challenges. We focus on the Tigris River modeling in Baghdad Governorate, particularly at three water treatment plants: Eastern Tigris, AL-Karkh, and AL-Wathba. The dataset comprises multiple water quality parameters, with a total dissolved solids target. Incorporating swarm-based algorithms into the adopted models has synergistically enhanced their predictive capabilities, resulting in a significant augmentation of the overall predictive prowess of the ML models. The proposed hybrid algorithms successfully enhanced SVR model performance, with the L-BFGS-B algorithm yielding mean squared error reductions of 46.23% and 28.09% on the East Tigris and Karkh plants, respectively. In comparison, the MSVR-PSO approach reduced the Wathba plant by up to 85.96%. These findings have a significant impact on advancing water treatment plants. A thorough understanding of these variations is required when deciding on the optimal machine learning model for individual applications and generalization for Tigris River water quality scale evaluation and beyond.
Enhancing the assessment of water quality is essential for sustainable water management, given its critical impact on environmental health and human well-being. Accurate assessment presents several difficulties due to the complexity and variability of water ecosystems. Among the various machine learning techniques employed, Support Vector Regression and Adaptive Boosting have emerged as two of the most widely used and effective methods. In recent years, many evolutionary algorithms have been developed to find approximate solutions to optimization problems. In this study, we investigate how efficient new algorithms consisting of hybrids of machine learning methods and evolutionary algorithms can be for some problems. We extensively investigate Support Vector Regression with various kernels, including linear, radial basis function, polynomial, and sigmoid. In addition, we introduce Modified Support Vector Regression and Modified Adaboost where standalone ML models are combined with the swarm-based algorithms, such as Particle Swarm Optimization, Limited-memory Broyden–Fletcher–Goldfarb–Shanno, and Distributed Evolutionary Algorithms in Python. We apply the proposed hybrid algorithms to the problem of measuring water quality. Accurate modeling and assessment of river water quality are essential endeavors with multifaceted challenges. We focus on the Tigris River modeling in Baghdad Governorate, particularly at three water treatment plants: Eastern Tigris, AL-Karkh, and AL-Wathba. The dataset comprises multiple water quality parameters, with a total dissolved solids target. Incorporating swarm-based algorithms into the adopted models has synergistically enhanced their predictive capabilities, resulting in a significant augmentation of the overall predictive prowess of the ML models. The proposed hybrid algorithms successfully enhanced SVR model performance, with the L-BFGS-B algorithm yielding mean squared error reductions of 46.23% and 28.09% on the East Tigris and Karkh plants, respectively. In comparison, the MSVR-PSO approach reduced the Wathba plant by up to 85.96%. These findings have a significant impact on advancing water treatment plants. A thorough understanding of these variations is required when deciding on the optimal machine learning model for individual applications and generalization for Tigris River water quality scale evaluation and beyond.
ArticleNumber 34
Author Ghareeb, Ahmed
Arslan, Chelang A.
Kapp, Sean
Nooruldeen, Orhan
Choi, Jun-Ki
Author_xml – sequence: 1
  givenname: Ahmed
  surname: Ghareeb
  fullname: Ghareeb, Ahmed
  email: aghareeb@uokirkuk.edu.iq
  organization: Department of Mechanical Engineering, University of Kirkuk
– sequence: 2
  givenname: Orhan
  surname: Nooruldeen
  fullname: Nooruldeen, Orhan
  organization: Department of Software, College of Computer Science and Information Technology, University of Kirkuk
– sequence: 3
  givenname: Chelang A.
  surname: Arslan
  fullname: Arslan, Chelang A.
  organization: Department of Civil Engineering, University of Kirkuk
– sequence: 4
  givenname: Sean
  surname: Kapp
  fullname: Kapp, Sean
  organization: Department of Mechanical Engineering, University of Dayton
– sequence: 5
  givenname: Jun-Ki
  surname: Choi
  fullname: Choi, Jun-Ki
  organization: Department of Mechanical Engineering, University of Dayton
BookMark eNp9kMtKxTAQhoMoeH0BVwHX1Uma9LIU8QaCC3Ud0nZyzKFNepJUOb6Er2yPR3TnYpgh_P8_me-Q7DrvkJBTBucMoLyIjEMhM-BzMeA8gx1ywKpCZLJm5e7vDPU-OYxxCVBwKMUB-XxaOwwLG5NtqR-THeyHTtY76g0dA3a2TfYN6eA77CM1PtB3nTDQ1aR7m9ZUO92vo43UOpoC6jSgS3TstUuRTtG6BR10-2od0h51cJsH7TqKb76fNot0mEP6hQ82vQ7xmOwZ3Uc8-elH5OXm-vnqLnt4vL2_unzIWg6QshpYw3Npamwlr1rkxhQ1mKYAoRsuoO7qQtZtx_OSS9Y0eSlMXkjkwkghqio_Imfb3DH41YQxqaWfwnxLVDmXgomyYvms4ltVG3yMAY0agx3mHysGagNebcGrGbz6Bq9gNuVbU5zFboHhL_of1xeka4to
Cites_doi 10.1016/j.watres.2020.116657
10.1016/j.jconhyd.2020.103641
10.1016/j.eswa.2019.04.049
10.1016/j.engappai.2023.106350
10.1016/j.compag.2020.105888
10.1016/j.asoc.2015.10.065
10.1109/ICNN.1995.488968
10.3390/w12051476
10.1007/s11356-022-22601-z
10.1016/j.ecolind.2022.109750
10.1007/s42107-024-01076-y
10.1016/j.geogeo.2024.100261
10.5194/hess-16-3783-2012
10.3390/su14042341
10.1016/j.jssas.2020.08.001
10.1016/S0048-9697(03)00062-7
10.1080/23311916.2022.2150121
10.3390/w14101552
10.1016/j.aei.2018.03.003
10.1145/3368691.3368701
10.1007/s00607-024-01319-5
10.1016/j.gsd.2021.100630
10.1038/s41598-017-12853-y
10.1016/j.rineng.2023.101445
10.1021/acsphotonics.9b00706
10.1016/j.watres.2023.120037
10.51526/kbes.2021.2.2.35-43
10.1016/j.jhydrol.2021.126510
10.16993/tellusa.4069
10.1016/j.resconrec.2019.01.030
10.1016/j.cose.2021.102532
10.1109/DASA54658.2022.9765193
10.1016/j.jhydrol.2023.130034
10.1016/j.jwpe.2023.104102
10.1016/j.scitotenv.2023.165504
10.1016/j.rineng.2019.100055
10.1007/s11053-021-09895-5
10.1016/j.watres.2023.120518
10.1007/s11356-019-05116-y
10.1007/s11783-023-1698-9
10.1007/s00477-020-01776-2
10.1016/j.mcm.2011.11.021
10.1007/s40808-021-01253-x
10.1145/279232.279236
10.3906/elk-1812-175
10.1111/j.1747-6593.1989.tb01538.x
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s12065-025-01022-0
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1864-5917
ExternalDocumentID 10_1007_s12065_025_01022_0
GeographicLocations Iran
China
Iraq
GeographicLocations_xml – name: China
– name: Iran
– name: Iraq
GroupedDBID -Y2
.86
06D
0R~
0VY
1N0
203
29G
29~
2JN
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
5GY
5VS
67Z
6NX
875
8TC
8UJ
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ATHPR
AUKKA
AXYYD
AYFIA
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PT4
QOS
R89
RLLFE
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
JQ2
ID FETCH-LOGICAL-c200t-901b235f9ec528ce2ff690fb604ab2409d9659cd237251bb374f365e24f544883
IEDL.DBID U2A
ISSN 1864-5909
IngestDate Tue Sep 30 03:22:09 EDT 2025
Wed Oct 01 08:29:10 EDT 2025
Tue May 06 01:11:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Support vector regression
Adaptive boosting
Water quality assessment
Limited-memory Broyden–Fletcher–Goldfarb–Shanno
Particle swarm optimization
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c200t-901b235f9ec528ce2ff690fb604ab2409d9659cd237251bb374f365e24f544883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3254147813
PQPubID 2043920
ParticipantIDs proquest_journals_3254147813
crossref_primary_10_1007_s12065_025_01022_0
springer_journals_10_1007_s12065_025_01022_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250400
2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Evolutionary intelligence
PublicationTitleAbbrev Evol. Intel
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References 1022_CR17
1022_CR16
MR Baker (1022_CR20) 2023; 123
1022_CR19
1022_CR13
1022_CR57
1022_CR12
AA Ali (1022_CR9) 2012; 16
X Wang (1022_CR38) 2017; 7
AE Hassanien (1022_CR37) 2016; 46
Y Ar (1022_CR1) 2022; 58
J-K Kang (1022_CR7) 2023; 239
L Li (1022_CR40) 2019; 26
T Rahman (1022_CR47) 2024; 25
1022_CR10
1022_CR54
MS Suwaed (1022_CR8) 2023
1022_CR51
K Sangeetha (1022_CR48) 2021; 11
E Hazrati Nejad (1022_CR2) 2024; 60
I Ahmadianfar (1022_CR41) 2020; 232
P-I Schneider (1022_CR49) 2019; 6
N Zhu (1022_CR58) 2021; 180
I Hobbs (1022_CR6) 2019; 4
X Fu (1022_CR45) 2023; 17
MA House (1022_CR55) 1989; 3
R Dehghani (1022_CR25) 2022; 8
R Barzegar (1022_CR34) 2020; 34
Y Man (1022_CR28) 2019; 144
Y Wang (1022_CR33) 2020
S Huan (1022_CR14) 2023; 625
ZS Khudhair (1022_CR22) 2022; 9
O Khaleefa (1022_CR27) 2021; 2
F Trabelsi (1022_CR35) 2022
SH Rahat (1022_CR32) 2023; 898
AAM Ahmed (1022_CR59) 2023; 30
F-A Fortin (1022_CR52) 2012; 13
1022_CR44
R Ratolojanahary (1022_CR30) 2019; 131
O Altun (1022_CR21) 2019; 2019
M Abu (1022_CR56) 2024; 3
SL Kareem (1022_CR26) 2021; 14
J Xiong (1022_CR15) 2023; 55
N Kartli (1022_CR4) 2024; 106
N Kartli (1022_CR3) 2023; 59
D Cheong Lien Sung (1022_CR31) 2022; 113
A El Bilali (1022_CR43) 2020; 19
X Wang (1022_CR46) 2018; 36
A Abdulkarim (1022_CR18) 2022; 17
C Zhu (1022_CR53) 1997; 23
MS Zaghloul (1022_CR24) 2021; 189
BA Cox (1022_CR11) 2003; 314–316
SY Sert (1022_CR5) 2019; 27
A el Bilali (1022_CR29) 2021; 599
M Najafzadeh (1022_CR39) 2021; 30
P Chen (1022_CR36) 2023; 146
M Alvi (1022_CR23) 2023; 245
S Liu (1022_CR42) 2013; 58
V Vapnik (1022_CR50) 1999
References_xml – volume: 189
  year: 2021
  ident: 1022_CR24
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.116657
– volume: 232
  year: 2020
  ident: 1022_CR41
  publication-title: J Contam Hydrol
  doi: 10.1016/j.jconhyd.2020.103641
– volume: 131
  start-page: 299
  year: 2019
  ident: 1022_CR30
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.04.049
– volume: 123
  year: 2023
  ident: 1022_CR20
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.106350
– volume-title: The nature of statistical learning theory
  year: 1999
  ident: 1022_CR50
– volume: 180
  year: 2021
  ident: 1022_CR58
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2020.105888
– volume: 46
  start-page: 1043
  year: 2016
  ident: 1022_CR37
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.10.065
– ident: 1022_CR51
  doi: 10.1109/ICNN.1995.488968
– year: 2020
  ident: 1022_CR33
  publication-title: Water
  doi: 10.3390/w12051476
– ident: 1022_CR54
– volume: 30
  start-page: 7851
  issue: 3
  year: 2023
  ident: 1022_CR59
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-22601-z
– volume: 146
  year: 2023
  ident: 1022_CR36
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2022.109750
– volume: 25
  start-page: 4725
  issue: 6
  year: 2024
  ident: 1022_CR47
  publication-title: Asian J Civ Eng
  doi: 10.1007/s42107-024-01076-y
– ident: 1022_CR12
– volume: 3
  issue: 2
  year: 2024
  ident: 1022_CR56
  publication-title: Geosyst Geoenviron
  doi: 10.1016/j.geogeo.2024.100261
– volume: 16
  start-page: 3783
  issue: 10
  year: 2012
  ident: 1022_CR9
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-16-3783-2012
– year: 2022
  ident: 1022_CR35
  publication-title: Sustainability
  doi: 10.3390/su14042341
– volume: 19
  start-page: 439
  issue: 7
  year: 2020
  ident: 1022_CR43
  publication-title: J Saudi Soc Agric Sci
  doi: 10.1016/j.jssas.2020.08.001
– volume: 314–316
  start-page: 303
  year: 2003
  ident: 1022_CR11
  publication-title: Sci Total Environ
  doi: 10.1016/S0048-9697(03)00062-7
– volume: 9
  start-page: 2150121
  issue: 1
  year: 2022
  ident: 1022_CR22
  publication-title: Cogent Eng
  doi: 10.1080/23311916.2022.2150121
– ident: 1022_CR44
  doi: 10.3390/w14101552
– volume: 36
  start-page: 112
  year: 2018
  ident: 1022_CR46
  publication-title: Adv Eng Inf
  doi: 10.1016/j.aei.2018.03.003
– ident: 1022_CR16
  doi: 10.1145/3368691.3368701
– volume: 106
  start-page: 3195
  issue: 10
  year: 2024
  ident: 1022_CR4
  publication-title: Computing
  doi: 10.1007/s00607-024-01319-5
– volume: 14
  year: 2021
  ident: 1022_CR26
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2021.100630
– volume: 7
  start-page: 12858
  issue: 1
  year: 2017
  ident: 1022_CR38
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-12853-y
– volume: 11
  start-page: 2897
  issue: 12
  year: 2021
  ident: 1022_CR48
  publication-title: J Med Imaging Health Inf
– ident: 1022_CR13
– year: 2023
  ident: 1022_CR8
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2023.101445
– volume: 6
  start-page: 2726
  issue: 11
  year: 2019
  ident: 1022_CR49
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.9b00706
– volume: 239
  year: 2023
  ident: 1022_CR7
  publication-title: Water Res
  doi: 10.1016/j.watres.2023.120037
– ident: 1022_CR17
– volume: 13
  start-page: 2171
  issue: 1
  year: 2012
  ident: 1022_CR52
  publication-title: J Mach Learn Res
– volume: 2
  start-page: 35
  issue: 2
  year: 2021
  ident: 1022_CR27
  publication-title: Knowl Based Eng Sci
  doi: 10.51526/kbes.2021.2.2.35-43
– volume: 599
  year: 2021
  ident: 1022_CR29
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126510
– ident: 1022_CR57
  doi: 10.16993/tellusa.4069
– volume: 144
  start-page: 56
  year: 2019
  ident: 1022_CR28
  publication-title: Resour Conserv Recycl
  doi: 10.1016/j.resconrec.2019.01.030
– volume: 113
  start-page: 102532
  year: 2022
  ident: 1022_CR31
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2021.102532
– ident: 1022_CR19
  doi: 10.1109/DASA54658.2022.9765193
– volume: 625
  year: 2023
  ident: 1022_CR14
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2023.130034
– volume: 55
  year: 2023
  ident: 1022_CR15
  publication-title: J Water Process Eng
  doi: 10.1016/j.jwpe.2023.104102
– volume: 898
  year: 2023
  ident: 1022_CR32
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2023.165504
– ident: 1022_CR10
– volume: 4
  year: 2019
  ident: 1022_CR6
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2019.100055
– volume: 30
  start-page: 3761
  issue: 5
  year: 2021
  ident: 1022_CR39
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-021-09895-5
– volume: 245
  year: 2023
  ident: 1022_CR23
  publication-title: Water Res
  doi: 10.1016/j.watres.2023.120518
– volume: 26
  start-page: 19879
  issue: 19
  year: 2019
  ident: 1022_CR40
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-05116-y
– volume: 17
  start-page: 98
  issue: 8
  year: 2023
  ident: 1022_CR45
  publication-title: Front Environ Sci Eng
  doi: 10.1007/s11783-023-1698-9
– volume: 2019
  start-page: 1
  year: 2019
  ident: 1022_CR21
  publication-title: Sci Program
– volume: 34
  start-page: 415
  issue: 2
  year: 2020
  ident: 1022_CR34
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-020-01776-2
– volume: 58
  start-page: 458
  issue: 3
  year: 2013
  ident: 1022_CR42
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2011.11.021
– volume: 17
  start-page: 3286
  issue: 5
  year: 2022
  ident: 1022_CR18
  publication-title: J Eng Sci Technol
– volume: 8
  start-page: 2599
  issue: 2
  year: 2022
  ident: 1022_CR25
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-021-01253-x
– volume: 23
  start-page: 550
  issue: 4
  year: 1997
  ident: 1022_CR53
  publication-title: ACM Trans Math Softw
  doi: 10.1145/279232.279236
– volume: 27
  start-page: 2121
  issue: 3
  year: 2019
  ident: 1022_CR5
  publication-title: Turk J Electr Eng Comput Sci
  doi: 10.3906/elk-1812-175
– volume: 59
  start-page: 45
  issue: 1
  year: 2023
  ident: 1022_CR3
  publication-title: Kybernetika
– volume: 58
  start-page: 440
  issue: 3
  year: 2022
  ident: 1022_CR1
  publication-title: Kybernetika
– volume: 60
  start-page: 293
  issue: 3
  year: 2024
  ident: 1022_CR2
  publication-title: Kybernetika
– volume: 3
  start-page: 336
  issue: 4
  year: 1989
  ident: 1022_CR55
  publication-title: Water Environ J
  doi: 10.1111/j.1747-6593.1989.tb01538.x
SSID ssj0062074
Score 2.3596787
Snippet Enhancing the assessment of water quality is essential for sustainable water management, given its critical impact on environmental health and human...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 34
SubjectTerms Accuracy
Applications of Mathematics
Artificial Intelligence
Bioinformatics
Chemical oxygen demand
Climate change
Control
Datasets
Desertification
Dissolved solids
Engineering
Evolutionary algorithms
Genetic algorithms
Kernel functions
Machine learning
Mathematical and Computational Engineering
Mechatronics
Optimization algorithms
Optimization techniques
Parameter estimation
Particle swarm optimization
Performance evaluation
Polynomials
Prediction models
Radial basis function
Regression
Remote sensing
Research Paper
Rivers
Robotics
Statistical Physics and Dynamical Systems
Support vector machines
Time series
Water management
Water quality
Water resources management
Water treatment plants
Title Synergistic optimization of predictive models for water quality analysis in treatment plants using machine learning and evolutionary algorithms
URI https://link.springer.com/article/10.1007/s12065-025-01022-0
https://www.proquest.com/docview/3254147813
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1864-5917
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: AFBBN
  dateStart: 20080301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: U2A
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu8DAo4AolOoGNoiU2nFijxVqqUBigUplimLHLpX6UltA_RX8ZWzXIYBgYE5yQ-58D_n7vkPogqiEaclZQJXIzYAikiCjkgSYaY6TREdcO4DsfdzrR7cDOvCksGWBdi-uJF2mLslu2JTLwK5fdTpogRnUq9TKeZko7uN2kX9jHDrt5RaLo4DykHuqzO82vpejssf8cS3qqk13H-36NhHaG78eoC01raG9YgUD-BNZQztf9AQP0fvD2lL5nPYyzEwymHiWJcw0zBf2TsZmN3Drb5Zg-lV4y6y9DbVyDZmXKIHRFD4h6DAfW7AMWIj8ECYOfanAr5sYmm9yUK8-grOFMTIezhaj1fNkeYT63c7jdS_wGxcCaU7LymI1BCZUcyUpZlJhrc30rEUcRpkwtZ_nVn9Q5pgkpi8SgiSRJjFVONLUzHmMHKPKdDZVJwiEVLEMsbR0xMiKhHFmujvGcaZxS8eiji6LH5_ON8IaaSmhbN2UGjelzk1pWEeNwjepP2TLlGC7wzxhLVJHV4W_ysd_Wzv93-tnaBu7kLF4nQaqrBYv6ty0IivRRNX2zdNdp-ki8AP7xtkU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVQGYCBRwFRKHAHNoiU2nnYY4VABUoXWqlbFLt2qdQ2VVNA_Qp-Gdt1CCAYmJPcIdf3JZ9zLkIXRMZUCUa9UPKBHlB47KWhIB6miuE4VgFTFiDbiVq94L4f9h0pLC_Q7sWVpM3UJdkN63LpmfWrVgfN04P6uhGwMor5Pdws8m-Efau93KBR4IXMZ44q87uN7-Wo7DF_XIvaanO7i7ZdmwjNlV_30JqcVtFOsYIBXERW0dYXPcF99P60NFQ-q70MmU4GE8eyhEzBbG7uZEx2A7v-Jgfdr8JbauytqJVLSJ1ECYym8AlBh9nYgGXAQOSHMLHoSwlu3cRQfzMA-epOcDrXRsbDbD5aPE_yA9S7veletzy3ccETOloWBqvBMQkVkyLEVEislJ6eFY_8IOW69rOB0R8UA0xi3RdxTuJAkSiUOFChnvMoOUSVaTaVRwi4kJHwsTB0xMCIhDGquzvKcKpwQ0W8hi6LH5_MVsIaSSmhbNyUaDcl1k2JX0P1wjeJC7I8IdjsMI9pg9TQVeGv8vHf1o7_9_o52mh1H9tJ-67zcII2sT0-BrtTR5XF_EWe6rZkwc_sKfwAeWjabA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsMwELQQSAgOvBGFAnvgBhGpnYd9rICKlxASVOIWxY5dKrVp1AZQv4JfxnYdAggOnJPsIbu2Z-WZWYSOiIypEox6oeSZblB47KWhIB6miuE4VgFTliB7F112g-un8OmLit-y3asryZmmwbg05eVpkanTWviG9dHpmVGs1hPN0037QmCMEnRFd3G72osj7Fsf5haNAi9kPnOymd9jfD-aarz544rUnjydNbTiICO0ZzleR3My30Cr1TgGcKtzAy1_8RbcRO8PUyPrsz7MMNIbw9ApLmGkoBib-xmz04EdhTMBjV3hLTXxZjLLKaTOrgT6OXzS0aEYGOIMGLp8D4aWiSnBjZ7o6W8ykK-umtOxDjLojcb98nk42ULdzsXj2aXnpi94Qq-c0vA2OCahYlKEmAqJldKdtOKRH6Rc4wCWGS9CkWESa4zEOYkDRaJQ4kCFuuejZBvN56Nc7iDgQkbCx8JIEwNjGMaoRnqU4VThlop4Ax1XPz4pZiYbSW2nbNKU6DQlNk2J30DNKjeJW3CThGAzzzymLdJAJ1W-6sd_R9v93-uHaPH-vJPcXt3d7KElbKvH0HiaaL4cv8h9jVBKfmCL8AMU8N6o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+optimization+of+predictive+models+for+water+quality+analysis+in+treatment+plants+using+machine+learning+and+evolutionary+algorithms&rft.jtitle=Evolutionary+intelligence&rft.au=Ghareeb%2C+Ahmed&rft.au=Nooruldeen%2C+Orhan&rft.au=Arslan%2C+Chelang+A&rft.au=Kapp%2C+Sean&rft.date=2025-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1864-5909&rft.eissn=1864-5917&rft.volume=18&rft.issue=2&rft.spage=34&rft_id=info:doi/10.1007%2Fs12065-025-01022-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5909&client=summon