Synergistic optimization of predictive models for water quality analysis in treatment plants using machine learning and evolutionary algorithms
Enhancing the assessment of water quality is essential for sustainable water management, given its critical impact on environmental health and human well-being. Accurate assessment presents several difficulties due to the complexity and variability of water ecosystems. Among the various machine lear...
Saved in:
| Published in | Evolutionary intelligence Vol. 18; no. 2; p. 34 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1864-5909 1864-5917 |
| DOI | 10.1007/s12065-025-01022-0 |
Cover
| Abstract | Enhancing the assessment of water quality is essential for sustainable water management, given its critical impact on environmental health and human well-being. Accurate assessment presents several difficulties due to the complexity and variability of water ecosystems. Among the various machine learning techniques employed, Support Vector Regression and Adaptive Boosting have emerged as two of the most widely used and effective methods. In recent years, many evolutionary algorithms have been developed to find approximate solutions to optimization problems. In this study, we investigate how efficient new algorithms consisting of hybrids of machine learning methods and evolutionary algorithms can be for some problems. We extensively investigate Support Vector Regression with various kernels, including linear, radial basis function, polynomial, and sigmoid. In addition, we introduce Modified Support Vector Regression and Modified Adaboost where standalone ML models are combined with the swarm-based algorithms, such as Particle Swarm Optimization, Limited-memory Broyden–Fletcher–Goldfarb–Shanno, and Distributed Evolutionary Algorithms in Python. We apply the proposed hybrid algorithms to the problem of measuring water quality. Accurate modeling and assessment of river water quality are essential endeavors with multifaceted challenges. We focus on the Tigris River modeling in Baghdad Governorate, particularly at three water treatment plants: Eastern Tigris, AL-Karkh, and AL-Wathba. The dataset comprises multiple water quality parameters, with a total dissolved solids target. Incorporating swarm-based algorithms into the adopted models has synergistically enhanced their predictive capabilities, resulting in a significant augmentation of the overall predictive prowess of the ML models. The proposed hybrid algorithms successfully enhanced SVR model performance, with the L-BFGS-B algorithm yielding mean squared error reductions of 46.23% and 28.09% on the East Tigris and Karkh plants, respectively. In comparison, the MSVR-PSO approach reduced the Wathba plant by up to 85.96%. These findings have a significant impact on advancing water treatment plants. A thorough understanding of these variations is required when deciding on the optimal machine learning model for individual applications and generalization for Tigris River water quality scale evaluation and beyond. |
|---|---|
| AbstractList | Enhancing the assessment of water quality is essential for sustainable water management, given its critical impact on environmental health and human well-being. Accurate assessment presents several difficulties due to the complexity and variability of water ecosystems. Among the various machine learning techniques employed, Support Vector Regression and Adaptive Boosting have emerged as two of the most widely used and effective methods. In recent years, many evolutionary algorithms have been developed to find approximate solutions to optimization problems. In this study, we investigate how efficient new algorithms consisting of hybrids of machine learning methods and evolutionary algorithms can be for some problems. We extensively investigate Support Vector Regression with various kernels, including linear, radial basis function, polynomial, and sigmoid. In addition, we introduce Modified Support Vector Regression and Modified Adaboost where standalone ML models are combined with the swarm-based algorithms, such as Particle Swarm Optimization, Limited-memory Broyden–Fletcher–Goldfarb–Shanno, and Distributed Evolutionary Algorithms in Python. We apply the proposed hybrid algorithms to the problem of measuring water quality. Accurate modeling and assessment of river water quality are essential endeavors with multifaceted challenges. We focus on the Tigris River modeling in Baghdad Governorate, particularly at three water treatment plants: Eastern Tigris, AL-Karkh, and AL-Wathba. The dataset comprises multiple water quality parameters, with a total dissolved solids target. Incorporating swarm-based algorithms into the adopted models has synergistically enhanced their predictive capabilities, resulting in a significant augmentation of the overall predictive prowess of the ML models. The proposed hybrid algorithms successfully enhanced SVR model performance, with the L-BFGS-B algorithm yielding mean squared error reductions of 46.23% and 28.09% on the East Tigris and Karkh plants, respectively. In comparison, the MSVR-PSO approach reduced the Wathba plant by up to 85.96%. These findings have a significant impact on advancing water treatment plants. A thorough understanding of these variations is required when deciding on the optimal machine learning model for individual applications and generalization for Tigris River water quality scale evaluation and beyond. Enhancing the assessment of water quality is essential for sustainable water management, given its critical impact on environmental health and human well-being. Accurate assessment presents several difficulties due to the complexity and variability of water ecosystems. Among the various machine learning techniques employed, Support Vector Regression and Adaptive Boosting have emerged as two of the most widely used and effective methods. In recent years, many evolutionary algorithms have been developed to find approximate solutions to optimization problems. In this study, we investigate how efficient new algorithms consisting of hybrids of machine learning methods and evolutionary algorithms can be for some problems. We extensively investigate Support Vector Regression with various kernels, including linear, radial basis function, polynomial, and sigmoid. In addition, we introduce Modified Support Vector Regression and Modified Adaboost where standalone ML models are combined with the swarm-based algorithms, such as Particle Swarm Optimization, Limited-memory Broyden–Fletcher–Goldfarb–Shanno, and Distributed Evolutionary Algorithms in Python. We apply the proposed hybrid algorithms to the problem of measuring water quality. Accurate modeling and assessment of river water quality are essential endeavors with multifaceted challenges. We focus on the Tigris River modeling in Baghdad Governorate, particularly at three water treatment plants: Eastern Tigris, AL-Karkh, and AL-Wathba. The dataset comprises multiple water quality parameters, with a total dissolved solids target. Incorporating swarm-based algorithms into the adopted models has synergistically enhanced their predictive capabilities, resulting in a significant augmentation of the overall predictive prowess of the ML models. The proposed hybrid algorithms successfully enhanced SVR model performance, with the L-BFGS-B algorithm yielding mean squared error reductions of 46.23% and 28.09% on the East Tigris and Karkh plants, respectively. In comparison, the MSVR-PSO approach reduced the Wathba plant by up to 85.96%. These findings have a significant impact on advancing water treatment plants. A thorough understanding of these variations is required when deciding on the optimal machine learning model for individual applications and generalization for Tigris River water quality scale evaluation and beyond. |
| ArticleNumber | 34 |
| Author | Ghareeb, Ahmed Arslan, Chelang A. Kapp, Sean Nooruldeen, Orhan Choi, Jun-Ki |
| Author_xml | – sequence: 1 givenname: Ahmed surname: Ghareeb fullname: Ghareeb, Ahmed email: aghareeb@uokirkuk.edu.iq organization: Department of Mechanical Engineering, University of Kirkuk – sequence: 2 givenname: Orhan surname: Nooruldeen fullname: Nooruldeen, Orhan organization: Department of Software, College of Computer Science and Information Technology, University of Kirkuk – sequence: 3 givenname: Chelang A. surname: Arslan fullname: Arslan, Chelang A. organization: Department of Civil Engineering, University of Kirkuk – sequence: 4 givenname: Sean surname: Kapp fullname: Kapp, Sean organization: Department of Mechanical Engineering, University of Dayton – sequence: 5 givenname: Jun-Ki surname: Choi fullname: Choi, Jun-Ki organization: Department of Mechanical Engineering, University of Dayton |
| BookMark | eNp9kMtKxTAQhoMoeH0BVwHX1Uma9LIU8QaCC3Ud0nZyzKFNepJUOb6Er2yPR3TnYpgh_P8_me-Q7DrvkJBTBucMoLyIjEMhM-BzMeA8gx1ywKpCZLJm5e7vDPU-OYxxCVBwKMUB-XxaOwwLG5NtqR-THeyHTtY76g0dA3a2TfYN6eA77CM1PtB3nTDQ1aR7m9ZUO92vo43UOpoC6jSgS3TstUuRTtG6BR10-2od0h51cJsH7TqKb76fNot0mEP6hQ82vQ7xmOwZ3Uc8-elH5OXm-vnqLnt4vL2_unzIWg6QshpYw3Npamwlr1rkxhQ1mKYAoRsuoO7qQtZtx_OSS9Y0eSlMXkjkwkghqio_Imfb3DH41YQxqaWfwnxLVDmXgomyYvms4ltVG3yMAY0agx3mHysGagNebcGrGbz6Bq9gNuVbU5zFboHhL_of1xeka4to |
| Cites_doi | 10.1016/j.watres.2020.116657 10.1016/j.jconhyd.2020.103641 10.1016/j.eswa.2019.04.049 10.1016/j.engappai.2023.106350 10.1016/j.compag.2020.105888 10.1016/j.asoc.2015.10.065 10.1109/ICNN.1995.488968 10.3390/w12051476 10.1007/s11356-022-22601-z 10.1016/j.ecolind.2022.109750 10.1007/s42107-024-01076-y 10.1016/j.geogeo.2024.100261 10.5194/hess-16-3783-2012 10.3390/su14042341 10.1016/j.jssas.2020.08.001 10.1016/S0048-9697(03)00062-7 10.1080/23311916.2022.2150121 10.3390/w14101552 10.1016/j.aei.2018.03.003 10.1145/3368691.3368701 10.1007/s00607-024-01319-5 10.1016/j.gsd.2021.100630 10.1038/s41598-017-12853-y 10.1016/j.rineng.2023.101445 10.1021/acsphotonics.9b00706 10.1016/j.watres.2023.120037 10.51526/kbes.2021.2.2.35-43 10.1016/j.jhydrol.2021.126510 10.16993/tellusa.4069 10.1016/j.resconrec.2019.01.030 10.1016/j.cose.2021.102532 10.1109/DASA54658.2022.9765193 10.1016/j.jhydrol.2023.130034 10.1016/j.jwpe.2023.104102 10.1016/j.scitotenv.2023.165504 10.1016/j.rineng.2019.100055 10.1007/s11053-021-09895-5 10.1016/j.watres.2023.120518 10.1007/s11356-019-05116-y 10.1007/s11783-023-1698-9 10.1007/s00477-020-01776-2 10.1016/j.mcm.2011.11.021 10.1007/s40808-021-01253-x 10.1145/279232.279236 10.3906/elk-1812-175 10.1111/j.1747-6593.1989.tb01538.x |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s12065-025-01022-0 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1864-5917 |
| ExternalDocumentID | 10_1007_s12065_025_01022_0 |
| GeographicLocations | Iran China Iraq |
| GeographicLocations_xml | – name: China – name: Iran – name: Iraq |
| GroupedDBID | -Y2 .86 06D 0R~ 0VY 1N0 203 29G 29~ 2JN 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 5GY 5VS 67Z 6NX 875 8TC 8UJ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFGCZ AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ATHPR AUKKA AXYYD AYFIA AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PT4 QOS R89 RLLFE ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP CITATION JQ2 |
| ID | FETCH-LOGICAL-c200t-901b235f9ec528ce2ff690fb604ab2409d9659cd237251bb374f365e24f544883 |
| IEDL.DBID | U2A |
| ISSN | 1864-5909 |
| IngestDate | Tue Sep 30 03:22:09 EDT 2025 Wed Oct 01 08:29:10 EDT 2025 Tue May 06 01:11:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Support vector regression Adaptive boosting Water quality assessment Limited-memory Broyden–Fletcher–Goldfarb–Shanno Particle swarm optimization Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c200t-901b235f9ec528ce2ff690fb604ab2409d9659cd237251bb374f365e24f544883 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3254147813 |
| PQPubID | 2043920 |
| ParticipantIDs | proquest_journals_3254147813 crossref_primary_10_1007_s12065_025_01022_0 springer_journals_10_1007_s12065_025_01022_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250400 2025-04-00 20250401 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 4 year: 2025 text: 20250400 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Evolutionary intelligence |
| PublicationTitleAbbrev | Evol. Intel |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | 1022_CR17 1022_CR16 MR Baker (1022_CR20) 2023; 123 1022_CR19 1022_CR13 1022_CR57 1022_CR12 AA Ali (1022_CR9) 2012; 16 X Wang (1022_CR38) 2017; 7 AE Hassanien (1022_CR37) 2016; 46 Y Ar (1022_CR1) 2022; 58 J-K Kang (1022_CR7) 2023; 239 L Li (1022_CR40) 2019; 26 T Rahman (1022_CR47) 2024; 25 1022_CR10 1022_CR54 MS Suwaed (1022_CR8) 2023 1022_CR51 K Sangeetha (1022_CR48) 2021; 11 E Hazrati Nejad (1022_CR2) 2024; 60 I Ahmadianfar (1022_CR41) 2020; 232 P-I Schneider (1022_CR49) 2019; 6 N Zhu (1022_CR58) 2021; 180 I Hobbs (1022_CR6) 2019; 4 X Fu (1022_CR45) 2023; 17 MA House (1022_CR55) 1989; 3 R Dehghani (1022_CR25) 2022; 8 R Barzegar (1022_CR34) 2020; 34 Y Man (1022_CR28) 2019; 144 Y Wang (1022_CR33) 2020 S Huan (1022_CR14) 2023; 625 ZS Khudhair (1022_CR22) 2022; 9 O Khaleefa (1022_CR27) 2021; 2 F Trabelsi (1022_CR35) 2022 SH Rahat (1022_CR32) 2023; 898 AAM Ahmed (1022_CR59) 2023; 30 F-A Fortin (1022_CR52) 2012; 13 1022_CR44 R Ratolojanahary (1022_CR30) 2019; 131 O Altun (1022_CR21) 2019; 2019 M Abu (1022_CR56) 2024; 3 SL Kareem (1022_CR26) 2021; 14 J Xiong (1022_CR15) 2023; 55 N Kartli (1022_CR4) 2024; 106 N Kartli (1022_CR3) 2023; 59 D Cheong Lien Sung (1022_CR31) 2022; 113 A El Bilali (1022_CR43) 2020; 19 X Wang (1022_CR46) 2018; 36 A Abdulkarim (1022_CR18) 2022; 17 C Zhu (1022_CR53) 1997; 23 MS Zaghloul (1022_CR24) 2021; 189 BA Cox (1022_CR11) 2003; 314–316 SY Sert (1022_CR5) 2019; 27 A el Bilali (1022_CR29) 2021; 599 M Najafzadeh (1022_CR39) 2021; 30 P Chen (1022_CR36) 2023; 146 M Alvi (1022_CR23) 2023; 245 S Liu (1022_CR42) 2013; 58 V Vapnik (1022_CR50) 1999 |
| References_xml | – volume: 189 year: 2021 ident: 1022_CR24 publication-title: Water Res doi: 10.1016/j.watres.2020.116657 – volume: 232 year: 2020 ident: 1022_CR41 publication-title: J Contam Hydrol doi: 10.1016/j.jconhyd.2020.103641 – volume: 131 start-page: 299 year: 2019 ident: 1022_CR30 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.04.049 – volume: 123 year: 2023 ident: 1022_CR20 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.106350 – volume-title: The nature of statistical learning theory year: 1999 ident: 1022_CR50 – volume: 180 year: 2021 ident: 1022_CR58 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2020.105888 – volume: 46 start-page: 1043 year: 2016 ident: 1022_CR37 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.10.065 – ident: 1022_CR51 doi: 10.1109/ICNN.1995.488968 – year: 2020 ident: 1022_CR33 publication-title: Water doi: 10.3390/w12051476 – ident: 1022_CR54 – volume: 30 start-page: 7851 issue: 3 year: 2023 ident: 1022_CR59 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-22601-z – volume: 146 year: 2023 ident: 1022_CR36 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2022.109750 – volume: 25 start-page: 4725 issue: 6 year: 2024 ident: 1022_CR47 publication-title: Asian J Civ Eng doi: 10.1007/s42107-024-01076-y – ident: 1022_CR12 – volume: 3 issue: 2 year: 2024 ident: 1022_CR56 publication-title: Geosyst Geoenviron doi: 10.1016/j.geogeo.2024.100261 – volume: 16 start-page: 3783 issue: 10 year: 2012 ident: 1022_CR9 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-16-3783-2012 – year: 2022 ident: 1022_CR35 publication-title: Sustainability doi: 10.3390/su14042341 – volume: 19 start-page: 439 issue: 7 year: 2020 ident: 1022_CR43 publication-title: J Saudi Soc Agric Sci doi: 10.1016/j.jssas.2020.08.001 – volume: 314–316 start-page: 303 year: 2003 ident: 1022_CR11 publication-title: Sci Total Environ doi: 10.1016/S0048-9697(03)00062-7 – volume: 9 start-page: 2150121 issue: 1 year: 2022 ident: 1022_CR22 publication-title: Cogent Eng doi: 10.1080/23311916.2022.2150121 – ident: 1022_CR44 doi: 10.3390/w14101552 – volume: 36 start-page: 112 year: 2018 ident: 1022_CR46 publication-title: Adv Eng Inf doi: 10.1016/j.aei.2018.03.003 – ident: 1022_CR16 doi: 10.1145/3368691.3368701 – volume: 106 start-page: 3195 issue: 10 year: 2024 ident: 1022_CR4 publication-title: Computing doi: 10.1007/s00607-024-01319-5 – volume: 14 year: 2021 ident: 1022_CR26 publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2021.100630 – volume: 7 start-page: 12858 issue: 1 year: 2017 ident: 1022_CR38 publication-title: Sci Rep doi: 10.1038/s41598-017-12853-y – volume: 11 start-page: 2897 issue: 12 year: 2021 ident: 1022_CR48 publication-title: J Med Imaging Health Inf – ident: 1022_CR13 – year: 2023 ident: 1022_CR8 publication-title: Results Eng doi: 10.1016/j.rineng.2023.101445 – volume: 6 start-page: 2726 issue: 11 year: 2019 ident: 1022_CR49 publication-title: ACS Photonics doi: 10.1021/acsphotonics.9b00706 – volume: 239 year: 2023 ident: 1022_CR7 publication-title: Water Res doi: 10.1016/j.watres.2023.120037 – ident: 1022_CR17 – volume: 13 start-page: 2171 issue: 1 year: 2012 ident: 1022_CR52 publication-title: J Mach Learn Res – volume: 2 start-page: 35 issue: 2 year: 2021 ident: 1022_CR27 publication-title: Knowl Based Eng Sci doi: 10.51526/kbes.2021.2.2.35-43 – volume: 599 year: 2021 ident: 1022_CR29 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.126510 – ident: 1022_CR57 doi: 10.16993/tellusa.4069 – volume: 144 start-page: 56 year: 2019 ident: 1022_CR28 publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2019.01.030 – volume: 113 start-page: 102532 year: 2022 ident: 1022_CR31 publication-title: Comput Secur doi: 10.1016/j.cose.2021.102532 – ident: 1022_CR19 doi: 10.1109/DASA54658.2022.9765193 – volume: 625 year: 2023 ident: 1022_CR14 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2023.130034 – volume: 55 year: 2023 ident: 1022_CR15 publication-title: J Water Process Eng doi: 10.1016/j.jwpe.2023.104102 – volume: 898 year: 2023 ident: 1022_CR32 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.165504 – ident: 1022_CR10 – volume: 4 year: 2019 ident: 1022_CR6 publication-title: Results Eng doi: 10.1016/j.rineng.2019.100055 – volume: 30 start-page: 3761 issue: 5 year: 2021 ident: 1022_CR39 publication-title: Nat Resour Res doi: 10.1007/s11053-021-09895-5 – volume: 245 year: 2023 ident: 1022_CR23 publication-title: Water Res doi: 10.1016/j.watres.2023.120518 – volume: 26 start-page: 19879 issue: 19 year: 2019 ident: 1022_CR40 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-05116-y – volume: 17 start-page: 98 issue: 8 year: 2023 ident: 1022_CR45 publication-title: Front Environ Sci Eng doi: 10.1007/s11783-023-1698-9 – volume: 2019 start-page: 1 year: 2019 ident: 1022_CR21 publication-title: Sci Program – volume: 34 start-page: 415 issue: 2 year: 2020 ident: 1022_CR34 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-020-01776-2 – volume: 58 start-page: 458 issue: 3 year: 2013 ident: 1022_CR42 publication-title: Math Comput Model doi: 10.1016/j.mcm.2011.11.021 – volume: 17 start-page: 3286 issue: 5 year: 2022 ident: 1022_CR18 publication-title: J Eng Sci Technol – volume: 8 start-page: 2599 issue: 2 year: 2022 ident: 1022_CR25 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-021-01253-x – volume: 23 start-page: 550 issue: 4 year: 1997 ident: 1022_CR53 publication-title: ACM Trans Math Softw doi: 10.1145/279232.279236 – volume: 27 start-page: 2121 issue: 3 year: 2019 ident: 1022_CR5 publication-title: Turk J Electr Eng Comput Sci doi: 10.3906/elk-1812-175 – volume: 59 start-page: 45 issue: 1 year: 2023 ident: 1022_CR3 publication-title: Kybernetika – volume: 58 start-page: 440 issue: 3 year: 2022 ident: 1022_CR1 publication-title: Kybernetika – volume: 60 start-page: 293 issue: 3 year: 2024 ident: 1022_CR2 publication-title: Kybernetika – volume: 3 start-page: 336 issue: 4 year: 1989 ident: 1022_CR55 publication-title: Water Environ J doi: 10.1111/j.1747-6593.1989.tb01538.x |
| SSID | ssj0062074 |
| Score | 2.3596787 |
| Snippet | Enhancing the assessment of water quality is essential for sustainable water management, given its critical impact on environmental health and human... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 34 |
| SubjectTerms | Accuracy Applications of Mathematics Artificial Intelligence Bioinformatics Chemical oxygen demand Climate change Control Datasets Desertification Dissolved solids Engineering Evolutionary algorithms Genetic algorithms Kernel functions Machine learning Mathematical and Computational Engineering Mechatronics Optimization algorithms Optimization techniques Parameter estimation Particle swarm optimization Performance evaluation Polynomials Prediction models Radial basis function Regression Remote sensing Research Paper Rivers Robotics Statistical Physics and Dynamical Systems Support vector machines Time series Water management Water quality Water resources management Water treatment plants |
| Title | Synergistic optimization of predictive models for water quality analysis in treatment plants using machine learning and evolutionary algorithms |
| URI | https://link.springer.com/article/10.1007/s12065-025-01022-0 https://www.proquest.com/docview/3254147813 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1864-5917 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: AFBBN dateStart: 20080301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1864-5917 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1864-5917 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: U2A dateStart: 20080301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu8DAo4AolOoGNoiU2nFijxVqqUBigUplimLHLpX6UltA_RX8ZWzXIYBgYE5yQ-58D_n7vkPogqiEaclZQJXIzYAikiCjkgSYaY6TREdcO4DsfdzrR7cDOvCksGWBdi-uJF2mLslu2JTLwK5fdTpogRnUq9TKeZko7uN2kX9jHDrt5RaLo4DykHuqzO82vpejssf8cS3qqk13H-36NhHaG78eoC01raG9YgUD-BNZQztf9AQP0fvD2lL5nPYyzEwymHiWJcw0zBf2TsZmN3Drb5Zg-lV4y6y9DbVyDZmXKIHRFD4h6DAfW7AMWIj8ECYOfanAr5sYmm9yUK8-grOFMTIezhaj1fNkeYT63c7jdS_wGxcCaU7LymI1BCZUcyUpZlJhrc30rEUcRpkwtZ_nVn9Q5pgkpi8SgiSRJjFVONLUzHmMHKPKdDZVJwiEVLEMsbR0xMiKhHFmujvGcaZxS8eiji6LH5_ON8IaaSmhbN2UGjelzk1pWEeNwjepP2TLlGC7wzxhLVJHV4W_ysd_Wzv93-tnaBu7kLF4nQaqrBYv6ty0IivRRNX2zdNdp-ki8AP7xtkU |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVQGYCBRwFRKHAHNoiU2nnYY4VABUoXWqlbFLt2qdQ2VVNA_Qp-Gdt1CCAYmJPcIdf3JZ9zLkIXRMZUCUa9UPKBHlB47KWhIB6miuE4VgFTFiDbiVq94L4f9h0pLC_Q7sWVpM3UJdkN63LpmfWrVgfN04P6uhGwMor5Pdws8m-Efau93KBR4IXMZ44q87uN7-Wo7DF_XIvaanO7i7ZdmwjNlV_30JqcVtFOsYIBXERW0dYXPcF99P60NFQ-q70MmU4GE8eyhEzBbG7uZEx2A7v-Jgfdr8JbauytqJVLSJ1ECYym8AlBh9nYgGXAQOSHMLHoSwlu3cRQfzMA-epOcDrXRsbDbD5aPE_yA9S7veletzy3ccETOloWBqvBMQkVkyLEVEislJ6eFY_8IOW69rOB0R8UA0xi3RdxTuJAkSiUOFChnvMoOUSVaTaVRwi4kJHwsTB0xMCIhDGquzvKcKpwQ0W8hi6LH5_MVsIaSSmhbNyUaDcl1k2JX0P1wjeJC7I8IdjsMI9pg9TQVeGv8vHf1o7_9_o52mh1H9tJ-67zcII2sT0-BrtTR5XF_EWe6rZkwc_sKfwAeWjabA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsMwELQQSAgOvBGFAnvgBhGpnYd9rICKlxASVOIWxY5dKrVp1AZQv4JfxnYdAggOnJPsIbu2Z-WZWYSOiIypEox6oeSZblB47KWhIB6miuE4VgFTliB7F112g-un8OmLit-y3asryZmmwbg05eVpkanTWviG9dHpmVGs1hPN0037QmCMEnRFd3G72osj7Fsf5haNAi9kPnOymd9jfD-aarz544rUnjydNbTiICO0ZzleR3My30Cr1TgGcKtzAy1_8RbcRO8PUyPrsz7MMNIbw9ApLmGkoBib-xmz04EdhTMBjV3hLTXxZjLLKaTOrgT6OXzS0aEYGOIMGLp8D4aWiSnBjZ7o6W8ykK-umtOxDjLojcb98nk42ULdzsXj2aXnpi94Qq-c0vA2OCahYlKEmAqJldKdtOKRH6Rc4wCWGS9CkWESa4zEOYkDRaJQ4kCFuuejZBvN56Nc7iDgQkbCx8JIEwNjGMaoRnqU4VThlop4Ax1XPz4pZiYbSW2nbNKU6DQlNk2J30DNKjeJW3CThGAzzzymLdJAJ1W-6sd_R9v93-uHaPH-vJPcXt3d7KElbKvH0HiaaL4cv8h9jVBKfmCL8AMU8N6o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+optimization+of+predictive+models+for+water+quality+analysis+in+treatment+plants+using+machine+learning+and+evolutionary+algorithms&rft.jtitle=Evolutionary+intelligence&rft.au=Ghareeb%2C+Ahmed&rft.au=Nooruldeen%2C+Orhan&rft.au=Arslan%2C+Chelang+A&rft.au=Kapp%2C+Sean&rft.date=2025-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1864-5909&rft.eissn=1864-5917&rft.volume=18&rft.issue=2&rft.spage=34&rft_id=info:doi/10.1007%2Fs12065-025-01022-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5909&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5909&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5909&client=summon |