An Improved/Optimized Practical Non-Blocking PageRank Algorithm for Massive Graphs

PageRank kernel is a standard benchmark addressing various graph processing and analytical problems. The PageRank algorithm serves as a standard for many graph analytics and a foundation for extracting graph features and predicting user ratings in recommendation systems. The PageRank algorithm is an...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of parallel programming Vol. 50; no. 3-4; pp. 381 - 404
Main Authors Eedi, Hemalatha, Karra, Sahith, Peri, Sathya, Ranabothu, Neha, Utkoor, Rahul
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-7458
1573-7640
DOI10.1007/s10766-022-00725-6

Cover

Abstract PageRank kernel is a standard benchmark addressing various graph processing and analytical problems. The PageRank algorithm serves as a standard for many graph analytics and a foundation for extracting graph features and predicting user ratings in recommendation systems. The PageRank algorithm is an iterative algorithm that continuously updates the ranks of pages until it converges to a value. However, implementing the PageRank algorithm on a shared memory architecture while taking advantage of fine-grained parallelism with large-scale graphs is hard to implement. The experimental study and analysis of the parallel PageRank metric on large graphs and shared memory architectures using different programming models have been studied extensively. This paper presents the asynchronous execution of the PageRank algorithm to leverage the computations on massive graphs, especially on shared memory architectures. We evaluate the performance of our proposed non-blocking algorithms for PageRank computation on real-world and synthetic datasets using POSIX Multithreaded Library on a 56 core Intel(R) Xeon processor. We observed that our asynchronous implementations achieve 10 × to 30 × speed-up with respect to sequential runs and 5 × to 10 × improvements over synchronous variants.
AbstractList PageRank kernel is a standard benchmark addressing various graph processing and analytical problems. The PageRank algorithm serves as a standard for many graph analytics and a foundation for extracting graph features and predicting user ratings in recommendation systems. The PageRank algorithm is an iterative algorithm that continuously updates the ranks of pages until it converges to a value. However, implementing the PageRank algorithm on a shared memory architecture while taking advantage of fine-grained parallelism with large-scale graphs is hard to implement. The experimental study and analysis of the parallel PageRank metric on large graphs and shared memory architectures using different programming models have been studied extensively. This paper presents the asynchronous execution of the PageRank algorithm to leverage the computations on massive graphs, especially on shared memory architectures. We evaluate the performance of our proposed non-blocking algorithms for PageRank computation on real-world and synthetic datasets using POSIX Multithreaded Library on a 56 core Intel(R) Xeon processor. We observed that our asynchronous implementations achieve 10 × to 30 × speed-up with respect to sequential runs and 5 × to 10 × improvements over synchronous variants.
PageRank kernel is a standard benchmark addressing various graph processing and analytical problems. The PageRank algorithm serves as a standard for many graph analytics and a foundation for extracting graph features and predicting user ratings in recommendation systems. The PageRank algorithm is an iterative algorithm that continuously updates the ranks of pages until it converges to a value. However, implementing the PageRank algorithm on a shared memory architecture while taking advantage of fine-grained parallelism with large-scale graphs is hard to implement. The experimental study and analysis of the parallel PageRank metric on large graphs and shared memory architectures using different programming models have been studied extensively. This paper presents the asynchronous execution of the PageRank algorithm to leverage the computations on massive graphs, especially on shared memory architectures. We evaluate the performance of our proposed non-blocking algorithms for PageRank computation on real-world and synthetic datasets using POSIX Multithreaded Library on a 56 core Intel(R) Xeon processor. We observed that our asynchronous implementations achieve 10× to 30× speed-up with respect to sequential runs and 5× to 10× improvements over synchronous variants.
Author Eedi, Hemalatha
Utkoor, Rahul
Karra, Sahith
Ranabothu, Neha
Peri, Sathya
Author_xml – sequence: 1
  givenname: Hemalatha
  orcidid: 0000-0002-3717-1749
  surname: Eedi
  fullname: Eedi, Hemalatha
  email: cs15resch11002@iith.ac.in
  organization: Indian Institute of Technology Hyderabad
– sequence: 2
  givenname: Sahith
  surname: Karra
  fullname: Karra, Sahith
  organization: American High School
– sequence: 3
  givenname: Sathya
  surname: Peri
  fullname: Peri, Sathya
  organization: Indian Institute of Technology Hyderabad
– sequence: 4
  givenname: Neha
  surname: Ranabothu
  fullname: Ranabothu, Neha
  organization: Indian Institute of Technology Hyderabad
– sequence: 5
  givenname: Rahul
  surname: Utkoor
  fullname: Utkoor, Rahul
  organization: Indian Institute of Technology Hyderabad
BookMark eNp9kFFLwzAUhYNMcJv-AZ8KPselydqkj3PoHEw3hj6HNL3purVpTbqB_no7K_jm0-XAOecevhEa2NoCQrchuQ8J4RMfEh7HmFCKO0kjHF-gYRhxhnk8JQM0JEJEmE8jcYVG3u8JIQkXYoi2Mxssq8bVJ8gm66YtquILsmDjlG4Lrcrgtbb4oaz1obB5sFE5bJU9BLMyr13R7qrA1C54Ud4XJwgWTjU7f40ujSo93PzeMXp_enybP-PVerGcz1ZYU0JazIVJNQPNVKo50wYoiG66YAk3SWpiGmnFjYoYS02iIAPIiI6EYEAEiCRlY3TX93brP47gW7mvj852LyWNRSRoeG4bI9q7tKu9d2Bk44pKuU8ZEnlmJ3t2smMnf9jJuAuxPuQ7s83B_VX_k_oGTmB0Uw
Cites_doi 10.1145/3243176.3243205
10.1137/1.9781611972740.43
10.1145/2150976.2151013
10.1109/IPDPS.2017.112
10.1145/2025113.2025133
10.1109/ICCD.2017.38
10.1609/aaai.v29i1.9277
10.1145/1807167.1807184
10.1145/3380942
10.1109/PDP52278.2021.00015
10.1145/2833312.2833322
10.1145/2517349.2522740
10.1016/j.future.2020.01.033
10.1145/2517349.2522739
10.1145/2442516.2442530
10.1145/2020976.2021006
10.1109/IPDPS.2009.5161102
10.1109/HiPC.2017.00013
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10766-022-00725-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (ProQuest)
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7640
EndPage 404
ExternalDocumentID 10_1007_s10766_022_00725_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYJJ
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
E.L
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
MS~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c200t-78fbc3ec3abc73cfe2e80728397f9bf625ca7fa533bf9aedeed0c5883e08e89b3
IEDL.DBID BENPR
ISSN 0885-7458
IngestDate Fri Jul 25 22:57:15 EDT 2025
Wed Oct 01 01:32:52 EDT 2025
Fri Feb 21 02:46:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Multi Threading
PageRank
Non-blocking mechanism
Barrier synchronization
Blocking mechanism
Shared memory architecture
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c200t-78fbc3ec3abc73cfe2e80728397f9bf625ca7fa533bf9aedeed0c5883e08e89b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3717-1749
PQID 2685821728
PQPubID 48389
PageCount 24
ParticipantIDs proquest_journals_2685821728
crossref_primary_10_1007_s10766_022_00725_6
springer_journals_10_1007_s10766_022_00725_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220800
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 8
  year: 2022
  text: 20220800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of parallel programming
PublicationTitleAbbrev Int J Parallel Prog
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Roy, A., Mihailovic, I., Zwaenepoel, W.: X-Stream: edge-centric graph processing using streaming partitions. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, pp. 472–488. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2517349.2522740
Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph mining. In: Berry, M.W., Dayal, U., Kamath, C., Skillicorn, D.B. (eds) Proceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena Vista, Florida, USA, 22–24 April 2004, pp. 442–446. SIAM (2004). https://doi.org/10.1137/1.9781611972740.43
Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Technical Report 1999-66, previous number = SIDL-WP-1999-0120. Stanford InfoLab (1999). http://ilpubs.stanford.edu:8090/422
Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared memory. In: Nicolau, A., Shen, X., Amarasinghe, S.P., Vuduc, R.W. (eds) ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, Shenzhen, China, 23–27 February 2013, pp. 135–146. ACM (2013). https://doi.org/10.1145/2442516.2442530
VuJThe art of multiprocessor programming by Maurice Herlihy and Nir ShavitACM SIGSOFT Softw. Eng. Notes2011365525310.1145/2020976.2021006
Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph analytics. In: Kaminsky, M., Dahlin, M. (eds) ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA, 3–6 November 2013, pp. 456–471. ACM (2013). https://doi.org/10.1145/2517349.2522739
LakhotiaKKannanRPatiSPrasannaVKGPOP: a scalable cache- and memory-efficient framework for graph processing over partsACM Trans. Parallel Comput.2020717:17:2410.1145/3380942
Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). http://networkrepository.com
GrossJYellenJGraph Theory and Its Applications1999Boca RatonCRC Press, Inc.0920.05001
Garg, P., Kothapalli, K.: STIC-D: algorithmic techniques for efficient parallel PageRank computation on real-world graphs. In: Proceedings of the 17th International Conference on Distributed Computing and Networking, Singapore, 4–7 January 2016, pp. 15:1–15:10. ACM (2016). https://doi.org/10.1145/2833312.2833322
Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection (2014). http://snap.stanford.edu/data
Beamer, S., Asanovic, K., Patterson, D.A.: Reducing PageRank communication via propagation blocking. In: 2017 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2017, Orlando, FL, USA, 29 May–2 June 2017, pp. 820–831. IEEE Computer Society (2017). https://doi.org/10.1109/IPDPS.2017.112
Peng, Z., Powell, A., Wu, B., Bicer, T., Ren, B.: GraphPhi: efficient parallel graph processing on emerging throughput-oriented architectures. In: Evripidou, S., Stenström, P., O’Boyle, M.F.P. (eds) Proceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques, PACT 2018, Limassol, Cyprus, 1–4 November 2018, pp. 9:1–9:14. ACM (2018). https://doi.org/10.1145/3243176.3243205
KumarVGramaAGuptaAKarypisGIntroduction to Parallel Computing: Design and Analysis of Algorithms1994San FranciscoBenjamin-Cummings Publishing Co., Inc.0861.68040
Barrett, B.W., Berry, J.W., Murphy, R.C., Wheeler, K.B.: Implementing a portable multi-threaded graph library: the MTGL on Qthreads. In: 23rd IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2009, Rome, Italy, 23–29 May 2009, pp. 1–8. IEEE (2009). https://doi.org/10.1109/IPDPS.2009.5161102
Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., Rinard, M.: Managing performance vs. accuracy trade-offs with loop perforation. In: ESEC/FSE ’11, pp. 124–134. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/2025113.2025133
Omar, H., Ahmad, M., Khan, O.: GraphTuner: an input dependence aware loop perforation scheme for efficient execution of approximated graph algorithms. In: 2017 IEEE International Conference on Computer Design, ICCD 2017, Boston, MA, USA, 5–8 November 2017, pp. 201–208. IEEE Computer Society (2017). https://doi.org/10.1109/ICCD.2017.38
Mitliagkas, I., Borokhovich, M., Dimakis, A.G., Caramanis, C.: FrogWild!—fast PageRank approximations on graph engines. CoRR abs/1502.04281 (2015). arxiv:1502.04281
Wang, G., Xie, W., Demers, A.J., Gehrke, J.: Asynchronous large-scale graph processing made easy. In: CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Research, Online Proceedings, Asilomar, CA, USA, 6–9 January 2013 (2013). www.cidrdb.org, http://cidrdb.org/cidr2013/Papers/CIDR13_Paper58.pdf
Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-Marl: a DSL for easy and efficient graph analysis. In: ASPLOS XVII, pp. 349–362. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2150976.2151013
Panyala, A., Subasi, O., Halappanavar, M., Kalyanaraman, A., Chavarr,ía-Miranda, D.G., Krishnamoorthy, S.: Approximate computing techniques for iterative graph algorithms. In: 24th IEEE International Conference on High Performance Computing, HiPC 2017, Jaipur, India, 18–21 December 2017, pp 23–32. IEEE Computer Society (2017). https://doi.org/10.1109/HiPC.2017.00013
Eedi, H., Peri, S., Ranabothu, N., Utkoor, R.: An efficient practical non-blocking PageRank algorithm for large scale graphs. In: 29th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP 2021, Valladolid, Spain, 10–12 March 2021, pp. 35–43. IEEE (2021). https://doi.org/10.1109/PDP52278.2021.00015
LuoLLiuYProcessing graphs with barrierless asynchronous parallel model on shared-memory systemsFuture Gener. Comput. Syst.202010664165210.1016/j.future.2020.01.033
Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 International Conference on Management of Data, New York, NY, USA, pp 135–146 (2010). https://doi.org/10.1145/1807167.1807184
Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: GraphLab: a new framework for parallel machine learning. In: Grünwald, P., Spirtes, P. (eds) UAI 2010, Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, Catalina Island, CA, USA, 8–11 July 2010, pp. 340–349. AUAI Press (2010). https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2126&proceeding_id=26
725_CR4
725_CR5
725_CR6
725_CR7
725_CR9
L Luo (725_CR21) 2020; 106
725_CR10
725_CR14
725_CR13
725_CR12
725_CR18
725_CR17
725_CR16
725_CR15
725_CR19
V Kumar (725_CR25) 1994
K Lakhotia (725_CR11) 2020; 7
725_CR20
J Gross (725_CR1) 1999
J Vu (725_CR8) 2011; 36
725_CR24
725_CR23
725_CR22
725_CR2
725_CR3
References_xml – reference: Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared memory. In: Nicolau, A., Shen, X., Amarasinghe, S.P., Vuduc, R.W. (eds) ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, Shenzhen, China, 23–27 February 2013, pp. 135–146. ACM (2013). https://doi.org/10.1145/2442516.2442530
– reference: Roy, A., Mihailovic, I., Zwaenepoel, W.: X-Stream: edge-centric graph processing using streaming partitions. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, pp. 472–488. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2517349.2522740
– reference: Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection (2014). http://snap.stanford.edu/data
– reference: Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph analytics. In: Kaminsky, M., Dahlin, M. (eds) ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA, 3–6 November 2013, pp. 456–471. ACM (2013). https://doi.org/10.1145/2517349.2522739
– reference: Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). http://networkrepository.com
– reference: Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: GraphLab: a new framework for parallel machine learning. In: Grünwald, P., Spirtes, P. (eds) UAI 2010, Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, Catalina Island, CA, USA, 8–11 July 2010, pp. 340–349. AUAI Press (2010). https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2126&proceeding_id=26
– reference: KumarVGramaAGuptaAKarypisGIntroduction to Parallel Computing: Design and Analysis of Algorithms1994San FranciscoBenjamin-Cummings Publishing Co., Inc.0861.68040
– reference: LakhotiaKKannanRPatiSPrasannaVKGPOP: a scalable cache- and memory-efficient framework for graph processing over partsACM Trans. Parallel Comput.2020717:17:2410.1145/3380942
– reference: Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., Rinard, M.: Managing performance vs. accuracy trade-offs with loop perforation. In: ESEC/FSE ’11, pp. 124–134. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/2025113.2025133
– reference: Mitliagkas, I., Borokhovich, M., Dimakis, A.G., Caramanis, C.: FrogWild!—fast PageRank approximations on graph engines. CoRR abs/1502.04281 (2015). arxiv:1502.04281
– reference: Panyala, A., Subasi, O., Halappanavar, M., Kalyanaraman, A., Chavarr,ía-Miranda, D.G., Krishnamoorthy, S.: Approximate computing techniques for iterative graph algorithms. In: 24th IEEE International Conference on High Performance Computing, HiPC 2017, Jaipur, India, 18–21 December 2017, pp 23–32. IEEE Computer Society (2017). https://doi.org/10.1109/HiPC.2017.00013
– reference: Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Technical Report 1999-66, previous number = SIDL-WP-1999-0120. Stanford InfoLab (1999). http://ilpubs.stanford.edu:8090/422/
– reference: VuJThe art of multiprocessor programming by Maurice Herlihy and Nir ShavitACM SIGSOFT Softw. Eng. Notes2011365525310.1145/2020976.2021006
– reference: Eedi, H., Peri, S., Ranabothu, N., Utkoor, R.: An efficient practical non-blocking PageRank algorithm for large scale graphs. In: 29th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP 2021, Valladolid, Spain, 10–12 March 2021, pp. 35–43. IEEE (2021). https://doi.org/10.1109/PDP52278.2021.00015
– reference: Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-Marl: a DSL for easy and efficient graph analysis. In: ASPLOS XVII, pp. 349–362. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2150976.2151013
– reference: Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph mining. In: Berry, M.W., Dayal, U., Kamath, C., Skillicorn, D.B. (eds) Proceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena Vista, Florida, USA, 22–24 April 2004, pp. 442–446. SIAM (2004). https://doi.org/10.1137/1.9781611972740.43
– reference: Garg, P., Kothapalli, K.: STIC-D: algorithmic techniques for efficient parallel PageRank computation on real-world graphs. In: Proceedings of the 17th International Conference on Distributed Computing and Networking, Singapore, 4–7 January 2016, pp. 15:1–15:10. ACM (2016). https://doi.org/10.1145/2833312.2833322
– reference: Barrett, B.W., Berry, J.W., Murphy, R.C., Wheeler, K.B.: Implementing a portable multi-threaded graph library: the MTGL on Qthreads. In: 23rd IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2009, Rome, Italy, 23–29 May 2009, pp. 1–8. IEEE (2009). https://doi.org/10.1109/IPDPS.2009.5161102
– reference: Beamer, S., Asanovic, K., Patterson, D.A.: Reducing PageRank communication via propagation blocking. In: 2017 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2017, Orlando, FL, USA, 29 May–2 June 2017, pp. 820–831. IEEE Computer Society (2017). https://doi.org/10.1109/IPDPS.2017.112
– reference: Omar, H., Ahmad, M., Khan, O.: GraphTuner: an input dependence aware loop perforation scheme for efficient execution of approximated graph algorithms. In: 2017 IEEE International Conference on Computer Design, ICCD 2017, Boston, MA, USA, 5–8 November 2017, pp. 201–208. IEEE Computer Society (2017). https://doi.org/10.1109/ICCD.2017.38
– reference: Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 International Conference on Management of Data, New York, NY, USA, pp 135–146 (2010). https://doi.org/10.1145/1807167.1807184
– reference: Peng, Z., Powell, A., Wu, B., Bicer, T., Ren, B.: GraphPhi: efficient parallel graph processing on emerging throughput-oriented architectures. In: Evripidou, S., Stenström, P., O’Boyle, M.F.P. (eds) Proceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques, PACT 2018, Limassol, Cyprus, 1–4 November 2018, pp. 9:1–9:14. ACM (2018). https://doi.org/10.1145/3243176.3243205
– reference: GrossJYellenJGraph Theory and Its Applications1999Boca RatonCRC Press, Inc.0920.05001
– reference: LuoLLiuYProcessing graphs with barrierless asynchronous parallel model on shared-memory systemsFuture Gener. Comput. Syst.202010664165210.1016/j.future.2020.01.033
– reference: Wang, G., Xie, W., Demers, A.J., Gehrke, J.: Asynchronous large-scale graph processing made easy. In: CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Research, Online Proceedings, Asilomar, CA, USA, 6–9 January 2013 (2013). www.cidrdb.org, http://cidrdb.org/cidr2013/Papers/CIDR13_Paper58.pdf
– ident: 725_CR19
  doi: 10.1145/3243176.3243205
– ident: 725_CR22
  doi: 10.1137/1.9781611972740.43
– ident: 725_CR5
  doi: 10.1145/2150976.2151013
– volume-title: Graph Theory and Its Applications
  year: 1999
  ident: 725_CR1
– ident: 725_CR15
– ident: 725_CR17
  doi: 10.1109/IPDPS.2017.112
– ident: 725_CR6
  doi: 10.1145/2025113.2025133
– ident: 725_CR13
– ident: 725_CR18
  doi: 10.1109/ICCD.2017.38
– ident: 725_CR24
  doi: 10.1609/aaai.v29i1.9277
– ident: 725_CR3
  doi: 10.1145/1807167.1807184
– volume: 7
  start-page: 7:1
  issue: 1
  year: 2020
  ident: 725_CR11
  publication-title: ACM Trans. Parallel Comput.
  doi: 10.1145/3380942
– ident: 725_CR2
– ident: 725_CR20
  doi: 10.1109/PDP52278.2021.00015
– ident: 725_CR10
  doi: 10.1145/2833312.2833322
– ident: 725_CR4
  doi: 10.1145/2517349.2522740
– volume: 106
  start-page: 641
  year: 2020
  ident: 725_CR21
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.01.033
– ident: 725_CR16
  doi: 10.1145/2517349.2522739
– volume-title: Introduction to Parallel Computing: Design and Analysis of Algorithms
  year: 1994
  ident: 725_CR25
– ident: 725_CR14
– ident: 725_CR9
  doi: 10.1145/2442516.2442530
– volume: 36
  start-page: 52
  issue: 5
  year: 2011
  ident: 725_CR8
  publication-title: ACM SIGSOFT Softw. Eng. Notes
  doi: 10.1145/2020976.2021006
– ident: 725_CR12
  doi: 10.1109/IPDPS.2009.5161102
– ident: 725_CR7
  doi: 10.1109/HiPC.2017.00013
– ident: 725_CR23
SSID ssj0009788
Score 2.2632365
Snippet PageRank kernel is a standard benchmark addressing various graph processing and analytical problems. The PageRank algorithm serves as a standard for many graph...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 381
SubjectTerms Algorithms
Computer architecture
Computer memory
Computer Science
Feature extraction
Graphs
Iterative algorithms
Iterative methods
Microprocessors
Processor Architectures
Recommender systems
Search algorithms
Software Engineering/Programming and Operating Systems
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWVh4IwoFeWADizYvO2NAlAqpBVVU6mbZjg0ImqI2LPx6znkogGBgTnRSvvPdfbF93wGcxj3LtQ08itVM0yBkjEoZpTTwU6t0T2NRdQ3Ow1E0mAS303BaNYUt69vu9ZFkkam_NLuxyF2Y9aiTuw5ptAproZPzwlU88ZJGapcV0yYxfELKgpBXrTK_2_hejhqO-eNYtKg2_S3YqGgiSUq_bsOKyXZgsx7BQKqI3IVxkpFyX8CkF3cY_rPnD5OSUoUI4SejeUYvsWC5HXFyj8ljLLMXkrw-zhfP-dOMIGclQyTQmPTIjROvXu7BpH_9cDWg1ZgEqnGJ55RxRNU32pdKM19b4xmOH4fMh9lYWfzB0ZJZibxO2ViaFKtiV4ec-6bLDY-Vvw-tbJ6ZAyDa71rVY9JqjkwDDabIJlXgabRs0I9tOKvREm-lGoZodI8dtgKxFQW2ImpDpwZUVJGxFJ4TvC-mYrXhvAa5efy3tcP_vX4E617hZ3dXrwOtfPFujpE_5OqkWC6fY1K86w
  priority: 102
  providerName: Springer Nature
Title An Improved/Optimized Practical Non-Blocking PageRank Algorithm for Massive Graphs
URI https://link.springer.com/article/10.1007/s10766-022-00725-6
https://www.proquest.com/docview/2685821728
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-7640
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009788
  issn: 0885-7458
  databaseCode: ABDBF
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7640
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009788
  issn: 0885-7458
  databaseCode: ADMLS
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009788
  issn: 0885-7458
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7640
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009788
  issn: 0885-7458
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009788
  issn: 0885-7458
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7640
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009788
  issn: 0885-7458
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4gXLz4NqJIevCmDbCvloMxu8ojGpAQSfC06XZbNcqCghd_vdNlNxtN9LSHJpN0pp35tu18H8BZu6W51I5FsZpJ6riMUSG8mDp2rCPZklhUTYPzYOj1J87t1J2WYJj3wphnlXlOTBN1PJfmjLxhGaL0VE3pavFOjWqUuV3NJTREJq0QX6YUYxtQsQwzVhkqQWc4Ghc0vCxVosSt5VLmuDxro8ma6ZhnHuRa1NBpu9T7WaoK_PnryjStRN0d2MogJPHXMd-Fkkr2YDuXZyDZbt2HsZ-Q9ZmBihv3mBpmL18qJmuGIgwNGc4TGmAxM6flZISJZSySV-K_PeG8V88zgniWDBBcY0IkPUNsvTyASbfzcN2nmYQClbj8V5Rx9LitpC0iyWyplaU4Tg5REdPtSOPPjxRMC8R8kW4LFWPFbEqXc1s1ueLtyD6EcjJP1BEQaTd11GJCS44oBA3GiDQjx5JoWWGMq3CeeytcrJkywoIT2fg2RN-GqW9Drwq13KFhtmuWYRHjKlzkTi6G_7Z2_L-1E9i00riad3s1KK8-PtUpYolVVIcN3u3VoeIHN0HXfHuPd516tmxwdGL539lwy2w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VeoALO6KsPsAJLNpsdg4IFSi0QAuqQOIWHMcGBKRAixB8HN_GOHUUgQQ3zpEm1vN45nmZNwDrYU1zqT2HYjaT1PMZo0IECfXcRMeyJjGpmgLndidoXnrHV_5VCT7zWhjzrDKPiVmgTnrSnJFvO0YoPeumtPv0TE3XKHO7mrfQELa1QrKTSYzZwo4T9f6GW7j-TusA53vDcQ4bF_tNarsMUIkeMqCM46BcJV0RS-ZKrRzFq_gbTNQ6jDXuD6RgWiAtinUoVIJJpSp9zl1V5YqHsYt2R6DsuV6Im7_yXqNz3i1kf1nW-RKXsk-Z53NbtmOL91hgHgA71Mh3-zT4nhoLvvvjijbLfIdTMGEpK6kPfWwaSiqdgcm8HQSx0WEWuvWUDM8oVLJ9hqHo8e5DJWSoiISuQDq9lO5h8jSn8-QcA1lXpPek_nCDOA9uHwnyZ9JGMo8BmBwZIe3-HFz-C5jzMJr2UrUARLpVHdeY0JIj60GDCTLb2HMkWlboUxXYzNGKnobKHFGhwWywjRDbKMM2CiqwnAMa2VXajwqfqsBWDnLx-Xdri39bW4Ox5kX7NDptdU6WYNzJ5ti8GVyG0cHLq1pBHjOIV62zELj-b__8AqHeBiw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VkBAXdkRZfYATWG2z2TkgVJbQspSqohK3kDg2IGgKNAjBp_F1jLMoAglunCNNoufnmWdnFoAtt6G4UJZBMZoJatmM0SBwImqZkQpFQ2BQ1QXOFx2n1bdOr-3rCnwWtTA6rbLwiamjjoZC35HXDN0oPZ2mVFN5WkT3yNt_eqZ6gpT-01qM08gocibf3_D4NtprH-FabxuGd3x12KL5hAEqkB0JZRw_yJTCDELBTKGkIXkdX4FBWrmhwrOBCJgKUBKFyg1khAGlLmzOTVnnkruhiXbHYILpLu66St07KRv-snTmJW5imzLL5nnBTl62xxyd-mtQ3bjbps73oFgq3R8_Z9OY583CdC5WSTNj1xxUZDwPM8UgCJL7hQXoNWOS3U7IqHaJTmhw_yEjkvVCQhKQzjCmBxg29b086aIL6wXxA2k-3iKqyd2AoHImFyjj0fWSE91Ce7QI_X-BcgnG42Esl4EIs67CBguU4Kh30GCEmja0DIGWJbKpCjsFWv5T1pPDL7sva2x9xNZPsfWdKqwVgPr5_hz5JZuqsFuAXD7-3drK39Y2YRJZ6Z-3O2erMGWkS6yTBddgPHl5lesoYJJwI2UKgZv_puYXerwDxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved%2FOptimized+Practical+Non-Blocking+PageRank+Algorithm+for+Massive+Graphs&rft.jtitle=International+journal+of+parallel+programming&rft.au=Eedi%2C+Hemalatha&rft.au=Karra%2C+Sahith&rft.au=Peri%2C+Sathya&rft.au=Ranabothu%2C+Neha&rft.date=2022-08-01&rft.issn=0885-7458&rft.eissn=1573-7640&rft.volume=50&rft.issue=3-4&rft.spage=381&rft.epage=404&rft_id=info:doi/10.1007%2Fs10766-022-00725-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10766_022_00725_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7458&client=summon