An Improved/Optimized Practical Non-Blocking PageRank Algorithm for Massive Graphs
PageRank kernel is a standard benchmark addressing various graph processing and analytical problems. The PageRank algorithm serves as a standard for many graph analytics and a foundation for extracting graph features and predicting user ratings in recommendation systems. The PageRank algorithm is an...
        Saved in:
      
    
          | Published in | International journal of parallel programming Vol. 50; no. 3-4; pp. 381 - 404 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.08.2022
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0885-7458 1573-7640  | 
| DOI | 10.1007/s10766-022-00725-6 | 
Cover
| Abstract | PageRank kernel is a standard benchmark addressing various graph processing and analytical problems. The PageRank algorithm serves as a standard for many graph analytics and a foundation for extracting graph features and predicting user ratings in recommendation systems. The PageRank algorithm is an iterative algorithm that continuously updates the ranks of pages until it converges to a value. However, implementing the PageRank algorithm on a shared memory architecture while taking advantage of fine-grained parallelism with large-scale graphs is hard to implement. The experimental study and analysis of the parallel PageRank metric on large graphs and shared memory architectures using different programming models have been studied extensively. This paper presents the asynchronous execution of the PageRank algorithm to leverage the computations on massive graphs, especially on shared memory architectures. We evaluate the performance of our proposed non-blocking algorithms for PageRank computation on real-world and synthetic datasets using POSIX Multithreaded Library on a 56 core Intel(R) Xeon processor. We observed that our asynchronous implementations achieve
10
×
to
30
×
speed-up with respect to sequential runs and
5
×
to
10
×
improvements over synchronous variants. | 
    
|---|---|
| AbstractList | PageRank kernel is a standard benchmark addressing various graph processing and analytical problems. The PageRank algorithm serves as a standard for many graph analytics and a foundation for extracting graph features and predicting user ratings in recommendation systems. The PageRank algorithm is an iterative algorithm that continuously updates the ranks of pages until it converges to a value. However, implementing the PageRank algorithm on a shared memory architecture while taking advantage of fine-grained parallelism with large-scale graphs is hard to implement. The experimental study and analysis of the parallel PageRank metric on large graphs and shared memory architectures using different programming models have been studied extensively. This paper presents the asynchronous execution of the PageRank algorithm to leverage the computations on massive graphs, especially on shared memory architectures. We evaluate the performance of our proposed non-blocking algorithms for PageRank computation on real-world and synthetic datasets using POSIX Multithreaded Library on a 56 core Intel(R) Xeon processor. We observed that our asynchronous implementations achieve
10
×
to
30
×
speed-up with respect to sequential runs and
5
×
to
10
×
improvements over synchronous variants. PageRank kernel is a standard benchmark addressing various graph processing and analytical problems. The PageRank algorithm serves as a standard for many graph analytics and a foundation for extracting graph features and predicting user ratings in recommendation systems. The PageRank algorithm is an iterative algorithm that continuously updates the ranks of pages until it converges to a value. However, implementing the PageRank algorithm on a shared memory architecture while taking advantage of fine-grained parallelism with large-scale graphs is hard to implement. The experimental study and analysis of the parallel PageRank metric on large graphs and shared memory architectures using different programming models have been studied extensively. This paper presents the asynchronous execution of the PageRank algorithm to leverage the computations on massive graphs, especially on shared memory architectures. We evaluate the performance of our proposed non-blocking algorithms for PageRank computation on real-world and synthetic datasets using POSIX Multithreaded Library on a 56 core Intel(R) Xeon processor. We observed that our asynchronous implementations achieve 10× to 30× speed-up with respect to sequential runs and 5× to 10× improvements over synchronous variants.  | 
    
| Author | Eedi, Hemalatha Utkoor, Rahul Karra, Sahith Ranabothu, Neha Peri, Sathya  | 
    
| Author_xml | – sequence: 1 givenname: Hemalatha orcidid: 0000-0002-3717-1749 surname: Eedi fullname: Eedi, Hemalatha email: cs15resch11002@iith.ac.in organization: Indian Institute of Technology Hyderabad – sequence: 2 givenname: Sahith surname: Karra fullname: Karra, Sahith organization: American High School – sequence: 3 givenname: Sathya surname: Peri fullname: Peri, Sathya organization: Indian Institute of Technology Hyderabad – sequence: 4 givenname: Neha surname: Ranabothu fullname: Ranabothu, Neha organization: Indian Institute of Technology Hyderabad – sequence: 5 givenname: Rahul surname: Utkoor fullname: Utkoor, Rahul organization: Indian Institute of Technology Hyderabad  | 
    
| BookMark | eNp9kFFLwzAUhYNMcJv-AZ8KPselydqkj3PoHEw3hj6HNL3purVpTbqB_no7K_jm0-XAOecevhEa2NoCQrchuQ8J4RMfEh7HmFCKO0kjHF-gYRhxhnk8JQM0JEJEmE8jcYVG3u8JIQkXYoi2Mxssq8bVJ8gm66YtquILsmDjlG4Lrcrgtbb4oaz1obB5sFE5bJU9BLMyr13R7qrA1C54Ud4XJwgWTjU7f40ujSo93PzeMXp_enybP-PVerGcz1ZYU0JazIVJNQPNVKo50wYoiG66YAk3SWpiGmnFjYoYS02iIAPIiI6EYEAEiCRlY3TX93brP47gW7mvj852LyWNRSRoeG4bI9q7tKu9d2Bk44pKuU8ZEnlmJ3t2smMnf9jJuAuxPuQ7s83B_VX_k_oGTmB0Uw | 
    
| Cites_doi | 10.1145/3243176.3243205 10.1137/1.9781611972740.43 10.1145/2150976.2151013 10.1109/IPDPS.2017.112 10.1145/2025113.2025133 10.1109/ICCD.2017.38 10.1609/aaai.v29i1.9277 10.1145/1807167.1807184 10.1145/3380942 10.1109/PDP52278.2021.00015 10.1145/2833312.2833322 10.1145/2517349.2522740 10.1016/j.future.2020.01.033 10.1145/2517349.2522739 10.1145/2442516.2442530 10.1145/2020976.2021006 10.1109/IPDPS.2009.5161102 10.1109/HiPC.2017.00013  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U  | 
    
| DOI | 10.1007/s10766-022-00725-6 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (ProQuest) ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | ABI/INFORM Global (Corporate)  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1573-7640 | 
    
| EndPage | 404 | 
    
| ExternalDocumentID | 10_1007_s10766_022_00725_6 | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYJJ AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARAPS ARCSS ARMRJ AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BKOMP BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO E.L EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- MS~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U  | 
    
| ID | FETCH-LOGICAL-c200t-78fbc3ec3abc73cfe2e80728397f9bf625ca7fa533bf9aedeed0c5883e08e89b3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0885-7458 | 
    
| IngestDate | Fri Jul 25 22:57:15 EDT 2025 Wed Oct 01 01:32:52 EDT 2025 Fri Feb 21 02:46:00 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3-4 | 
    
| Keywords | Multi Threading PageRank Non-blocking mechanism Barrier synchronization Blocking mechanism Shared memory architecture  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c200t-78fbc3ec3abc73cfe2e80728397f9bf625ca7fa533bf9aedeed0c5883e08e89b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-3717-1749 | 
    
| PQID | 2685821728 | 
    
| PQPubID | 48389 | 
    
| PageCount | 24 | 
    
| ParticipantIDs | proquest_journals_2685821728 crossref_primary_10_1007_s10766_022_00725_6 springer_journals_10_1007_s10766_022_00725_6  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220800 2022-08-00 20220801  | 
    
| PublicationDateYYYYMMDD | 2022-08-01 | 
    
| PublicationDate_xml | – month: 8 year: 2022 text: 20220800  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | International journal of parallel programming | 
    
| PublicationTitleAbbrev | Int J Parallel Prog | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Roy, A., Mihailovic, I., Zwaenepoel, W.: X-Stream: edge-centric graph processing using streaming partitions. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, pp. 472–488. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2517349.2522740 Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph mining. In: Berry, M.W., Dayal, U., Kamath, C., Skillicorn, D.B. (eds) Proceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena Vista, Florida, USA, 22–24 April 2004, pp. 442–446. SIAM (2004). https://doi.org/10.1137/1.9781611972740.43 Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Technical Report 1999-66, previous number = SIDL-WP-1999-0120. Stanford InfoLab (1999). http://ilpubs.stanford.edu:8090/422 Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared memory. In: Nicolau, A., Shen, X., Amarasinghe, S.P., Vuduc, R.W. (eds) ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, Shenzhen, China, 23–27 February 2013, pp. 135–146. ACM (2013). https://doi.org/10.1145/2442516.2442530 VuJThe art of multiprocessor programming by Maurice Herlihy and Nir ShavitACM SIGSOFT Softw. Eng. Notes2011365525310.1145/2020976.2021006 Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph analytics. In: Kaminsky, M., Dahlin, M. (eds) ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA, 3–6 November 2013, pp. 456–471. ACM (2013). https://doi.org/10.1145/2517349.2522739 LakhotiaKKannanRPatiSPrasannaVKGPOP: a scalable cache- and memory-efficient framework for graph processing over partsACM Trans. Parallel Comput.2020717:17:2410.1145/3380942 Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). http://networkrepository.com GrossJYellenJGraph Theory and Its Applications1999Boca RatonCRC Press, Inc.0920.05001 Garg, P., Kothapalli, K.: STIC-D: algorithmic techniques for efficient parallel PageRank computation on real-world graphs. In: Proceedings of the 17th International Conference on Distributed Computing and Networking, Singapore, 4–7 January 2016, pp. 15:1–15:10. ACM (2016). https://doi.org/10.1145/2833312.2833322 Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection (2014). http://snap.stanford.edu/data Beamer, S., Asanovic, K., Patterson, D.A.: Reducing PageRank communication via propagation blocking. In: 2017 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2017, Orlando, FL, USA, 29 May–2 June 2017, pp. 820–831. IEEE Computer Society (2017). https://doi.org/10.1109/IPDPS.2017.112 Peng, Z., Powell, A., Wu, B., Bicer, T., Ren, B.: GraphPhi: efficient parallel graph processing on emerging throughput-oriented architectures. In: Evripidou, S., Stenström, P., O’Boyle, M.F.P. (eds) Proceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques, PACT 2018, Limassol, Cyprus, 1–4 November 2018, pp. 9:1–9:14. ACM (2018). https://doi.org/10.1145/3243176.3243205 KumarVGramaAGuptaAKarypisGIntroduction to Parallel Computing: Design and Analysis of Algorithms1994San FranciscoBenjamin-Cummings Publishing Co., Inc.0861.68040 Barrett, B.W., Berry, J.W., Murphy, R.C., Wheeler, K.B.: Implementing a portable multi-threaded graph library: the MTGL on Qthreads. In: 23rd IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2009, Rome, Italy, 23–29 May 2009, pp. 1–8. IEEE (2009). https://doi.org/10.1109/IPDPS.2009.5161102 Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., Rinard, M.: Managing performance vs. accuracy trade-offs with loop perforation. In: ESEC/FSE ’11, pp. 124–134. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/2025113.2025133 Omar, H., Ahmad, M., Khan, O.: GraphTuner: an input dependence aware loop perforation scheme for efficient execution of approximated graph algorithms. In: 2017 IEEE International Conference on Computer Design, ICCD 2017, Boston, MA, USA, 5–8 November 2017, pp. 201–208. IEEE Computer Society (2017). https://doi.org/10.1109/ICCD.2017.38 Mitliagkas, I., Borokhovich, M., Dimakis, A.G., Caramanis, C.: FrogWild!—fast PageRank approximations on graph engines. CoRR abs/1502.04281 (2015). arxiv:1502.04281 Wang, G., Xie, W., Demers, A.J., Gehrke, J.: Asynchronous large-scale graph processing made easy. In: CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Research, Online Proceedings, Asilomar, CA, USA, 6–9 January 2013 (2013). www.cidrdb.org, http://cidrdb.org/cidr2013/Papers/CIDR13_Paper58.pdf Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-Marl: a DSL for easy and efficient graph analysis. In: ASPLOS XVII, pp. 349–362. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2150976.2151013 Panyala, A., Subasi, O., Halappanavar, M., Kalyanaraman, A., Chavarr,ía-Miranda, D.G., Krishnamoorthy, S.: Approximate computing techniques for iterative graph algorithms. In: 24th IEEE International Conference on High Performance Computing, HiPC 2017, Jaipur, India, 18–21 December 2017, pp 23–32. IEEE Computer Society (2017). https://doi.org/10.1109/HiPC.2017.00013 Eedi, H., Peri, S., Ranabothu, N., Utkoor, R.: An efficient practical non-blocking PageRank algorithm for large scale graphs. In: 29th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP 2021, Valladolid, Spain, 10–12 March 2021, pp. 35–43. IEEE (2021). https://doi.org/10.1109/PDP52278.2021.00015 LuoLLiuYProcessing graphs with barrierless asynchronous parallel model on shared-memory systemsFuture Gener. Comput. Syst.202010664165210.1016/j.future.2020.01.033 Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 International Conference on Management of Data, New York, NY, USA, pp 135–146 (2010). https://doi.org/10.1145/1807167.1807184 Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: GraphLab: a new framework for parallel machine learning. In: Grünwald, P., Spirtes, P. (eds) UAI 2010, Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, Catalina Island, CA, USA, 8–11 July 2010, pp. 340–349. AUAI Press (2010). https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2126&proceeding_id=26 725_CR4 725_CR5 725_CR6 725_CR7 725_CR9 L Luo (725_CR21) 2020; 106 725_CR10 725_CR14 725_CR13 725_CR12 725_CR18 725_CR17 725_CR16 725_CR15 725_CR19 V Kumar (725_CR25) 1994 K Lakhotia (725_CR11) 2020; 7 725_CR20 J Gross (725_CR1) 1999 J Vu (725_CR8) 2011; 36 725_CR24 725_CR23 725_CR22 725_CR2 725_CR3  | 
    
| References_xml | – reference: Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared memory. In: Nicolau, A., Shen, X., Amarasinghe, S.P., Vuduc, R.W. (eds) ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, Shenzhen, China, 23–27 February 2013, pp. 135–146. ACM (2013). https://doi.org/10.1145/2442516.2442530 – reference: Roy, A., Mihailovic, I., Zwaenepoel, W.: X-Stream: edge-centric graph processing using streaming partitions. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, pp. 472–488. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2517349.2522740 – reference: Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection (2014). http://snap.stanford.edu/data – reference: Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph analytics. In: Kaminsky, M., Dahlin, M. (eds) ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA, 3–6 November 2013, pp. 456–471. ACM (2013). https://doi.org/10.1145/2517349.2522739 – reference: Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). http://networkrepository.com – reference: Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: GraphLab: a new framework for parallel machine learning. In: Grünwald, P., Spirtes, P. (eds) UAI 2010, Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, Catalina Island, CA, USA, 8–11 July 2010, pp. 340–349. AUAI Press (2010). https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2126&proceeding_id=26 – reference: KumarVGramaAGuptaAKarypisGIntroduction to Parallel Computing: Design and Analysis of Algorithms1994San FranciscoBenjamin-Cummings Publishing Co., Inc.0861.68040 – reference: LakhotiaKKannanRPatiSPrasannaVKGPOP: a scalable cache- and memory-efficient framework for graph processing over partsACM Trans. Parallel Comput.2020717:17:2410.1145/3380942 – reference: Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., Rinard, M.: Managing performance vs. accuracy trade-offs with loop perforation. In: ESEC/FSE ’11, pp. 124–134. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/2025113.2025133 – reference: Mitliagkas, I., Borokhovich, M., Dimakis, A.G., Caramanis, C.: FrogWild!—fast PageRank approximations on graph engines. CoRR abs/1502.04281 (2015). arxiv:1502.04281 – reference: Panyala, A., Subasi, O., Halappanavar, M., Kalyanaraman, A., Chavarr,ía-Miranda, D.G., Krishnamoorthy, S.: Approximate computing techniques for iterative graph algorithms. In: 24th IEEE International Conference on High Performance Computing, HiPC 2017, Jaipur, India, 18–21 December 2017, pp 23–32. IEEE Computer Society (2017). https://doi.org/10.1109/HiPC.2017.00013 – reference: Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Technical Report 1999-66, previous number = SIDL-WP-1999-0120. Stanford InfoLab (1999). http://ilpubs.stanford.edu:8090/422/ – reference: VuJThe art of multiprocessor programming by Maurice Herlihy and Nir ShavitACM SIGSOFT Softw. Eng. Notes2011365525310.1145/2020976.2021006 – reference: Eedi, H., Peri, S., Ranabothu, N., Utkoor, R.: An efficient practical non-blocking PageRank algorithm for large scale graphs. In: 29th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP 2021, Valladolid, Spain, 10–12 March 2021, pp. 35–43. IEEE (2021). https://doi.org/10.1109/PDP52278.2021.00015 – reference: Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-Marl: a DSL for easy and efficient graph analysis. In: ASPLOS XVII, pp. 349–362. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2150976.2151013 – reference: Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph mining. In: Berry, M.W., Dayal, U., Kamath, C., Skillicorn, D.B. (eds) Proceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena Vista, Florida, USA, 22–24 April 2004, pp. 442–446. SIAM (2004). https://doi.org/10.1137/1.9781611972740.43 – reference: Garg, P., Kothapalli, K.: STIC-D: algorithmic techniques for efficient parallel PageRank computation on real-world graphs. In: Proceedings of the 17th International Conference on Distributed Computing and Networking, Singapore, 4–7 January 2016, pp. 15:1–15:10. ACM (2016). https://doi.org/10.1145/2833312.2833322 – reference: Barrett, B.W., Berry, J.W., Murphy, R.C., Wheeler, K.B.: Implementing a portable multi-threaded graph library: the MTGL on Qthreads. In: 23rd IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2009, Rome, Italy, 23–29 May 2009, pp. 1–8. IEEE (2009). https://doi.org/10.1109/IPDPS.2009.5161102 – reference: Beamer, S., Asanovic, K., Patterson, D.A.: Reducing PageRank communication via propagation blocking. In: 2017 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2017, Orlando, FL, USA, 29 May–2 June 2017, pp. 820–831. IEEE Computer Society (2017). https://doi.org/10.1109/IPDPS.2017.112 – reference: Omar, H., Ahmad, M., Khan, O.: GraphTuner: an input dependence aware loop perforation scheme for efficient execution of approximated graph algorithms. In: 2017 IEEE International Conference on Computer Design, ICCD 2017, Boston, MA, USA, 5–8 November 2017, pp. 201–208. IEEE Computer Society (2017). https://doi.org/10.1109/ICCD.2017.38 – reference: Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 International Conference on Management of Data, New York, NY, USA, pp 135–146 (2010). https://doi.org/10.1145/1807167.1807184 – reference: Peng, Z., Powell, A., Wu, B., Bicer, T., Ren, B.: GraphPhi: efficient parallel graph processing on emerging throughput-oriented architectures. In: Evripidou, S., Stenström, P., O’Boyle, M.F.P. (eds) Proceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques, PACT 2018, Limassol, Cyprus, 1–4 November 2018, pp. 9:1–9:14. ACM (2018). https://doi.org/10.1145/3243176.3243205 – reference: GrossJYellenJGraph Theory and Its Applications1999Boca RatonCRC Press, Inc.0920.05001 – reference: LuoLLiuYProcessing graphs with barrierless asynchronous parallel model on shared-memory systemsFuture Gener. Comput. Syst.202010664165210.1016/j.future.2020.01.033 – reference: Wang, G., Xie, W., Demers, A.J., Gehrke, J.: Asynchronous large-scale graph processing made easy. In: CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Research, Online Proceedings, Asilomar, CA, USA, 6–9 January 2013 (2013). www.cidrdb.org, http://cidrdb.org/cidr2013/Papers/CIDR13_Paper58.pdf – ident: 725_CR19 doi: 10.1145/3243176.3243205 – ident: 725_CR22 doi: 10.1137/1.9781611972740.43 – ident: 725_CR5 doi: 10.1145/2150976.2151013 – volume-title: Graph Theory and Its Applications year: 1999 ident: 725_CR1 – ident: 725_CR15 – ident: 725_CR17 doi: 10.1109/IPDPS.2017.112 – ident: 725_CR6 doi: 10.1145/2025113.2025133 – ident: 725_CR13 – ident: 725_CR18 doi: 10.1109/ICCD.2017.38 – ident: 725_CR24 doi: 10.1609/aaai.v29i1.9277 – ident: 725_CR3 doi: 10.1145/1807167.1807184 – volume: 7 start-page: 7:1 issue: 1 year: 2020 ident: 725_CR11 publication-title: ACM Trans. Parallel Comput. doi: 10.1145/3380942 – ident: 725_CR2 – ident: 725_CR20 doi: 10.1109/PDP52278.2021.00015 – ident: 725_CR10 doi: 10.1145/2833312.2833322 – ident: 725_CR4 doi: 10.1145/2517349.2522740 – volume: 106 start-page: 641 year: 2020 ident: 725_CR21 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.01.033 – ident: 725_CR16 doi: 10.1145/2517349.2522739 – volume-title: Introduction to Parallel Computing: Design and Analysis of Algorithms year: 1994 ident: 725_CR25 – ident: 725_CR14 – ident: 725_CR9 doi: 10.1145/2442516.2442530 – volume: 36 start-page: 52 issue: 5 year: 2011 ident: 725_CR8 publication-title: ACM SIGSOFT Softw. Eng. Notes doi: 10.1145/2020976.2021006 – ident: 725_CR12 doi: 10.1109/IPDPS.2009.5161102 – ident: 725_CR7 doi: 10.1109/HiPC.2017.00013 – ident: 725_CR23  | 
    
| SSID | ssj0009788 | 
    
| Score | 2.2632365 | 
    
| Snippet | PageRank kernel is a standard benchmark addressing various graph processing and analytical problems. The PageRank algorithm serves as a standard for many graph... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 381 | 
    
| SubjectTerms | Algorithms Computer architecture Computer memory Computer Science Feature extraction Graphs Iterative algorithms Iterative methods Microprocessors Processor Architectures Recommender systems Search algorithms Software Engineering/Programming and Operating Systems Theory of Computation  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWVh4IwoFeWADizYvO2NAlAqpBVVU6mbZjg0ImqI2LPx6znkogGBgTnRSvvPdfbF93wGcxj3LtQ08itVM0yBkjEoZpTTwU6t0T2NRdQ3Ow1E0mAS303BaNYUt69vu9ZFkkam_NLuxyF2Y9aiTuw5ptAproZPzwlU88ZJGapcV0yYxfELKgpBXrTK_2_hejhqO-eNYtKg2_S3YqGgiSUq_bsOKyXZgsx7BQKqI3IVxkpFyX8CkF3cY_rPnD5OSUoUI4SejeUYvsWC5HXFyj8ljLLMXkrw-zhfP-dOMIGclQyTQmPTIjROvXu7BpH_9cDWg1ZgEqnGJ55RxRNU32pdKM19b4xmOH4fMh9lYWfzB0ZJZibxO2ViaFKtiV4ec-6bLDY-Vvw-tbJ6ZAyDa71rVY9JqjkwDDabIJlXgabRs0I9tOKvREm-lGoZodI8dtgKxFQW2ImpDpwZUVJGxFJ4TvC-mYrXhvAa5efy3tcP_vX4E617hZ3dXrwOtfPFujpE_5OqkWC6fY1K86w priority: 102 providerName: Springer Nature  | 
    
| Title | An Improved/Optimized Practical Non-Blocking PageRank Algorithm for Massive Graphs | 
    
| URI | https://link.springer.com/article/10.1007/s10766-022-00725-6 https://www.proquest.com/docview/2685821728  | 
    
| Volume | 50 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-7640 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009788 issn: 0885-7458 databaseCode: ABDBF dateStart: 20030201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7640 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009788 issn: 0885-7458 databaseCode: ADMLS dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7640 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009788 issn: 0885-7458 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7640 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009788 issn: 0885-7458 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7640 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009788 issn: 0885-7458 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7640 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009788 issn: 0885-7458 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4gXLz4NqJIevCmDbCvloMxu8ojGpAQSfC06XZbNcqCghd_vdNlNxtN9LSHJpN0pp35tu18H8BZu6W51I5FsZpJ6riMUSG8mDp2rCPZklhUTYPzYOj1J87t1J2WYJj3wphnlXlOTBN1PJfmjLxhGaL0VE3pavFOjWqUuV3NJTREJq0QX6YUYxtQsQwzVhkqQWc4Ghc0vCxVosSt5VLmuDxro8ma6ZhnHuRa1NBpu9T7WaoK_PnryjStRN0d2MogJPHXMd-Fkkr2YDuXZyDZbt2HsZ-Q9ZmBihv3mBpmL18qJmuGIgwNGc4TGmAxM6flZISJZSySV-K_PeG8V88zgniWDBBcY0IkPUNsvTyASbfzcN2nmYQClbj8V5Rx9LitpC0iyWyplaU4Tg5REdPtSOPPjxRMC8R8kW4LFWPFbEqXc1s1ueLtyD6EcjJP1BEQaTd11GJCS44oBA3GiDQjx5JoWWGMq3CeeytcrJkywoIT2fg2RN-GqW9Drwq13KFhtmuWYRHjKlzkTi6G_7Z2_L-1E9i00riad3s1KK8-PtUpYolVVIcN3u3VoeIHN0HXfHuPd516tmxwdGL539lwy2w | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VeoALO6KsPsAJLNpsdg4IFSi0QAuqQOIWHMcGBKRAixB8HN_GOHUUgQQ3zpEm1vN45nmZNwDrYU1zqT2HYjaT1PMZo0IECfXcRMeyJjGpmgLndidoXnrHV_5VCT7zWhjzrDKPiVmgTnrSnJFvO0YoPeumtPv0TE3XKHO7mrfQELa1QrKTSYzZwo4T9f6GW7j-TusA53vDcQ4bF_tNarsMUIkeMqCM46BcJV0RS-ZKrRzFq_gbTNQ6jDXuD6RgWiAtinUoVIJJpSp9zl1V5YqHsYt2R6DsuV6Im7_yXqNz3i1kf1nW-RKXsk-Z53NbtmOL91hgHgA71Mh3-zT4nhoLvvvjijbLfIdTMGEpK6kPfWwaSiqdgcm8HQSx0WEWuvWUDM8oVLJ9hqHo8e5DJWSoiISuQDq9lO5h8jSn8-QcA1lXpPek_nCDOA9uHwnyZ9JGMo8BmBwZIe3-HFz-C5jzMJr2UrUARLpVHdeY0JIj60GDCTLb2HMkWlboUxXYzNGKnobKHFGhwWywjRDbKMM2CiqwnAMa2VXajwqfqsBWDnLx-Xdri39bW4Ox5kX7NDptdU6WYNzJ5ti8GVyG0cHLq1pBHjOIV62zELj-b__8AqHeBiw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VkBAXdkRZfYATWG2z2TkgVJbQspSqohK3kDg2IGgKNAjBp_F1jLMoAglunCNNoufnmWdnFoAtt6G4UJZBMZoJatmM0SBwImqZkQpFQ2BQ1QXOFx2n1bdOr-3rCnwWtTA6rbLwiamjjoZC35HXDN0oPZ2mVFN5WkT3yNt_eqZ6gpT-01qM08gocibf3_D4NtprH-FabxuGd3x12KL5hAEqkB0JZRw_yJTCDELBTKGkIXkdX4FBWrmhwrOBCJgKUBKFyg1khAGlLmzOTVnnkruhiXbHYILpLu66St07KRv-snTmJW5imzLL5nnBTl62xxyd-mtQ3bjbps73oFgq3R8_Z9OY583CdC5WSTNj1xxUZDwPM8UgCJL7hQXoNWOS3U7IqHaJTmhw_yEjkvVCQhKQzjCmBxg29b086aIL6wXxA2k-3iKqyd2AoHImFyjj0fWSE91Ce7QI_X-BcgnG42Esl4EIs67CBguU4Kh30GCEmja0DIGWJbKpCjsFWv5T1pPDL7sva2x9xNZPsfWdKqwVgPr5_hz5JZuqsFuAXD7-3drK39Y2YRJZ6Z-3O2erMGWkS6yTBddgPHl5lesoYJJwI2UKgZv_puYXerwDxg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved%2FOptimized+Practical+Non-Blocking+PageRank+Algorithm+for+Massive+Graphs&rft.jtitle=International+journal+of+parallel+programming&rft.au=Eedi%2C+Hemalatha&rft.au=Karra%2C+Sahith&rft.au=Peri%2C+Sathya&rft.au=Ranabothu%2C+Neha&rft.date=2022-08-01&rft.issn=0885-7458&rft.eissn=1573-7640&rft.volume=50&rft.issue=3-4&rft.spage=381&rft.epage=404&rft_id=info:doi/10.1007%2Fs10766-022-00725-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10766_022_00725_6 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7458&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7458&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7458&client=summon |