Application of machine learning for predictions of consecutive dependent data of type {[(a, b)->c]->d}

Objective: Machine learning techniques have emerged in response to the desire for automatic pattern detection withindatasets in fields such as statistics, mathematics, and data analytics. They allow for the extraction of relevant informationfrom datasets of significantly large volumes, providing the...

Full description

Saved in:
Bibliographic Details
Published inTecnura Vol. 28; no. 79; pp. 66 - 86
Main Authors Quevedo Piratova, Diego Alexander, Londoño Villalba, Jhon Uberney, Gonzalez Gomez, Arnaldo Andres
Format Journal Article
LanguageEnglish
Published Universidad Distrital Francisco Jose de Caldas 01.01.2024
Subjects
Online AccessGet full text
ISSN0123-921X
2248-7638
2248-7638
DOI10.14483/22487638.22094

Cover

Abstract Objective: Machine learning techniques have emerged in response to the desire for automatic pattern detection withindatasets in fields such as statistics, mathematics, and data analytics. They allow for the extraction of relevant informationfrom datasets of significantly large volumes, providing the possibility of making predictions. This paper presents an application focused on decision trees, linear regression, and random forest regression algorithms to predict final data fromconsecutive dependent data of type {[(a, b) → c] → D}. Methodology: The study adopts a quantitative research design, which takes as input datasets based on interval data. It utilizes a correlational research model by implementing Python and its Scikit-Learn library, which includes various algorithms for prediction. Specifically, we compare the application of decision trees, linear regression, and random forest regression on the same set of datasets, but with a characteristic of dependency between them. Results: Upon application of the proposed model, it yields an estimated prediction score, which indicates the accuracy of the model concerning the data provided. Conclusions: The application of a complex algorithm does not inherently guarantee a higher rate of accuracy. Conversely, configuring the model correctly, training multiple trees, or adjusting parameter values can significantly enhance the obtained results Objetivo: Las técnicas de Machine Learning surgen como una respuesta al deseo de detectar automáticamente patrones en un conjunto de datos (datasets) en campos como la estadística, la matemática y la analítica de datos, permitiendo extraer información relevante de datasets de volúmenes significativamente grandes y realizar predicciones. Éste artículo presenta una aplicación enfocada en los algoritmos de árboles de decisión, regresión lineal y regresión aleatoria de tipo bosque para predecir un dato final a partir de datos dependientes consecutivos de tipo {[(a, b) → c] → D}. Metodología: Se parte de un diseño de investigación cuantitativo, que toma como insumo unos datasets basados en datos de intervalo, establecidos en un modelo de investigación correlacional al aplicar Python y su librería Scikit-learn. Esta biblioteca incluye diferentes algoritmos que pueden ser utilizados para realizar predicciones. En este caso, se compara la aplicación de árboles de decisión, regresión lineal y regresión aleatoria de tipo bosque sobre un mismo grupo de datasets, pero que tienen una característica de dependencia entre ellos. Resultados: Cuando se aplica el modelo propuesto, este genera un puntaje estimado de la predicción, el cual indica la precisión del modelo respecto a los datos entregados. Conclusiones: La aplicación de un algoritmo complejo no garantiza un mayor índice de precisión; por el contrario, configurar de manera correcta el modelo, entrenando múltiples árboles o cambiando los valores de los parámetros mejora en gran medida los resultados obtenidos
AbstractList Objective: Machine learning techniques have emerged in response to the desire for automatic pattern detection within datasets in fields such as statistics, mathematics, and data analytics. They allow for the extraction of relevant information from datasets of significantly large volumes, providing the possibility of making predictions. This paper presents an application focused on decision trees, linear regression, and random forest regression algorithms to predict final data from consecutive dependent data of type {[(a, b) → c] → D}. Methodology: The study adopts a quantitative research design, which takes as input datasets based on interval data. It utilizes a correlational research model by implementing Python and its Scikit-Learn library, which includes various algorithms for prediction. Specifically, we compare the application of decision trees, linear regression, and random forest regression on the same set of datasets, but with a characteristic of dependency between them. Results: Upon application of the proposed model, it yields an estimated prediction score, which indicates the accuracy of the model concerning the data provided Conclusions: The application of a complex algorithm does not inherently guarantee a higher rate of accuracy. Conversely, configuring the model correctly, training multiple trees, or adjusting parameter values can significantly enhance the obtained results. Financing: Unified National Corporation for Higher Education (CUN).
Objective: Machine learning techniques have emerged in response to the desire for automatic pattern detection withindatasets in fields such as statistics, mathematics, and data analytics. They allow for the extraction of relevant informationfrom datasets of significantly large volumes, providing the possibility of making predictions. This paper presents an application focused on decision trees, linear regression, and random forest regression algorithms to predict final data fromconsecutive dependent data of type {[(a, b) → c] → D}. Methodology: The study adopts a quantitative research design, which takes as input datasets based on interval data. It utilizes a correlational research model by implementing Python and its Scikit-Learn library, which includes various algorithms for prediction. Specifically, we compare the application of decision trees, linear regression, and random forest regression on the same set of datasets, but with a characteristic of dependency between them. Results: Upon application of the proposed model, it yields an estimated prediction score, which indicates the accuracy of the model concerning the data provided. Conclusions: The application of a complex algorithm does not inherently guarantee a higher rate of accuracy. Conversely, configuring the model correctly, training multiple trees, or adjusting parameter values can significantly enhance the obtained results Objetivo: Las técnicas de Machine Learning surgen como una respuesta al deseo de detectar automáticamente patrones en un conjunto de datos (datasets) en campos como la estadística, la matemática y la analítica de datos, permitiendo extraer información relevante de datasets de volúmenes significativamente grandes y realizar predicciones. Éste artículo presenta una aplicación enfocada en los algoritmos de árboles de decisión, regresión lineal y regresión aleatoria de tipo bosque para predecir un dato final a partir de datos dependientes consecutivos de tipo {[(a, b) → c] → D}. Metodología: Se parte de un diseño de investigación cuantitativo, que toma como insumo unos datasets basados en datos de intervalo, establecidos en un modelo de investigación correlacional al aplicar Python y su librería Scikit-learn. Esta biblioteca incluye diferentes algoritmos que pueden ser utilizados para realizar predicciones. En este caso, se compara la aplicación de árboles de decisión, regresión lineal y regresión aleatoria de tipo bosque sobre un mismo grupo de datasets, pero que tienen una característica de dependencia entre ellos. Resultados: Cuando se aplica el modelo propuesto, este genera un puntaje estimado de la predicción, el cual indica la precisión del modelo respecto a los datos entregados. Conclusiones: La aplicación de un algoritmo complejo no garantiza un mayor índice de precisión; por el contrario, configurar de manera correcta el modelo, entrenando múltiples árboles o cambiando los valores de los parámetros mejora en gran medida los resultados obtenidos
Objective: Machine learning techniques have emerged in response to the desire for automatic pattern detection withindatasets in fields such as statistics, mathematics, and data analytics. They allow for the extraction of relevant informationfrom datasets of significantly large volumes, providing the possibility of making predictions. This paper presents an application focused on decision trees, linear regression, and random forest regression algorithms to predict final data fromconsecutive dependent data of type {[(a, b) → c] → D}. Methodology: The study adopts a quantitative research design, which takes as input datasets based on interval data. It utilizes a correlational research model by implementing Python and its Scikit-Learn library, which includes various algorithms for prediction. Specifically, we compare the application of decision trees, linear regression, and random forest regression on the same set of datasets, but with a characteristic of dependency between them. Results: Upon application of the proposed model, it yields an estimated prediction score, which indicates the accuracy of the model concerning the data provided. Conclusions: The application of a complex algorithm does not inherently guarantee a higher rate of accuracy. Conversely, configuring the model correctly, training multiple trees, or adjusting parameter values can significantly enhance the obtained results. Objetivo: Las técnicas de Machine Learning surgen como una respuesta al deseo de detectar automáticamente patrones en un conjunto de datos (datasets) en campos como la estadística, la matemática y la analítica de datos, permitiendo extraer información relevante de datasets de volúmenes significativamente grandes y realizar predicciones. Éste artículo presenta una aplicación enfocada en los algoritmos de árboles de decisión, regresión lineal y regresión aleatoria de tipo bosque para predecir un dato final a partir de datos dependientes consecutivos de tipo {[(a, b) → c] → D}. Metodología: Se parte de un diseño de investigación cuantitativo, que toma como insumo unos datasets basados en datos de intervalo, establecidos en un modelo de investigación correlacional al aplicar Python y su librería Scikit-learn. Esta biblioteca incluye diferentes algoritmos que pueden ser utilizados para realizar predicciones. En este caso, se compara la aplicación de árboles de decisión, regresión lineal y regresión aleatoria de tipo bosque sobre un mismo grupo de datasets, pero que tienen una característica de dependencia entre ellos. Resultados: Cuando se aplica el modelo propuesto, este genera un puntaje estimado de la predicción, el cual indica la precisión del modelo respecto a los datos entregados. Conclusiones: La aplicación de un algoritmo complejo no garantiza un mayor índice de precisión; por el contrario, configurar de manera correcta el modelo, entrenando múltiples árboles o cambiando los valores de los parámetros mejora en gran medida los resultados obtenidos.
Author Londoño Villalba, Jhon Uberney
Gonzalez Gomez, Arnaldo Andres
Quevedo Piratova, Diego Alexander
Author_xml – sequence: 1
  givenname: Diego Alexander
  orcidid: 0000-0002-1347-8391
  surname: Quevedo Piratova
  fullname: Quevedo Piratova, Diego Alexander
– sequence: 2
  givenname: Jhon Uberney
  surname: Londoño Villalba
  fullname: Londoño Villalba, Jhon Uberney
– sequence: 3
  givenname: Arnaldo Andres
  orcidid: 0000-0003-1609-7516
  surname: Gonzalez Gomez
  fullname: Gonzalez Gomez, Arnaldo Andres
BookMark eNqFkd9LHDEQx4MoeFWffc1jC13NL7NZKMIhthWEglgoiIS5ZFZzrMmS3Ws5pP97s3fXQp-cl4HvzPdDMt93ZD-miISccnbGlTLyXAhlai3NmRCsUXtkNgnVpOyTGeNCVo3gPw7JyTAsWSltLiSvZ6Sd930XHIwhRZpa-gLuOUSkHUKOIT7RNmXaZ_TBTSvDtONKR7caw0-kHnuMHuNIPYwwTcd1j_T14T18pIsP1aV7rC7972Ny0EI34MmuH5Hvn6_vr75Wt9--3FzNbysnGFOVZ5wv0LXcAYLBBWt1rctblW9Qa9EIJtE1Wpcfe8EMSl9L4N5xkK2R4OQRudlyfYKl7XN4gby2CYLdCCk_WchjcB1aUKI2ioPRulHsolzNSKmd5l4y3QAvrE87VoAu4vg_bqetYsghLcHiYOd39-WyvJZGS1nsbGtfxR7Wv6Dr_gE4s5vU7N_U7Ca1YjnfWlxOw5CxfdPxB4ZDmL8
Cites_doi 10.16925/in.v9i17.828
10.1002/9781119183464
10.1007/978-3-030-05318-5_1
ContentType Journal Article
Copyright LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI
Copyright_xml – notice: LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI
DBID AAYXX
CITATION
ADTOC
UNPAY
AGMXS
FKZ
DOA
DOI 10.14483/22487638.22094
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
Dialnet (Open Access Full Text)
Dialnet
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2248-7638
EndPage 86
ExternalDocumentID oai_doaj_org_article_a427841a86694050948336c61d3069a1
oai_dialnet_unirioja_es_ART0001738633
10.14483/22487638.22094
10_14483_22487638_22094
GroupedDBID 5VS
635
8FE
8FG
AAYXX
ABJCF
ACIWK
ADBBV
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
APOWU
AZFZN
B14
BCNDV
BENPR
BGLVJ
CITATION
FAEIB
GROUPED_DOAJ
HCIFZ
INF
ITC
KQ8
L6V
M7S
OK1
PIMPY
PROAC
PV9
RDY
RTK
RZL
SCD
ADTOC
CCPQU
IPNFZ
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
RIG
UNPAY
AGMXS
FKZ
ID FETCH-LOGICAL-c2004-d011becf1caea8eb0f6760684d9e6629203ec966483d208e3d73a1dc1a3f83ac3
IEDL.DBID DOA
ISSN 0123-921X
2248-7638
IngestDate Fri Oct 03 12:40:43 EDT 2025
Sat Feb 15 03:11:07 EST 2025
Mon Sep 15 10:17:03 EDT 2025
Tue Jul 01 01:43:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 79
Language English
License https://creativecommons.org/licenses/by-sa/4.0
cc-by-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2004-d011becf1caea8eb0f6760684d9e6629203ec966483d208e3d73a1dc1a3f83ac3
ORCID 0000-0002-1347-8391
0000-0003-1609-7516
OpenAccessLink https://doaj.org/article/a427841a86694050948336c61d3069a1
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_a427841a86694050948336c61d3069a1
dialnet_primary_oai_dialnet_unirioja_es_ART0001738633
unpaywall_primary_10_14483_22487638_22094
crossref_primary_10_14483_22487638_22094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Tecnura
PublicationYear 2024
Publisher Universidad Distrital Francisco Jose de Caldas
Publisher_xml – name: Universidad Distrital Francisco Jose de Caldas
References 412380
412381
412379
412377
412378
412375
412376
412373
412374
412382
412383
References_xml – ident: 412383
– ident: 412382
– ident: 412379
– ident: 412380
– ident: 412374
– ident: 412381
– ident: 412375
  doi: 10.16925/in.v9i17.828
– ident: 412378
– ident: 412376
– ident: 412373
  doi: 10.1002/9781119183464
– ident: 412377
  doi: 10.1007/978-3-030-05318-5_1
SSID ssj0000685317
ssib044762710
ssib045315338
Score 2.2452
Snippet Objective: Machine learning techniques have emerged in response to the desire for automatic pattern detection withindatasets in fields such as statistics,...
Objective: Machine learning techniques have emerged in response to the desire for automatic pattern detection within datasets in fields such as statistics,...
SourceID doaj
dialnet
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 66
SubjectTerms algorithms
algoritmos
datasets
decision trees
learn
linear regression
prediction
Python
regresión lineal
scikit
scikit-learn
árboles de decisión
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BJwR74BtRvuQHHjYJd0mcOs7LpIKYKiQmHqhUhFB0sR00GGlVEqEN7X_fXeqMDiEBr87lw75zfD_f-XcAz03u0dBCIGPjS0n4CyUqn8uxQvRJhZWP-KDw20M9naVv5uN5IEniszCb8XtCDmqPlhgmTTOjJCEkchW29Jic7gFszQ7fTT50CYqJknkSz7mMHAlLlg4kPn94wqX15xofzqh9Ewj7t-F6Wy_x5AceH2-sMge3YNp_3zq55OuobcqRPf2NuvEfOnAbbgZPU0zWpnEHrvj6Lmxv8A_eg2ryK3wtFpX41mVWehFKSXwW5NGK5YpjOZ15sozl9Gvb8l9S9BV0G8GJpnyVd3TFz487-EKUu3LffpL77uw-zA5ev381laHwgrRdYoqjSU-6rWKLpElfRpXOCOiY1OVea65vpbwlnETdc0lkvHKZwtjZGFVlFFr1AAb1ovYPQWRI_qRSmfMEJfMowkxVaDKbpS7DyPoh7PTqKJZrfo2CcQkPXdEPXdEN3RDGQV0XksyN3be19dHqaPEFC_-9ICzQMQEpo5UawktW7uWbuIHUVIT5WWDaRWDRaJ2nzIlD71fa6tgRpsoxHsLuhWn87UMf_YfsY7iRkJu03tR5AoNm1fqn5OY05bNg4ufbifBU
  priority: 102
  providerName: Unpaywall
Title Application of machine learning for predictions of consecutive dependent data of type {[(a, b)->c]->d}
URI https://doi.org/10.14483/22487638.22094
https://dialnet.unirioja.es/servlet/oaiart?codigo=9980016
https://doaj.org/article/a427841a86694050948336c61d3069a1
UnpaywallVersion publishedVersion
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2248-7638
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000685317
  issn: 2248-7638
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2248-7638
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000685317
  issn: 2248-7638
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2248-7638
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000685317
  issn: 2248-7638
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2248-7638
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044762710
  issn: 0123-921X
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2248-7638
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000685317
  issn: 2248-7638
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF1BEaI9ID5FoER74NBKmNqezX4cU0SokKg4ECkIIWuyu66KihOliSpU9Yo49yf2lzBjO2l66oWTpfVatt-OPfN2Z98I8ca6iJYcQZLZOE6If2GCEF3SA8SYl1jGlDcKfz7UB0P1adQbrZX64pywRh64AW4PVb00hlZrp1isRFkA7XUWKNh1WBOf1Lo1MkWWpBR94-basSmyNIpr7Gr2JdXkprJmL3UOicuzUav7Q3QF9sivsVKbfZfnqVM3XNZ93s9RxXmr8b8lHiyqKf4-w5OTNcc0eCQethGl7Ddv8ljciadPxNaazuBTMelfL1PLSSl_1RmUUbYlI44kRa5yOuM1m9oMuY_nNGu_4L-hXFbKnUtOKOWzPHMrz7_v4Fs53pVXfy6l_8GHq7-XMlw8E8PBh6_vD5K20kLi60yUQF85DWaZeaShi-O01IaYjVXBRa25oBVET8SIsAmEdoRgALPgM4TSAnp4LjaqSRVfCGmQgAYwIRJ3dGmKBkq0xhsVDKY-dsTOEsxi2ghqFExEGPdiiXtR494RvRbsVU8Ww162Larj2fHkJxbxtKDgv5b-AasBOmKfh-bmRdxAdlW0dlXcZlcdsbsa2Nse9OX_uOErsZlTwNRM72yLjflsEV9TwDMfd8VdO_jYrS28K-4ND7_0v_0D3lD3rQ
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BJwR74BtRvuQHHjYJd0mcOs7LpIKYKiQmHqhUhFB0sR00GGlVEqEN7X_fXeqMDiEBr87lw75zfD_f-XcAz03u0dBCIGPjS0n4CyUqn8uxQvRJhZWP-KDw20M9naVv5uN5IEniszCb8XtCDmqPlhgmTTOjJCEkchW29Jic7gFszQ7fTT50CYqJknkSz7mMHAlLlg4kPn94wqX15xofzqh9Ewj7t-F6Wy_x5AceH2-sMge3YNp_3zq55OuobcqRPf2NuvEfOnAbbgZPU0zWpnEHrvj6Lmxv8A_eg2ryK3wtFpX41mVWehFKSXwW5NGK5YpjOZ15sozl9Gvb8l9S9BV0G8GJpnyVd3TFz487-EKUu3LffpL77uw-zA5ev381laHwgrRdYoqjSU-6rWKLpElfRpXOCOiY1OVea65vpbwlnETdc0lkvHKZwtjZGFVlFFr1AAb1ovYPQWRI_qRSmfMEJfMowkxVaDKbpS7DyPoh7PTqKJZrfo2CcQkPXdEPXdEN3RDGQV0XksyN3be19dHqaPEFC_-9ICzQMQEpo5UawktW7uWbuIHUVIT5WWDaRWDRaJ2nzIlD71fa6tgRpsoxHsLuhWn87UMf_YfsY7iRkJu03tR5AoNm1fqn5OY05bNg4ufbifBU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning+for+predictions+of+consecutive+dependent+data+of+type+%7B%5B%28a%2C+b%29+%E2%86%92+c%5D+%E2%86%92%E2%88%92+d%7D&rft.jtitle=Tecnura&rft.au=Diego+Alexander+Quevedo+Piratova&rft.au=Jhon+Uberney+Londo%C3%B1o+Villalba&rft.au=Arnaldo+Andres+Gonzalez+Gomez&rft.date=2024-01-01&rft.pub=Universidad+Distrital+Francisco+Jose+de+Caldas&rft.issn=0123-921X&rft.eissn=2248-7638&rft.volume=28&rft.issue=79&rft.spage=66&rft.epage=86&rft_id=info:doi/10.14483%2F22487638.22094&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a427841a86694050948336c61d3069a1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0123-921X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0123-921X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0123-921X&client=summon