Application of machine learning for predictions of consecutive dependent data of type {[(a, b)->c]->d}
Objective: Machine learning techniques have emerged in response to the desire for automatic pattern detection withindatasets in fields such as statistics, mathematics, and data analytics. They allow for the extraction of relevant informationfrom datasets of significantly large volumes, providing the...
        Saved in:
      
    
          | Published in | Tecnura Vol. 28; no. 79; pp. 66 - 86 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Universidad Distrital Francisco Jose de Caldas
    
        01.01.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0123-921X 2248-7638 2248-7638  | 
| DOI | 10.14483/22487638.22094 | 
Cover
| Abstract | Objective: Machine learning techniques have emerged in response to the desire for automatic pattern detection withindatasets in fields such as statistics, mathematics, and data analytics. They allow for the extraction of relevant informationfrom datasets of significantly large volumes, providing the possibility of making predictions. This paper presents an application focused on decision trees, linear regression, and random forest regression algorithms to predict final data fromconsecutive dependent data of type {[(a, b) → c] → D}.
Methodology: The study adopts a quantitative research design, which takes as input datasets based on interval data. It utilizes a correlational research model by implementing Python and its Scikit-Learn library, which includes various algorithms for prediction. Specifically, we compare the application of decision trees, linear regression, and random forest regression on the same set of datasets, but with a characteristic of dependency between them.
Results: Upon application of the proposed model, it yields an estimated prediction score, which indicates the accuracy of the model concerning the data provided.
Conclusions: The application of a complex algorithm does not inherently guarantee a higher rate of accuracy. Conversely, configuring the model correctly, training multiple trees, or adjusting parameter values can significantly enhance the obtained results
Objetivo: Las técnicas de Machine Learning surgen como una respuesta al deseo de detectar automáticamente patrones en un conjunto de datos (datasets) en campos como la estadística, la matemática y la analítica de datos, permitiendo extraer información relevante de datasets de volúmenes significativamente grandes y realizar predicciones. Éste artículo presenta una aplicación enfocada en los algoritmos de árboles de decisión, regresión lineal y regresión aleatoria de tipo bosque para predecir un dato final a partir de datos dependientes consecutivos de tipo {[(a, b) → c] → D}.
Metodología: Se parte de un diseño de investigación cuantitativo, que toma como insumo unos datasets basados en datos de intervalo, establecidos en un modelo de investigación correlacional al aplicar Python y su librería Scikit-learn. Esta biblioteca incluye diferentes algoritmos que pueden ser utilizados para realizar predicciones. En este caso, se compara la aplicación de árboles de decisión, regresión lineal y regresión aleatoria de tipo bosque sobre un mismo grupo de datasets, pero que tienen una característica de dependencia entre ellos.
Resultados: Cuando se aplica el modelo propuesto, este genera un puntaje estimado de la predicción, el cual indica la precisión del modelo respecto a los datos entregados.
Conclusiones: La aplicación de un algoritmo complejo no garantiza un mayor índice de precisión; por el contrario, configurar de manera correcta el modelo, entrenando múltiples árboles o cambiando los valores de los parámetros mejora en gran medida los resultados obtenidos | 
    
|---|---|
| AbstractList | Objective: Machine learning techniques have emerged in response to the desire for automatic pattern detection within datasets in fields such as statistics, mathematics, and data analytics. They allow for the extraction of relevant information from datasets of significantly large volumes, providing the possibility of making predictions. This paper presents an application focused on decision trees, linear regression, and random forest regression algorithms to predict final data from consecutive dependent data of type {[(a, b) → c] → D}. Methodology: The study adopts a quantitative research design, which takes as input datasets based on interval data. It utilizes a correlational research model by implementing Python and its Scikit-Learn library, which includes various algorithms for prediction. Specifically, we compare the application of decision trees, linear regression, and random forest regression on the same set of datasets, but with a characteristic of dependency between them. Results: Upon application of the proposed model, it yields an estimated prediction score, which indicates the accuracy of the model concerning the data provided Conclusions: The application of a complex algorithm does not inherently guarantee a higher rate of accuracy. Conversely, configuring the model correctly, training multiple trees, or adjusting parameter values can significantly enhance the obtained results. Financing: Unified National Corporation for Higher Education (CUN). Objective: Machine learning techniques have emerged in response to the desire for automatic pattern detection withindatasets in fields such as statistics, mathematics, and data analytics. They allow for the extraction of relevant informationfrom datasets of significantly large volumes, providing the possibility of making predictions. This paper presents an application focused on decision trees, linear regression, and random forest regression algorithms to predict final data fromconsecutive dependent data of type {[(a, b) → c] → D}. Methodology: The study adopts a quantitative research design, which takes as input datasets based on interval data. It utilizes a correlational research model by implementing Python and its Scikit-Learn library, which includes various algorithms for prediction. Specifically, we compare the application of decision trees, linear regression, and random forest regression on the same set of datasets, but with a characteristic of dependency between them. Results: Upon application of the proposed model, it yields an estimated prediction score, which indicates the accuracy of the model concerning the data provided. Conclusions: The application of a complex algorithm does not inherently guarantee a higher rate of accuracy. Conversely, configuring the model correctly, training multiple trees, or adjusting parameter values can significantly enhance the obtained results Objetivo: Las técnicas de Machine Learning surgen como una respuesta al deseo de detectar automáticamente patrones en un conjunto de datos (datasets) en campos como la estadística, la matemática y la analítica de datos, permitiendo extraer información relevante de datasets de volúmenes significativamente grandes y realizar predicciones. Éste artículo presenta una aplicación enfocada en los algoritmos de árboles de decisión, regresión lineal y regresión aleatoria de tipo bosque para predecir un dato final a partir de datos dependientes consecutivos de tipo {[(a, b) → c] → D}. Metodología: Se parte de un diseño de investigación cuantitativo, que toma como insumo unos datasets basados en datos de intervalo, establecidos en un modelo de investigación correlacional al aplicar Python y su librería Scikit-learn. Esta biblioteca incluye diferentes algoritmos que pueden ser utilizados para realizar predicciones. En este caso, se compara la aplicación de árboles de decisión, regresión lineal y regresión aleatoria de tipo bosque sobre un mismo grupo de datasets, pero que tienen una característica de dependencia entre ellos. Resultados: Cuando se aplica el modelo propuesto, este genera un puntaje estimado de la predicción, el cual indica la precisión del modelo respecto a los datos entregados. Conclusiones: La aplicación de un algoritmo complejo no garantiza un mayor índice de precisión; por el contrario, configurar de manera correcta el modelo, entrenando múltiples árboles o cambiando los valores de los parámetros mejora en gran medida los resultados obtenidos Objective: Machine learning techniques have emerged in response to the desire for automatic pattern detection withindatasets in fields such as statistics, mathematics, and data analytics. They allow for the extraction of relevant informationfrom datasets of significantly large volumes, providing the possibility of making predictions. This paper presents an application focused on decision trees, linear regression, and random forest regression algorithms to predict final data fromconsecutive dependent data of type {[(a, b) → c] → D}. Methodology: The study adopts a quantitative research design, which takes as input datasets based on interval data. It utilizes a correlational research model by implementing Python and its Scikit-Learn library, which includes various algorithms for prediction. Specifically, we compare the application of decision trees, linear regression, and random forest regression on the same set of datasets, but with a characteristic of dependency between them. Results: Upon application of the proposed model, it yields an estimated prediction score, which indicates the accuracy of the model concerning the data provided. Conclusions: The application of a complex algorithm does not inherently guarantee a higher rate of accuracy. Conversely, configuring the model correctly, training multiple trees, or adjusting parameter values can significantly enhance the obtained results. Objetivo: Las técnicas de Machine Learning surgen como una respuesta al deseo de detectar automáticamente patrones en un conjunto de datos (datasets) en campos como la estadística, la matemática y la analítica de datos, permitiendo extraer información relevante de datasets de volúmenes significativamente grandes y realizar predicciones. Éste artículo presenta una aplicación enfocada en los algoritmos de árboles de decisión, regresión lineal y regresión aleatoria de tipo bosque para predecir un dato final a partir de datos dependientes consecutivos de tipo {[(a, b) → c] → D}. Metodología: Se parte de un diseño de investigación cuantitativo, que toma como insumo unos datasets basados en datos de intervalo, establecidos en un modelo de investigación correlacional al aplicar Python y su librería Scikit-learn. Esta biblioteca incluye diferentes algoritmos que pueden ser utilizados para realizar predicciones. En este caso, se compara la aplicación de árboles de decisión, regresión lineal y regresión aleatoria de tipo bosque sobre un mismo grupo de datasets, pero que tienen una característica de dependencia entre ellos. Resultados: Cuando se aplica el modelo propuesto, este genera un puntaje estimado de la predicción, el cual indica la precisión del modelo respecto a los datos entregados. Conclusiones: La aplicación de un algoritmo complejo no garantiza un mayor índice de precisión; por el contrario, configurar de manera correcta el modelo, entrenando múltiples árboles o cambiando los valores de los parámetros mejora en gran medida los resultados obtenidos.  | 
    
| Author | Londoño Villalba, Jhon Uberney Gonzalez Gomez, Arnaldo Andres Quevedo Piratova, Diego Alexander  | 
    
| Author_xml | – sequence: 1 givenname: Diego Alexander orcidid: 0000-0002-1347-8391 surname: Quevedo Piratova fullname: Quevedo Piratova, Diego Alexander – sequence: 2 givenname: Jhon Uberney surname: Londoño Villalba fullname: Londoño Villalba, Jhon Uberney – sequence: 3 givenname: Arnaldo Andres orcidid: 0000-0003-1609-7516 surname: Gonzalez Gomez fullname: Gonzalez Gomez, Arnaldo Andres  | 
    
| BookMark | eNqFkd9LHDEQx4MoeFWffc1jC13NL7NZKMIhthWEglgoiIS5ZFZzrMmS3Ws5pP97s3fXQp-cl4HvzPdDMt93ZD-miISccnbGlTLyXAhlai3NmRCsUXtkNgnVpOyTGeNCVo3gPw7JyTAsWSltLiSvZ6Sd930XHIwhRZpa-gLuOUSkHUKOIT7RNmXaZ_TBTSvDtONKR7caw0-kHnuMHuNIPYwwTcd1j_T14T18pIsP1aV7rC7972Ny0EI34MmuH5Hvn6_vr75Wt9--3FzNbysnGFOVZ5wv0LXcAYLBBWt1rctblW9Qa9EIJtE1Wpcfe8EMSl9L4N5xkK2R4OQRudlyfYKl7XN4gby2CYLdCCk_WchjcB1aUKI2ioPRulHsolzNSKmd5l4y3QAvrE87VoAu4vg_bqetYsghLcHiYOd39-WyvJZGS1nsbGtfxR7Wv6Dr_gE4s5vU7N_U7Ca1YjnfWlxOw5CxfdPxB4ZDmL8 | 
    
| Cites_doi | 10.16925/in.v9i17.828 10.1002/9781119183464 10.1007/978-3-030-05318-5_1  | 
    
| ContentType | Journal Article | 
    
| Copyright | LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI | 
    
| Copyright_xml | – notice: LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI | 
    
| DBID | AAYXX CITATION ADTOC UNPAY AGMXS FKZ DOA  | 
    
| DOI | 10.14483/22487638.22094 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall Dialnet (Open Access Full Text) Dialnet DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2248-7638 | 
    
| EndPage | 86 | 
    
| ExternalDocumentID | oai_doaj_org_article_a427841a86694050948336c61d3069a1 oai_dialnet_unirioja_es_ART0001738633 10.14483/22487638.22094 10_14483_22487638_22094  | 
    
| GroupedDBID | 5VS 635 8FE 8FG AAYXX ABJCF ACIWK ADBBV ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS APOWU AZFZN B14 BCNDV BENPR BGLVJ CITATION FAEIB GROUPED_DOAJ HCIFZ INF ITC KQ8 L6V M7S OK1 PIMPY PROAC PV9 RDY RTK RZL SCD ADTOC CCPQU IPNFZ PHGZM PHGZT PQGLB PTHSS PUEGO RIG UNPAY AGMXS FKZ  | 
    
| ID | FETCH-LOGICAL-c2004-d011becf1caea8eb0f6760684d9e6629203ec966483d208e3d73a1dc1a3f83ac3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 0123-921X 2248-7638  | 
    
| IngestDate | Fri Oct 03 12:40:43 EDT 2025 Sat Feb 15 03:11:07 EST 2025 Mon Sep 15 10:17:03 EDT 2025 Tue Jul 01 01:43:55 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 79 | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by-sa/4.0 cc-by-sa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2004-d011becf1caea8eb0f6760684d9e6629203ec966483d208e3d73a1dc1a3f83ac3 | 
    
| ORCID | 0000-0002-1347-8391 0000-0003-1609-7516  | 
    
| OpenAccessLink | https://doaj.org/article/a427841a86694050948336c61d3069a1 | 
    
| PageCount | 21 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a427841a86694050948336c61d3069a1 dialnet_primary_oai_dialnet_unirioja_es_ART0001738633 unpaywall_primary_10_14483_22487638_22094 crossref_primary_10_14483_22487638_22094  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-01-01 | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Tecnura | 
    
| PublicationYear | 2024 | 
    
| Publisher | Universidad Distrital Francisco Jose de Caldas | 
    
| Publisher_xml | – name: Universidad Distrital Francisco Jose de Caldas | 
    
| References | 412380 412381 412379 412377 412378 412375 412376 412373 412374 412382 412383  | 
    
| References_xml | – ident: 412383 – ident: 412382 – ident: 412379 – ident: 412380 – ident: 412374 – ident: 412381 – ident: 412375 doi: 10.16925/in.v9i17.828 – ident: 412378 – ident: 412376 – ident: 412373 doi: 10.1002/9781119183464 – ident: 412377 doi: 10.1007/978-3-030-05318-5_1  | 
    
| SSID | ssj0000685317 ssib044762710 ssib045315338  | 
    
| Score | 2.2452 | 
    
| Snippet | Objective: Machine learning techniques have emerged in response to the desire for automatic pattern detection withindatasets in fields such as statistics,... Objective: Machine learning techniques have emerged in response to the desire for automatic pattern detection within datasets in fields such as statistics,...  | 
    
| SourceID | doaj dialnet unpaywall crossref  | 
    
| SourceType | Open Website Open Access Repository Index Database  | 
    
| StartPage | 66 | 
    
| SubjectTerms | algorithms algoritmos datasets decision trees learn linear regression prediction Python regresión lineal scikit scikit-learn árboles de decisión  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BJwR74BtRvuQHHjYJd0mcOs7LpIKYKiQmHqhUhFB0sR00GGlVEqEN7X_fXeqMDiEBr87lw75zfD_f-XcAz03u0dBCIGPjS0n4CyUqn8uxQvRJhZWP-KDw20M9naVv5uN5IEniszCb8XtCDmqPlhgmTTOjJCEkchW29Jic7gFszQ7fTT50CYqJknkSz7mMHAlLlg4kPn94wqX15xofzqh9Ewj7t-F6Wy_x5AceH2-sMge3YNp_3zq55OuobcqRPf2NuvEfOnAbbgZPU0zWpnEHrvj6Lmxv8A_eg2ryK3wtFpX41mVWehFKSXwW5NGK5YpjOZ15sozl9Gvb8l9S9BV0G8GJpnyVd3TFz487-EKUu3LffpL77uw-zA5ev381laHwgrRdYoqjSU-6rWKLpElfRpXOCOiY1OVea65vpbwlnETdc0lkvHKZwtjZGFVlFFr1AAb1ovYPQWRI_qRSmfMEJfMowkxVaDKbpS7DyPoh7PTqKJZrfo2CcQkPXdEPXdEN3RDGQV0XksyN3be19dHqaPEFC_-9ICzQMQEpo5UawktW7uWbuIHUVIT5WWDaRWDRaJ2nzIlD71fa6tgRpsoxHsLuhWn87UMf_YfsY7iRkJu03tR5AoNm1fqn5OY05bNg4ufbifBU priority: 102 providerName: Unpaywall  | 
    
| Title | Application of machine learning for predictions of consecutive dependent data of type {[(a, b)->c]->d} | 
    
| URI | https://doi.org/10.14483/22487638.22094 https://dialnet.unirioja.es/servlet/oaiart?codigo=9980016 https://doaj.org/article/a427841a86694050948336c61d3069a1  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 28 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2248-7638 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000685317 issn: 2248-7638 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2248-7638 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000685317 issn: 2248-7638 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2248-7638 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000685317 issn: 2248-7638 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2248-7638 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044762710 issn: 0123-921X databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2248-7638 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000685317 issn: 2248-7638 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF1BEaI9ID5FoER74NBKmNqezX4cU0SokKg4ECkIIWuyu66KihOliSpU9Yo49yf2lzBjO2l66oWTpfVatt-OPfN2Z98I8ca6iJYcQZLZOE6If2GCEF3SA8SYl1jGlDcKfz7UB0P1adQbrZX64pywRh64AW4PVb00hlZrp1isRFkA7XUWKNh1WBOf1Lo1MkWWpBR94-basSmyNIpr7Gr2JdXkprJmL3UOicuzUav7Q3QF9sivsVKbfZfnqVM3XNZ93s9RxXmr8b8lHiyqKf4-w5OTNcc0eCQethGl7Ddv8ljciadPxNaazuBTMelfL1PLSSl_1RmUUbYlI44kRa5yOuM1m9oMuY_nNGu_4L-hXFbKnUtOKOWzPHMrz7_v4Fs53pVXfy6l_8GHq7-XMlw8E8PBh6_vD5K20kLi60yUQF85DWaZeaShi-O01IaYjVXBRa25oBVET8SIsAmEdoRgALPgM4TSAnp4LjaqSRVfCGmQgAYwIRJ3dGmKBkq0xhsVDKY-dsTOEsxi2ghqFExEGPdiiXtR494RvRbsVU8Ww162Larj2fHkJxbxtKDgv5b-AasBOmKfh-bmRdxAdlW0dlXcZlcdsbsa2Nse9OX_uOErsZlTwNRM72yLjflsEV9TwDMfd8VdO_jYrS28K-4ND7_0v_0D3lD3rQ | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BJwR74BtRvuQHHjYJd0mcOs7LpIKYKiQmHqhUhFB0sR00GGlVEqEN7X_fXeqMDiEBr87lw75zfD_f-XcAz03u0dBCIGPjS0n4CyUqn8uxQvRJhZWP-KDw20M9naVv5uN5IEniszCb8XtCDmqPlhgmTTOjJCEkchW29Jic7gFszQ7fTT50CYqJknkSz7mMHAlLlg4kPn94wqX15xofzqh9Ewj7t-F6Wy_x5AceH2-sMge3YNp_3zq55OuobcqRPf2NuvEfOnAbbgZPU0zWpnEHrvj6Lmxv8A_eg2ryK3wtFpX41mVWehFKSXwW5NGK5YpjOZ15sozl9Gvb8l9S9BV0G8GJpnyVd3TFz487-EKUu3LffpL77uw-zA5ev381laHwgrRdYoqjSU-6rWKLpElfRpXOCOiY1OVea65vpbwlnETdc0lkvHKZwtjZGFVlFFr1AAb1ovYPQWRI_qRSmfMEJfMowkxVaDKbpS7DyPoh7PTqKJZrfo2CcQkPXdEPXdEN3RDGQV0XksyN3be19dHqaPEFC_-9ICzQMQEpo5UawktW7uWbuIHUVIT5WWDaRWDRaJ2nzIlD71fa6tgRpsoxHsLuhWn87UMf_YfsY7iRkJu03tR5AoNm1fqn5OY05bNg4ufbifBU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+machine+learning+for+predictions+of+consecutive+dependent+data+of+type+%7B%5B%28a%2C+b%29+%E2%86%92+c%5D+%E2%86%92%E2%88%92+d%7D&rft.jtitle=Tecnura&rft.au=Diego+Alexander+Quevedo+Piratova&rft.au=Jhon+Uberney+Londo%C3%B1o+Villalba&rft.au=Arnaldo+Andres+Gonzalez+Gomez&rft.date=2024-01-01&rft.pub=Universidad+Distrital+Francisco+Jose+de+Caldas&rft.issn=0123-921X&rft.eissn=2248-7638&rft.volume=28&rft.issue=79&rft.spage=66&rft.epage=86&rft_id=info:doi/10.14483%2F22487638.22094&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a427841a86694050948336c61d3069a1 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0123-921X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0123-921X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0123-921X&client=summon |