Efficient Group Signatures with Designated Traceability over Openers’ Attributes from Lattices
The group signature with designated traceability (GSdT) is a kind of group signatures (GS) which aim to restrict the opening authority of the group manager; by setting an access structure over openers’ attributes at the signing, a signer is able to control openers who can open the signature. A gener...
        Saved in:
      
    
          | Published in | International Journal of Networking and Computing Vol. 15; no. 2; pp. 153 - 181 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IJNC Editorial Committee
    
        2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2185-2839 2185-2847 2185-2847  | 
| DOI | 10.15803/ijnc.15.2_153 | 
Cover
| Abstract | The group signature with designated traceability (GSdT) is a kind of group signatures (GS) which aim to restrict the opening authority of the group manager; by setting an access structure over openers’ attributes at the signing, a signer is able to control openers who can open the signature. A generic construction of GSdT was given when the notion was introduced, then a pairing-based construction and a symmetric-key-based one were presented. Nonetheless, it remains open whether a post-quantum GSdT with full anonymity can be truly constructed.In this paper, we give a lattice-based GSdT scheme that has full anonymity for the first time. In our construction, the lattice-based ciphertext-policy attribute-based encryption (CPABE) by Tsabary and the lattice-based group signatures (GS) by Libert et al. are employed. The CP-ABE is based on the Regev public-key encryption, while the GS uses a non-interactive zero-knowledge proof to prove the correctness of the encryption in the signing process. Based on the compatibility, we combine and modify them to build up a GSdT scheme. | 
    
|---|---|
| AbstractList | The group signature with designated traceability (GSdT) is a kind of group signatures (GS) which aim to restrict the opening authority of the group manager; by setting an access structure over openers’ attributes at the signing, a signer is able to control openers who can open the signature. A generic construction of GSdT was given when the notion was introduced, then a pairing-based construction and a symmetric-key-based one were presented. Nonetheless, it remains open whether a post-quantum GSdT with full anonymity can be truly constructed.In this paper, we give a lattice-based GSdT scheme that has full anonymity for the first time. In our construction, the lattice-based ciphertext-policy attribute-based encryption (CPABE) by Tsabary and the lattice-based group signatures (GS) by Libert et al. are employed. The CP-ABE is based on the Regev public-key encryption, while the GS uses a non-interactive zero-knowledge proof to prove the correctness of the encryption in the signing process. Based on the compatibility, we combine and modify them to build up a GSdT scheme. | 
    
| Author | Hiroaki Anada Masayuki Fukumitsu Shingo Hasegawa  | 
    
| Author_xml | – sequence: 1 givenname: Hiroaki surname: Anada fullname: Anada, Hiroaki – sequence: 2 givenname: Masayuki surname: Fukumitsu fullname: Fukumitsu, Masayuki – sequence: 3 givenname: Shingo surname: Hasegawa fullname: Hasegawa, Shingo  | 
    
| BookMark | eNqFkM9Kw0AQxhepYK29et4XSN0_iZtchFJrFQo9WM9xs5ltt6SbsLux9OZr-Ho-iWkrBU8ODPMxM7-B-a5Rz9YWELqlZESTlPA7s7GqkyOW04RfoD6jaRKxNBa9s-bZFRp6vyFdCJERxvvofaq1UQZswDNXtw1-NSsrQ-vA450Ja_wI_tiBEi-dVCALU5mwx_UHOLxowILz359feByCM0UbOk67eovnMgSjwN-gSy0rD8PfOkBvT9Pl5DmaL2Yvk_E8UowQHpWUx6nW9zwjIpFSpiUHCjoWSZklRZkKDnFMCqaIyLKkS62oZqQQwIpMQskH6O50t7WN3O9kVeWNM1vp9jkl-dGj_OBRJ_OjRx0xOhHK1d470P8DDydg44NcwXlduu7TCv5sH4DzQK2ly8HyHwdChUE | 
    
| Cites_doi | 10.1145/1374376.1374407 10.1109/CANDAR64496.2024.00009 10.1007/978-3-642-54631-0_20 10.1007/978-3-540-30574-3_11 10.1007/978-3-031-25659-2_3 10.1109/PST62714.2024.10788071 10.1007/3-540-39200-9_38 10.1007/978-3-030-12612-4_28 10.1007/978-3-662-53890-6_13 10.1145/1568318.1568324 10.1007/978-3-642-36334-4_18 10.1515/popets-2015-0012 10.1109/CANDAR53791.2021.00017 10.1007/978-3-540-89255-7_23 10.1007/978-3-642-13190-5_4 10.1007/s00224-010-9278-3 10.1007/978-3-319-24174-6_13 10.1007/s00145-014-9183-z 10.1007/978-3-642-13190-5_27 10.1007/3-540-46416-6_22 10.1007/978-3-031-07085-3_4 10.1007/978-3-030-26948-7_3 10.1007/978-3-642-34931-7_5 10.1007/BF01445125 10.1007/978-3-319-78372-7_2 10.1007/978-3-030-77883-5_18 10.15803/ijnc.12.2_493  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 International Journal of Networking and Computing | 
    
| Copyright_xml | – notice: 2025 International Journal of Networking and Computing | 
    
| DBID | AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.15803/ijnc.15.2_153 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 2185-2847 | 
    
| EndPage | 181 | 
    
| ExternalDocumentID | 10.15803/ijnc.15.2_153 10_15803_ijnc_15_2_153 article_ijnc_15_2_15_153_article_char_en  | 
    
| GroupedDBID | 7.U ALMA_UNASSIGNED_HOLDINGS JSF JSH KQ8 KWQ OK1 RJT RZJ AAYXX CITATION ISHAI ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c2003-d1348ff639075aaa8d3e1ef475d95bd873e440b2c07995799fc1f20b7e2b9aed3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2185-2839 2185-2847  | 
    
| IngestDate | Thu Sep 25 08:54:24 EDT 2025 Wed Oct 01 05:46:02 EDT 2025 Wed Sep 03 06:30:38 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2003-d1348ff639075aaa8d3e1ef475d95bd873e440b2c07995799fc1f20b7e2b9aed3 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.15803/ijnc.15.2_153 | 
    
| PageCount | 29 | 
    
| ParticipantIDs | unpaywall_primary_10_15803_ijnc_15_2_153 crossref_primary_10_15803_ijnc_15_2_153 jstage_primary_article_ijnc_15_2_15_153_article_char_en  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025 2025-00-00  | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – year: 2025 text: 2025  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | International Journal of Networking and Computing | 
    
| PublicationTitleAlternate | IJNC | 
    
| PublicationYear | 2025 | 
    
| Publisher | IJNC Editorial Committee | 
    
| Publisher_xml | – name: IJNC Editorial Committee | 
    
| References | [18] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In Josef Pieprzyk, editor, Advances in Cryptology -ASIACRYPT 2008, pages 372–389, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. [20] Adeline Langlois, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-based group signature scheme with verifier-local revocation. In Hugo Krawczyk, editor, Public-Key Cryptography – PKC 2014, pages 345–361, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. [28] Yusuke Sakai, Keita Emura, Goichiro Hanaoka, Yutaka Kawai, Takahiro Matsuda, and Kazumasa Omote. Group signatures with message-dependent opening. In Michel Abdalla and Tanja Lange, editors, Pairing-Based Cryptography – Pairing 2012, pages 270–294, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. [11] Florian Böhl, Dennis Hofheinz, Tibor Jager, Jessica Koch, and Christoph Striecks. Confined guessing: New signatures from standard assumptions. Journal of Cryptology, 28(1):176–208, 2015. [7] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen, 296(1):625–635, 1993. [6] Hiroaki Anada, Masayuki Fukumitsu, and Shingo Hasegawa. Group signatures with designated traceability over openers’ attributes from lattices. In 2024 Twelfth International Symposium on Computing and Networking (CANDAR), pages 1–10, November 2024. [26] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6), sep 2009. [19] Markulf Kohlweiss and Ian Miers. Accountable metadata-hiding escrow: A group signature case study. Proc. Priv. Enhancing Technol., 2015(2):206–221, 2015. [25] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Accountable tracing signatures from lattices. In Mitsuru Matsui, editor, Topics in Cryptology -CT-RSA 2019 -The Cryptographers' Track at the RSA Conference 2019, San Francisco, CA, USA, March 4-8, 2019, Proceedings, volume 11405 of Lecture Notes in Computer Science, pages 556–576. Springer, 2019. [9] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of dynamic groups. In Alfred Menezes, editor, Topics in Cryptology – CT-RSA 2005, pages 136–153, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. [23] Benoit Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong Wang. Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. Cryptology ePrint Archive, Paper 2016/101, 2016. [15] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On the non-malleability of the Fiat-Shamir transform. In Steven Galbraith and Mridul Nandi, editors, Progress in Cryptology -INDOCRYPT 2012, pages 60–79, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. [12] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and Christophe Petit. Short accountable ring signatures based on ddh. In Günther Pernul, Peter Y A Ryan, and Edgar Weippl, editors, Computer Security – ESORICS 2015, pages 243–265, Cham, 2015. Springer International Publishing. [30] Shouhuai Xu and Moti Yung. Accountable ring signatures: A smart card approach. In Jean-Jacques Quisquater, Pierre Paradinas, Yves Deswarte, and Anas Abou El Kalam, editors, Smart Card Research and Advanced Applications VI, IFIP 18th World Computer Congress, TC8/WG8.8 & TC11/WG11.2 Sixth International Conference on Smart Card Research and Advanced Applications (CARDIS), 22-27 August 2004, Toulouse, France, volume 153 of IFIP, pages 271–286. Kluwer/Springer, 2004. [22] Benoît Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong Wang. Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology – ASIACRYPT 2016, pages 373–403, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. [17] Yael Tauman Kalai, Dakshita Khurana, and Amit Sahai. Statistical witness indistinguishability (and more) in two messages. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, pages 34–65, Cham, 2018. Springer International Publishing. [13] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a lattice basis. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, pages 523–552, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. [16] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC '08, pages 197–206, New York, NY, USA, 2008. Association for Computing Machinery. [14] David Chaum and Eugène Van Heyst. Group signatures. In Proceedings of the 10th Annual International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT'91, page 257–265, Berlin, Heidelberg, 1991. Springer-Verlag. [4] Hiroaki Anada, Masayuki Fukumitsu, and Shingo Hasegawa. Group signatures with designated traceability over openers' attributes in bilinear groups. In Ilsun You and Taek-Young Youn, editors, Information Security Applications, The 23rd World Conference on Information Security Applications (WISA 2022), pages 29–43, Cham, August 2022. Springer Nature Switzerland. [29] Rotem Tsabary. Fully secure attribute-based encryption for t-cnf from lwe. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, pages 62–85, Cham, 2019. Springer International Publishing. [8] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In Eli Biham, editor, Advances in Cryptology –-EUROCRYPT 2003, pages 614–629, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. [10] Ward Beullens, Samuel Dobson, Shuichi Katsumata, Yi-Fu Lai, and Federico Pintore. Group signatures and more from isogenies and lattices: Generic, simple, and efficient. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology – EUROCRYPT 2022, pages 95–126, Cham, 2022. Springer International Publishing. [3] Hiroaki Anada, Masayuki Fukumitsu, and Shingo Hasegawa. Group signatures with designated traceability over openers' attributes. International Journal of Networking and Computing, 12(2):493–508, July 2022. [27] Amit Sahai. Simulation-sound non-interactive zero knowledge, 2000. [21] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, pages 62–91, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. [5] Hiroaki Anada, Masayuki Fukumitsu, and Shingo Hasegawa. Group Signatures with Designated Traceability over Openers' Attributes from Symmetric-Key Primitives . In 2024 21st Annual International Conference on Privacy, Security and Trust (PST), pages 1–9, Los Alamitos, CA, USA, August 2024. IEEE Computer Society. [24] Benoît Libert, Khoa Nguyen, Thomas Peters, and Moti Yung. Bifurcated signatures: Folding the accountability vs. anonymity dilemma into a single private signing scheme. In Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptology -EUROCRYPT 2021 - 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part III, volume 12698 of Lecture Notes in Computer Science, pages 521–552. Springer, 2021. [2] Hiroaki Anada, Masayuki Fukumitsu, and Shingo Hasegawa. Group signatures with designated traceability. In 2021 Ninth International Symposium on Computing and Networking (CANDAR), The 9th International Symposium on Computing and Networking (CANDAR2021), pages 74–80, November 2021. [1] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. Theory of Computing Systems, 48(3):535–553, 2011. 22 23 24 25 26 27 28 29 30 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21  | 
    
| References_xml | – reference: [14] David Chaum and Eugène Van Heyst. Group signatures. In Proceedings of the 10th Annual International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT'91, page 257–265, Berlin, Heidelberg, 1991. Springer-Verlag. – reference: [3] Hiroaki Anada, Masayuki Fukumitsu, and Shingo Hasegawa. Group signatures with designated traceability over openers' attributes. International Journal of Networking and Computing, 12(2):493–508, July 2022. – reference: [27] Amit Sahai. Simulation-sound non-interactive zero knowledge, 2000. – reference: [18] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In Josef Pieprzyk, editor, Advances in Cryptology -ASIACRYPT 2008, pages 372–389, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. – reference: [17] Yael Tauman Kalai, Dakshita Khurana, and Amit Sahai. Statistical witness indistinguishability (and more) in two messages. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, pages 34–65, Cham, 2018. Springer International Publishing. – reference: [21] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, pages 62–91, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. – reference: [5] Hiroaki Anada, Masayuki Fukumitsu, and Shingo Hasegawa. Group Signatures with Designated Traceability over Openers' Attributes from Symmetric-Key Primitives . In 2024 21st Annual International Conference on Privacy, Security and Trust (PST), pages 1–9, Los Alamitos, CA, USA, August 2024. IEEE Computer Society. – reference: [8] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In Eli Biham, editor, Advances in Cryptology –-EUROCRYPT 2003, pages 614–629, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. – reference: [23] Benoit Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong Wang. Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. Cryptology ePrint Archive, Paper 2016/101, 2016. – reference: [6] Hiroaki Anada, Masayuki Fukumitsu, and Shingo Hasegawa. Group signatures with designated traceability over openers’ attributes from lattices. In 2024 Twelfth International Symposium on Computing and Networking (CANDAR), pages 1–10, November 2024. – reference: [29] Rotem Tsabary. Fully secure attribute-based encryption for t-cnf from lwe. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, pages 62–85, Cham, 2019. Springer International Publishing. – reference: [13] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a lattice basis. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, pages 523–552, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. – reference: [4] Hiroaki Anada, Masayuki Fukumitsu, and Shingo Hasegawa. Group signatures with designated traceability over openers' attributes in bilinear groups. In Ilsun You and Taek-Young Youn, editors, Information Security Applications, The 23rd World Conference on Information Security Applications (WISA 2022), pages 29–43, Cham, August 2022. Springer Nature Switzerland. – reference: [19] Markulf Kohlweiss and Ian Miers. Accountable metadata-hiding escrow: A group signature case study. Proc. Priv. Enhancing Technol., 2015(2):206–221, 2015. – reference: [26] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6), sep 2009. – reference: [11] Florian Böhl, Dennis Hofheinz, Tibor Jager, Jessica Koch, and Christoph Striecks. Confined guessing: New signatures from standard assumptions. Journal of Cryptology, 28(1):176–208, 2015. – reference: [7] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen, 296(1):625–635, 1993. – reference: [9] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of dynamic groups. In Alfred Menezes, editor, Topics in Cryptology – CT-RSA 2005, pages 136–153, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. – reference: [12] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and Christophe Petit. Short accountable ring signatures based on ddh. In Günther Pernul, Peter Y A Ryan, and Edgar Weippl, editors, Computer Security – ESORICS 2015, pages 243–265, Cham, 2015. Springer International Publishing. – reference: [1] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. Theory of Computing Systems, 48(3):535–553, 2011. – reference: [10] Ward Beullens, Samuel Dobson, Shuichi Katsumata, Yi-Fu Lai, and Federico Pintore. Group signatures and more from isogenies and lattices: Generic, simple, and efficient. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology – EUROCRYPT 2022, pages 95–126, Cham, 2022. Springer International Publishing. – reference: [2] Hiroaki Anada, Masayuki Fukumitsu, and Shingo Hasegawa. Group signatures with designated traceability. In 2021 Ninth International Symposium on Computing and Networking (CANDAR), The 9th International Symposium on Computing and Networking (CANDAR2021), pages 74–80, November 2021. – reference: [20] Adeline Langlois, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-based group signature scheme with verifier-local revocation. In Hugo Krawczyk, editor, Public-Key Cryptography – PKC 2014, pages 345–361, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. – reference: [28] Yusuke Sakai, Keita Emura, Goichiro Hanaoka, Yutaka Kawai, Takahiro Matsuda, and Kazumasa Omote. Group signatures with message-dependent opening. In Michel Abdalla and Tanja Lange, editors, Pairing-Based Cryptography – Pairing 2012, pages 270–294, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. – reference: [15] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On the non-malleability of the Fiat-Shamir transform. In Steven Galbraith and Mridul Nandi, editors, Progress in Cryptology -INDOCRYPT 2012, pages 60–79, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. – reference: [30] Shouhuai Xu and Moti Yung. Accountable ring signatures: A smart card approach. In Jean-Jacques Quisquater, Pierre Paradinas, Yves Deswarte, and Anas Abou El Kalam, editors, Smart Card Research and Advanced Applications VI, IFIP 18th World Computer Congress, TC8/WG8.8 & TC11/WG11.2 Sixth International Conference on Smart Card Research and Advanced Applications (CARDIS), 22-27 August 2004, Toulouse, France, volume 153 of IFIP, pages 271–286. Kluwer/Springer, 2004. – reference: [16] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC '08, pages 197–206, New York, NY, USA, 2008. Association for Computing Machinery. – reference: [25] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Accountable tracing signatures from lattices. In Mitsuru Matsui, editor, Topics in Cryptology -CT-RSA 2019 -The Cryptographers' Track at the RSA Conference 2019, San Francisco, CA, USA, March 4-8, 2019, Proceedings, volume 11405 of Lecture Notes in Computer Science, pages 556–576. Springer, 2019. – reference: [22] Benoît Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong Wang. Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology – ASIACRYPT 2016, pages 373–403, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. – reference: [24] Benoît Libert, Khoa Nguyen, Thomas Peters, and Moti Yung. Bifurcated signatures: Folding the accountability vs. anonymity dilemma into a single private signing scheme. In Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptology -EUROCRYPT 2021 - 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part III, volume 12698 of Lecture Notes in Computer Science, pages 521–552. Springer, 2021. – ident: 16 doi: 10.1145/1374376.1374407 – ident: 6 doi: 10.1109/CANDAR64496.2024.00009 – ident: 20 doi: 10.1007/978-3-642-54631-0_20 – ident: 9 doi: 10.1007/978-3-540-30574-3_11 – ident: 4 doi: 10.1007/978-3-031-25659-2_3 – ident: 5 doi: 10.1109/PST62714.2024.10788071 – ident: 8 doi: 10.1007/3-540-39200-9_38 – ident: 25 doi: 10.1007/978-3-030-12612-4_28 – ident: 22 doi: 10.1007/978-3-662-53890-6_13 – ident: 26 doi: 10.1145/1568318.1568324 – ident: 28 doi: 10.1007/978-3-642-36334-4_18 – ident: 19 doi: 10.1515/popets-2015-0012 – ident: 2 doi: 10.1109/CANDAR53791.2021.00017 – ident: 18 doi: 10.1007/978-3-540-89255-7_23 – ident: 23 doi: 10.1007/978-3-662-53890-6_13 – ident: 21 doi: 10.1007/978-3-642-13190-5_4 – ident: 1 doi: 10.1007/s00224-010-9278-3 – ident: 12 doi: 10.1007/978-3-319-24174-6_13 – ident: 11 doi: 10.1007/s00145-014-9183-z – ident: 13 doi: 10.1007/978-3-642-13190-5_27 – ident: 14 doi: 10.1007/3-540-46416-6_22 – ident: 30 – ident: 10 doi: 10.1007/978-3-031-07085-3_4 – ident: 29 doi: 10.1007/978-3-030-26948-7_3 – ident: 15 doi: 10.1007/978-3-642-34931-7_5 – ident: 7 doi: 10.1007/BF01445125 – ident: 17 doi: 10.1007/978-3-319-78372-7_2 – ident: 24 doi: 10.1007/978-3-030-77883-5_18 – ident: 27 – ident: 3 doi: 10.15803/ijnc.12.2_493  | 
    
| SSID | ssj0000779023 | 
    
| Score | 2.2809362 | 
    
| Snippet | The group signature with designated traceability (GSdT) is a kind of group signatures (GS) which aim to restrict the opening authority of the group manager; by... | 
    
| SourceID | unpaywall crossref jstage  | 
    
| SourceType | Open Access Repository Index Database Publisher  | 
    
| StartPage | 153 | 
    
| SubjectTerms | group signature lattices openers; attributes  | 
    
| Title | Efficient Group Signatures with Designated Traceability over Openers’ Attributes from Lattices | 
    
| URI | https://www.jstage.jst.go.jp/article/ijnc/15/2/15_153/_article/-char/en https://doi.org/10.15803/ijnc.15.2_153  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| ispartofPNX | International Journal of Networking and Computing, 2025, Vol.15(2), pp.153-181 | 
    
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2185-2847 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000779023 issn: 2185-2847 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4omHgSnxGjpAcTvSzuq2z3SBQkPohGSfC0ttuuAQkSWWLw5N_w7_lLnO4uCHrAwyZNdtpt2s7O1_abGYBDxm3PFCYzuMeZ4UZKGIJ6kaFNWQV_miIU-kb3ullptNyLNm1nBFntCzN7f0-Z6Zx0uqgnFi3bAermMuQrFDF3DvKt5k31QWeOQ4NjYMP-T9n1suiMfxuYsz4rXQRg2rN-ddQf8PEb7_VmbEu9AOeTXqWUkufyKBbl8P1XwMbF3V6HtQxekmq6HjZgSfU3oTBJ3UAyTd6Cx1oSOgItDklOn8hd5ymN8Tkk-miWnCXMDgSikqA5C1UazntMNOOTaBYKwsavj09SjdOUWVhPe6qQKx5rOt1wG1r12v1pw8iSLRhhwk-TluOyKELAgiCCc86koywVuR6VPhWSeY5yXVPYoalDyOEThVZkm8JTtvC5ks4O5PovfbULRIZCKmZK3_KFS0PKGHYSa1oOx_22z4twNJmEYJDG1Aj0XkQPXKAHDotBMnBF8NI5mspl-jQnpiWnL7SzGmp8EY6nk7rgI3v_F92HXPw6UgeIQ2JRguXLW1bKluI3jN7frw | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aBU_WJ1ZUchD0snUfSZM9Fm0tokXQQj2tea20llrsFqkn_4Z_z1_iZHdbWz3Uw0JgJ9mQZHa-JN_MIHTMhc9c6XJHMMEdEhvpSMpix5qyCvw0pZL2RvemWWm0yFWbtnOCrPWFmb2_p9wNzjpd0BOPlv0IdHMZrVQoYO4CWmk1b6sPNnMcGBwHGg5_yoTl0Rn_NjBnfVa7AMCsZ_3aqD8Q4zfR683YlnoRXU56lVFKnsujRJbV-6-AjYu7vYHWc3iJq9l62ERLpr-FipPUDTjX5G30WEtDR4DFwenpE77rPGUxPofYHs3ii5TZAUBUYzBnymThvMfYMj6xZaEAbPz6-MTVJEuZBfWspwq-Foml0w13UKteuz9vOHmyBUel_DTtBYTHMQAWABFCCK4D45mYMKpDKjVngSHElb5ybQg5eGLlxb4rmfFlKIwOdlGh_9I3ewhrJbXhrg69UBKqKOfQSajpBQL226EooZPJJESDLKZGZPciduAiO3BQjNKBKyGWzdFULtenOTErOX1hndVA40vodDqpCz6y_3_RA1RIXkfmEHBIIo_yRfgNVDTeug | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Group+Signatures+with+Designated+Traceability+over+Openers%E2%80%99+Attributes+from+Lattices&rft.jtitle=International+journal+of+networking+and+computing&rft.au=Anada%2C+Hiroaki&rft.au=Fukumitsu%2C+Masayuki&rft.au=Hasegawa%2C+Shingo&rft.date=2025&rft.issn=2185-2839&rft.eissn=2185-2847&rft.volume=15&rft.issue=2&rft.spage=153&rft.epage=181&rft_id=info:doi/10.15803%2Fijnc.15.2_153&rft.externalDBID=n%2Fa&rft.externalDocID=10_15803_ijnc_15_2_153 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2185-2839&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2185-2839&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2185-2839&client=summon |