Random forest and naïve Bayes approaches as tools for flash flood hazard susceptibility prediction, South Ras El-Zait, Gulf of Suez Coast, Egypt

Machine learning (ML) algorithms are reliable approaches to address incomplete datasets in existing studies. In this study, the ML algorithms naïve Bayes (NB) and random forest (RF) were used to generate a flash flood forecasting model in Wadi El-Dib on the Gulf of Suez Coast at the Eastern Desert o...

Full description

Saved in:
Bibliographic Details
Published inArabian journal of geosciences Vol. 15; no. 3
Main Author Abu El-Magd, Sherif Ahmed
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1866-7511
1866-7538
DOI10.1007/s12517-022-09531-3

Cover

Abstract Machine learning (ML) algorithms are reliable approaches to address incomplete datasets in existing studies. In this study, the ML algorithms naïve Bayes (NB) and random forest (RF) were used to generate a flash flood forecasting model in Wadi El-Dib on the Gulf of Suez Coast at the Eastern Desert of Egypt. A total of 1117 point locations of field data and remote sensing data were mapped to prepare a flood inventory map. The relationships between the flood controlling factors were assessed and evaluated based on the implemented approaches. Slope degree, distance from streams, topographic wetness index, and elevation are the most important controlling factors out of the input seven themes. The proposed prediction model for the identification of flooding and nonflooding areas achieved reliable accuracy for the implemented approaches according to the area under the curve. Results demonstrate that the flash flood model was able to simulate flooding and nonflooding areas with improved accuracy. The NB and RF models achieved predictive performance with an accuracy of 85% to 88%, respectively. The susceptibility map was classified into flooding zones and nonflooding zones, which might be helpful for urbanization planning and management. Our findings indicate that about 83% of the field data were plotted into susceptible flooding zones and that eastern areas with gentle slopes have high potential for flash floods. ML can extract and generate useful information, and related models could be applied in such studies and similar areas.
AbstractList Machine learning (ML) algorithms are reliable approaches to address incomplete datasets in existing studies. In this study, the ML algorithms naïve Bayes (NB) and random forest (RF) were used to generate a flash flood forecasting model in Wadi El-Dib on the Gulf of Suez Coast at the Eastern Desert of Egypt. A total of 1117 point locations of field data and remote sensing data were mapped to prepare a flood inventory map. The relationships between the flood controlling factors were assessed and evaluated based on the implemented approaches. Slope degree, distance from streams, topographic wetness index, and elevation are the most important controlling factors out of the input seven themes. The proposed prediction model for the identification of flooding and nonflooding areas achieved reliable accuracy for the implemented approaches according to the area under the curve. Results demonstrate that the flash flood model was able to simulate flooding and nonflooding areas with improved accuracy. The NB and RF models achieved predictive performance with an accuracy of 85% to 88%, respectively. The susceptibility map was classified into flooding zones and nonflooding zones, which might be helpful for urbanization planning and management. Our findings indicate that about 83% of the field data were plotted into susceptible flooding zones and that eastern areas with gentle slopes have high potential for flash floods. ML can extract and generate useful information, and related models could be applied in such studies and similar areas.
ArticleNumber 217
Author Abu El-Magd, Sherif Ahmed
Author_xml – sequence: 1
  givenname: Sherif Ahmed
  orcidid: 0000-0001-6029-7756
  surname: Abu El-Magd
  fullname: Abu El-Magd, Sherif Ahmed
  email: sherif.abuelmagd@sci.suezuni.edu.eg
  organization: Geology Department, Faculty of Science, Suez University
BookMark eNp9kUFKxDAUhoMo6KgXcBVwazVJbdMudRhHYUCY0Y2b8CZJbaQ2NUmFzi08iYfwYmYcUXAhgeQlfP97-flHaLu1rUboiJJTSgg_85RllCeEsYSUWUqTdAvt0SLPE56lxfZPTekuGnn_REheEF7sobc5tMo-48o67QOOF9zCx_urxpcwaI-h65wFWa9Lj4O1jV-zuGrA13G3VuEaVuAU9r2XugtmaRoTBtw5rYwMxrYneGH7UON57DBpkgcw4QRP-6bCtsKLXq_w2IKPb5PHoQsHaKeCxuvD73Mf3V9N7sbXyex2ejO-mCWSEUITBmWlmT6XBSvVkpeZZJoSJbWCXMUFXGeQQZ7TNON5pUqaURlRpYolB0bTfXS86RsNvvTRvHiyvWvjSMFyxkhZcEIiVWwo6az3TldCmgBrV8GBaQQlYh2A2AQgYgDiKwCRRin7I-2ceQY3_C9KNyIf4fZRu99f_aP6BDCVnKw
CitedBy_id crossref_primary_10_1007_s12665_025_12129_z
crossref_primary_10_1007_s11356_023_25938_1
crossref_primary_10_1016_j_pce_2024_103772
crossref_primary_10_3390_rs14164050
crossref_primary_10_1080_19475705_2022_2097131
crossref_primary_10_1007_s13762_022_04367_6
crossref_primary_10_3390_rs14246229
crossref_primary_10_1007_s11069_024_06596_z
crossref_primary_10_1007_s11356_022_19903_7
crossref_primary_10_1007_s12517_024_12146_5
crossref_primary_10_1016_j_ejrh_2025_102243
crossref_primary_10_3390_w14244073
Cites_doi 10.1016/j.jhydrol.2019.02.051
10.1029/TR038i006p00913
10.1007/s12665-021-10013-0
10.1023/A:1010933404324
10.1016/j.jhydrol.2016.09.035
10.1051/proc/201760144
10.1016/J.CATENA.2016.11.032
10.1007/s10064-018-1403-6
10.3390/app9050942
10.1016/j.CATENA.2014.10.017
10.1002/sim.1501
10.1007/s11269-017-1660-3
10.12746/swrccc.v5i19.391
10.1007/s00704-018-2628-9
10.1007/s10661-018-6507-8
10.1186/s12859-016-0995-8
10.1007/s12665-019-8518-3
10.1007/978-3-540-33037-0_14
10.1016/j.scitotenv.2019.03.496
10.1080/20964471.2018.1472392
10.1016/j.jafrearsci.2019.103709
10.1007/s11269-017-1589-6
10.1007/s12145-021-00653-y
10.1007/s12665-010-0551-1
10.1007/s11069-011-9778-8
10.1007/978-3-030-15729-6_7
10.1007/s12665-015-4830-8
10.1201/9780203736678-10
10.1007/s12517-021-06466-z
10.1016/B978-0-12-815226-3.00010-7
10.1080/19475705.2015.1012750
10.3390/fre2030043
10.1007/978-3-642-02326-2_18
ContentType Journal Article
Copyright Saudi Society for Geosciences 2022
Saudi Society for Geosciences 2022.
Copyright_xml – notice: Saudi Society for Geosciences 2022
– notice: Saudi Society for Geosciences 2022.
DBID AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
DOI 10.1007/s12517-022-09531-3
DatabaseName CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1866-7538
ExternalDocumentID 10_1007_s12517_022_09531_3
GeographicLocations Gulf of Suez
Egypt
GeographicLocations_xml – name: Gulf of Suez
– name: Egypt
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
06D
0R~
0VY
1N0
203
23M
2JN
2JY
2KG
2VQ
30V
4.4
406
408
409
40D
40E
5VS
67M
67Z
6NX
8TC
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
PT4
QOS
R89
RLLFE
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z85
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7UA
C1K
F1W
H96
L.G
ID FETCH-LOGICAL-c2001-2a9fe2e4c829db795c2e10dceda6d6d6a7e5a5a6613576fd9151c29ddd8b7a213
IEDL.DBID AGYKE
ISSN 1866-7511
IngestDate Wed Sep 17 23:58:00 EDT 2025
Wed Oct 01 02:28:44 EDT 2025
Thu Apr 24 22:52:29 EDT 2025
Fri Feb 21 02:47:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Wadi El-Dib
Naïve Bayes
Random forest
Machine learning
Egypt
Flash flood model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2001-2a9fe2e4c829db795c2e10dceda6d6d6a7e5a5a6613576fd9151c29ddd8b7a213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6029-7756
PQID 2622098700
PQPubID 2044009
ParticipantIDs proquest_journals_2622098700
crossref_citationtrail_10_1007_s12517_022_09531_3
crossref_primary_10_1007_s12517_022_09531_3
springer_journals_10_1007_s12517_022_09531_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Arabian journal of geosciences
PublicationTitleAbbrev Arab J Geosci
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Breiman (CR8) 2001; 45
Strahler (CR31) 1957; 38
Tehrany, Pradhan, Mansor, Ahmad (CR34) 2015; 125
CR17
CR39
CR38
CR15
CR37
CR14
Abdollahi, Pourghasemi, Ghanbarian, Safaeian (CR1) 2019; 78
CR13
Chen, Hardle, Unwin, Cox, Cox (CR9) 2008
CR11
Mohammady, Pourghasemi, Amiri (CR20) 2019; 78
CR32
Pradhan (CR23) 2010; 9
Rahmati, Falah, Naghibi, Biggs, Soltani, Deo, Tien Bui (CR26) 2019; 672
Abu El Magd, Orabi, Ali, Farhana Parvin, Pham (CR2) 2021; 80
Wright, Ziegler, König (CR35) 2016; 17
Ei-meliegy, El-shayeb, Meleik, Abdel-Raheim (CR12) 2000; 2000
Chen, Xie, Wang, Pradhan, Hong, Bui, Ma (CR10) 2017; 151
CR4
CR3
Naghibi, Ahmadi, Daneshi (CR21) 2017; 31
Probst, Boulesteix (CR24) 2017; 18
CR6
CR5
Jeong, Park (CR19) 2019; 572
CR7
CR28
CR27
CR25
Friedman, Meulman (CR16) 2003; 22
Golkarian, Naghibi, Kalantar, Pradhan (CR18) 2018; 190
Tehrany, Jones, Shabani, Martínez-Alvarez, Tien Bui (CR33) 2019; 137
CR41
Scornet (CR29) 2018; 60
Yaseen, Jaafar, Deo, Kisi, Adamowski, Quilty, ElShafie (CR36) 2016; 542
CR40
Shengping, Gilbert (CR30) 2017; 5
Park, Kim (CR22) 2019; 9
MN Wright (9531_CR35) 2016; 17
9531_CR32
SA Abu El Magd (9531_CR2) 2021; 80
L Breiman (9531_CR8) 2001; 45
9531_CR11
E Scornet (9531_CR29) 2018; 60
A Strahler (9531_CR31) 1957; 38
9531_CR13
9531_CR14
9531_CR15
9531_CR37
O Rahmati (9531_CR26) 2019; 672
9531_CR38
9531_CR17
J Jeong (9531_CR19) 2019; 572
9531_CR39
9531_CR7
9531_CR6
9531_CR5
9531_CR4
SA Naghibi (9531_CR21) 2017; 31
JH Friedman (9531_CR16) 2003; 22
S Abdollahi (9531_CR1) 2019; 78
A Ei-meliegy (9531_CR12) 2000; 2000
MS Tehrany (9531_CR33) 2019; 137
9531_CR40
9531_CR41
9531_CR25
9531_CR27
9531_CR28
9531_CR3
W Chen (9531_CR10) 2017; 151
ZM Yaseen (9531_CR36) 2016; 542
B Pradhan (9531_CR23) 2010; 9
A Golkarian (9531_CR18) 2018; 190
Y Shengping (9531_CR30) 2017; 5
P Probst (9531_CR24) 2017; 18
M Mohammady (9531_CR20) 2019; 78
C Chen (9531_CR9) 2008
MS Tehrany (9531_CR34) 2015; 125
S Park (9531_CR22) 2019; 9
References_xml – volume: 572
  start-page: 261
  year: 2019
  end-page: 273
  ident: CR19
  article-title: Comparative applications of data-driven models representing water table fluctuations
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.02.051
– volume: 38
  start-page: 913
  issue: 6
  year: 1957
  end-page: 920
  ident: CR31
  article-title: Quantitative analysis of watershed Geomorphology
  publication-title: Eos Transactions on AGU
  doi: 10.1029/TR038i006p00913
– volume: 80
  start-page: 694
  year: 2021
  ident: CR2
  article-title: An integrated approach for evaluating the flash flood risk and potential erosion using the hydrologic indices and morpho tectonic parameters
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-021-10013-0
– volume: 2000
  start-page: 179
  year: 2000
  end-page: 231
  ident: CR12
  article-title: Surface delineation of lithologies and nomalies, Wadi Dib Area, Eastern Desert, Egypt, using aeroradiospectrometric survey data
  publication-title: Sci J Fac Sci Minujiya Univ VoL XIC
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR8
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: CR4
– ident: CR14
– ident: CR39
– ident: CR37
– ident: CR6
– volume: 542
  start-page: 603
  year: 2016
  end-page: 614
  ident: CR36
  article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.09.035
– volume: 60
  start-page: 144
  year: 2018
  end-page: 162
  ident: CR29
  article-title: Tuning parameters in random forests
  publication-title: ESAIM: Proc Surv
  doi: 10.1051/proc/201760144
– volume: 151
  start-page: 147
  year: 2017
  end-page: 160
  ident: CR10
  article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility
  publication-title: Catena
  doi: 10.1016/J.CATENA.2016.11.032
– volume: 78
  start-page: 4017
  issue: 6
  year: 2019
  end-page: 4034
  ident: CR1
  article-title: Prioritization of effective factors in the occurrence of land subsidence and its susceptibility mapping using an SVM model and their different kernel functions
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-018-1403-6
– volume: 9
  start-page: 942
  issue: 5
  year: 2019
  ident: CR22
  article-title: Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance
  publication-title: Appl Sci
  doi: 10.3390/app9050942
– ident: CR40
– ident: CR25
– ident: CR27
– volume: 125
  start-page: 101
  issue: 91
  year: 2015
  ident: CR34
  article-title: Flood susceptibility mapping using GIS-based support vector machine model with different kernel types
  publication-title: Catena
  doi: 10.1016/j.CATENA.2014.10.017
– volume: 22
  start-page: 1365
  year: 2003
  end-page: 1381
  ident: CR16
  article-title: Multiple additive regression trees with application in epidemiology
  publication-title: Stat Med
  doi: 10.1002/sim.1501
– volume: 18
  start-page: 1
  year: 2017
  end-page: 18
  ident: CR24
  article-title: To tune or not to tune the number of trees in a random forest?
  publication-title: J Mach Learn Res
– ident: CR3
– ident: CR15
– volume: 31
  start-page: 2761
  issue: 9
  year: 2017
  end-page: 2775
  ident: CR21
  article-title: Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1660-3
– ident: CR38
– volume: 9
  start-page: 1
  issue: 2
  year: 2010
  end-page: 18
  ident: CR23
  article-title: Flood susceptible mapping and risk area delineation using logistic regression, GIS, and remote sensing
  publication-title: J Spat Hydrol
– ident: CR17
– volume: 5
  start-page: 34
  issue: 19
  year: 2017
  end-page: 36
  ident: CR30
  article-title: The receiver operating characteristic (ROC) curve
  publication-title: Southwest Respir Crit Care Chronicles
  doi: 10.12746/swrccc.v5i19.391
– ident: CR13
– ident: CR11
– volume: 137
  start-page: 637
  issue: 1–2
  year: 2019
  end-page: 653
  ident: CR33
  article-title: A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-018-2628-9
– ident: CR32
– volume: 190
  start-page: 149
  issue: 3
  year: 2018
  ident: CR18
  article-title: Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-018-6507-8
– ident: CR5
– volume: 17
  start-page: 145
  year: 2016
  ident: CR35
  article-title: Do little interactions get lost in dark random forests?
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-016-0995-8
– ident: CR7
– volume: 78
  start-page: 503
  issue: 16
  year: 2019
  ident: CR20
  article-title: Land subsidence susceptibility assessment using random forest machine learning algorithm
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-019-8518-3
– ident: CR28
– ident: CR41
– start-page: 315
  year: 2008
  end-page: 347
  ident: CR9
  article-title: Multidimensional scaling
  publication-title: Handbook of data visualization
  doi: 10.1007/978-3-540-33037-0_14
– volume: 672
  start-page: 239
  year: 2019
  end-page: 252
  ident: CR26
  article-title: Land subsidence modelling using tree-based machine learning algorithms
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.03.496
– ident: 9531_CR25
– volume: 125
  start-page: 101
  issue: 91
  year: 2015
  ident: 9531_CR34
  publication-title: Catena
  doi: 10.1016/j.CATENA.2014.10.017
– volume: 542
  start-page: 603
  year: 2016
  ident: 9531_CR36
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.09.035
– ident: 9531_CR32
  doi: 10.1080/20964471.2018.1472392
– ident: 9531_CR4
  doi: 10.1016/j.jafrearsci.2019.103709
– volume: 9
  start-page: 942
  issue: 5
  year: 2019
  ident: 9531_CR22
  publication-title: Appl Sci
  doi: 10.3390/app9050942
– ident: 9531_CR6
– ident: 9531_CR27
  doi: 10.1007/s11269-017-1589-6
– volume: 17
  start-page: 145
  year: 2016
  ident: 9531_CR35
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-016-0995-8
– volume: 22
  start-page: 1365
  year: 2003
  ident: 9531_CR16
  publication-title: Stat Med
  doi: 10.1002/sim.1501
– volume: 80
  start-page: 694
  year: 2021
  ident: 9531_CR2
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-021-10013-0
– ident: 9531_CR13
– ident: 9531_CR3
  doi: 10.1007/s12145-021-00653-y
– volume: 672
  start-page: 239
  year: 2019
  ident: 9531_CR26
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.03.496
– ident: 9531_CR39
  doi: 10.1007/s12665-010-0551-1
– ident: 9531_CR15
  doi: 10.1007/s11069-011-9778-8
– volume: 18
  start-page: 1
  year: 2017
  ident: 9531_CR24
  publication-title: J Mach Learn Res
– volume: 78
  start-page: 503
  issue: 16
  year: 2019
  ident: 9531_CR20
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-019-8518-3
– volume: 151
  start-page: 147
  year: 2017
  ident: 9531_CR10
  publication-title: Catena
  doi: 10.1016/J.CATENA.2016.11.032
– volume: 572
  start-page: 261
  year: 2019
  ident: 9531_CR19
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.02.051
– ident: 9531_CR28
  doi: 10.1007/978-3-030-15729-6_7
– volume: 5
  start-page: 34
  issue: 19
  year: 2017
  ident: 9531_CR30
  publication-title: Southwest Respir Crit Care Chronicles
  doi: 10.12746/swrccc.v5i19.391
– ident: 9531_CR40
  doi: 10.1007/s12665-015-4830-8
– volume: 38
  start-page: 913
  issue: 6
  year: 1957
  ident: 9531_CR31
  publication-title: Eos Transactions on AGU
  doi: 10.1029/TR038i006p00913
– volume: 9
  start-page: 1
  issue: 2
  year: 2010
  ident: 9531_CR23
  publication-title: J Spat Hydrol
– ident: 9531_CR14
  doi: 10.1201/9780203736678-10
– ident: 9531_CR5
  doi: 10.1007/s12517-021-06466-z
– ident: 9531_CR38
  doi: 10.1016/B978-0-12-815226-3.00010-7
– ident: 9531_CR11
– volume: 78
  start-page: 4017
  issue: 6
  year: 2019
  ident: 9531_CR1
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-018-1403-6
– ident: 9531_CR37
– volume: 31
  start-page: 2761
  issue: 9
  year: 2017
  ident: 9531_CR21
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1660-3
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 9531_CR8
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 137
  start-page: 637
  issue: 1–2
  year: 2019
  ident: 9531_CR33
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-018-2628-9
– volume: 190
  start-page: 149
  issue: 3
  year: 2018
  ident: 9531_CR18
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-018-6507-8
– volume: 60
  start-page: 144
  year: 2018
  ident: 9531_CR29
  publication-title: ESAIM: Proc Surv
  doi: 10.1051/proc/201760144
– ident: 9531_CR41
  doi: 10.1080/19475705.2015.1012750
– start-page: 315
  volume-title: Handbook of data visualization
  year: 2008
  ident: 9531_CR9
  doi: 10.1007/978-3-540-33037-0_14
– volume: 2000
  start-page: 179
  year: 2000
  ident: 9531_CR12
  publication-title: Sci J Fac Sci Minujiya Univ VoL XIC
– ident: 9531_CR17
  doi: 10.3390/fre2030043
– ident: 9531_CR7
  doi: 10.1007/978-3-642-02326-2_18
SSID ssj0068078
Score 2.224761
Snippet Machine learning (ML) algorithms are reliable approaches to address incomplete datasets in existing studies. In this study, the ML algorithms naïve Bayes (NB)...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Bayesian analysis
Earth and Environmental Science
Earth science
Earth Sciences
Elevation
Flash flooding
Flash floods
Flood forecasting
Flood hazards
Flood mapping
Flood predictions
Flooding
Floods
Information processing
Learning algorithms
Machine learning
Original Paper
Performance prediction
Prediction models
Remote sensing
River discharge
Urbanization
Title Random forest and naïve Bayes approaches as tools for flash flood hazard susceptibility prediction, South Ras El-Zait, Gulf of Suez Coast, Egypt
URI https://link.springer.com/article/10.1007/s12517-022-09531-3
https://www.proquest.com/docview/2622098700
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1866-7538
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068078
  issn: 1866-7511
  databaseCode: AFBBN
  dateStart: 20080701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1866-7538
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068078
  issn: 1866-7511
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1866-7538
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0068078
  issn: 1866-7511
  databaseCode: U2A
  dateStart: 20080701
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFD5inZC44R_RMaZzwR311DiJU1-WqesEgotBpcFN5PhHmyjJtCST2rfgSXgIXoxjN6FiAqQpUpQf23LsE_uz_J3vALxKjM14YgUzPBMsUTxlkqZRljpXSMsdN8I7Cr__IE4Wyduz9KxzCqt7tnu_JRlG6q2zm1fXYp597jXSIhbvwG7Q2xrA7nT--d2sH4GF11D3C62JECwjRNE5y_y9lD8npC3KvLExGuab4wew6Gu6oZl8PWyb4lCvb4g43vZTHsL9DoDidGMxj-COLR_D3XkI8Lt6At9PVWmqb0hYluqHdIOl-vnj2uIbtbI19hrk_rLGpqqWtU-LjlD4OZ2ryuC5WpPdYd3WgTMT6LcrvLzye0LeDkYYAvfhKZUwW7Iv6qIZ4bxdOqwcfmztGo8qVdOzmY-R9hQWx7NPRyesC9vAdCBocSWd5TbREy5NkclUcxuNjbZGCUOHymyqUkXAIKbFjjOSQIempMZMikzxKH4Gg7Iq7XPPu4pUISkrLQESLSZFEUdWZUq7yFHHyiFEfd_lutM096E1lvlWjdk3dU5NnYemzuMhvP6d53Kj6PHf1Pu9SeTd313nXHA-ljTSjYcw6nt4-_rfpe3dLvkLuMeDkXj2zD4MmqvWviQM1BQHnckfwM6CT38BqWj93Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYKCNELgraILX9z4Na1tHESZ32kaGH5PVBWQr1ETmwLpCVBm12k3bfgSfoQfbHOmIQVqEWqIkX5Gc8hn2N_lme-YWw_MjYRkZXciETySIuYK5xGeexcpqxwwkhKFL64lP1BdHoT39RJYVUT7d5sSfqRep7sRupanKLPSSMt4OECWyIBK1LMH4iDZvyVpKBOy6yulDxBPlGnyvzdx-vpaM4x32yL-tnmaI2t1jQRDp5xXWcfbPGJLR_7MrzTz-zpShemvAdknOgH8AYK_fvXo4XvemoraJTC6bKCcVkOK7IFh1z5Fs9laeBWz7B3QDWpfGSLD5KdwsOIdm4IrTb48npwhR56Q_5T343bcDwZOigd_JjYGRyWusJnPapk9oUNjnrXh31eF1fguQ-jElo5K2yUd4UyWaLiXNigY3JrtDR46MTGOtY4fYe4JHFGITXI0dSYbpZoEYQbbLEoC7tJ0VGBzhQ2RaIe5bKbZWFgdaJzFzgEQLVY0HzjNK-Vx6kAxjCdayYTLiniknpc0rDFvr20eXjW3XjXeruBLq3_wSoVUoiOwvGo02LtBs756397-_p_5ntspX99cZ6en1yebbGPwvcuinfZZovj0cTuIGsZZ7u-k_4BP9_i4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3battAEF0al5a-hF5S4iZp56Fv9RJrJa28j7nYSW-hpDWEvoiVdpcEHMlEcsD-i3xJPqI_1pm1VLclLQSB0GV2HjSjnbPszBnG3kbGJiKykhuRSB5pEXOFYZTHzmXKCieMpELhzyfyeBx9OIvPfqvi99nu7ZbksqaBWJqKendq3O6q8I2YtjhlohNfWsDDNfYwIqIE9Oix2GvnYkls6rTkGkjJE8QWTdnM3Tr-DE0rvPnXFqmPPKOnbL2BjLC3tPEz9sAWz9mjI9-Sd_6C3ZzqwpSXgOgT9QDeQKF_3F5b2NdzW0HLGk6XFdRlOalIFhzi5nM8l6WBc71AT4FqVvksF58wO4fpFe3ikOV64FvtwSlqGE74d31R9-BoNnFQOvg6sws4KHWFz4bU1WyDjUfDbwfHvGm0wHOfUiW0clbYKB8IZbJExbmwQd_k1mhp8NCJjXWsMZSHuDxxRiFMyFHUmEGWaBGEL1mnKAu7SZlSgc4UDkXQHuVykGVhYHWicxc4NIDqsqD9xmnesJBTM4xJuuJPJrukaJfU2yUNu-zdrzHTJQfHf6W3W9Olzf9YpUIK0Vc4N_W7rNeac_X639pe3U_8DXv85XCUfnp_8nGLPRHeuSj1ZZt16quZ3UEAU2evvY_-BGBM5x4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+forest+and+na%C3%AFve+Bayes+approaches+as+tools+for+flash+flood+hazard+susceptibility+prediction%2C+South+Ras+El-Zait%2C+Gulf+of+Suez+Coast%2C+Egypt&rft.jtitle=Arabian+journal+of+geosciences&rft.au=Abu+El-Magd%2C+Sherif+Ahmed&rft.date=2022-02-01&rft.issn=1866-7511&rft.eissn=1866-7538&rft.volume=15&rft.issue=3&rft_id=info:doi/10.1007%2Fs12517-022-09531-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12517_022_09531_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-7511&client=summon