Random forest and naïve Bayes approaches as tools for flash flood hazard susceptibility prediction, South Ras El-Zait, Gulf of Suez Coast, Egypt
Machine learning (ML) algorithms are reliable approaches to address incomplete datasets in existing studies. In this study, the ML algorithms naïve Bayes (NB) and random forest (RF) were used to generate a flash flood forecasting model in Wadi El-Dib on the Gulf of Suez Coast at the Eastern Desert o...
Saved in:
| Published in | Arabian journal of geosciences Vol. 15; no. 3 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.02.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1866-7511 1866-7538 |
| DOI | 10.1007/s12517-022-09531-3 |
Cover
| Abstract | Machine learning (ML) algorithms are reliable approaches to address incomplete datasets in existing studies. In this study, the ML algorithms naïve Bayes (NB) and random forest (RF) were used to generate a flash flood forecasting model in Wadi El-Dib on the Gulf of Suez Coast at the Eastern Desert of Egypt. A total of 1117 point locations of field data and remote sensing data were mapped to prepare a flood inventory map. The relationships between the flood controlling factors were assessed and evaluated based on the implemented approaches. Slope degree, distance from streams, topographic wetness index, and elevation are the most important controlling factors out of the input seven themes. The proposed prediction model for the identification of flooding and nonflooding areas achieved reliable accuracy for the implemented approaches according to the area under the curve. Results demonstrate that the flash flood model was able to simulate flooding and nonflooding areas with improved accuracy. The NB and RF models achieved predictive performance with an accuracy of 85% to 88%, respectively. The susceptibility map was classified into flooding zones and nonflooding zones, which might be helpful for urbanization planning and management. Our findings indicate that about 83% of the field data were plotted into susceptible flooding zones and that eastern areas with gentle slopes have high potential for flash floods. ML can extract and generate useful information, and related models could be applied in such studies and similar areas. |
|---|---|
| AbstractList | Machine learning (ML) algorithms are reliable approaches to address incomplete datasets in existing studies. In this study, the ML algorithms naïve Bayes (NB) and random forest (RF) were used to generate a flash flood forecasting model in Wadi El-Dib on the Gulf of Suez Coast at the Eastern Desert of Egypt. A total of 1117 point locations of field data and remote sensing data were mapped to prepare a flood inventory map. The relationships between the flood controlling factors were assessed and evaluated based on the implemented approaches. Slope degree, distance from streams, topographic wetness index, and elevation are the most important controlling factors out of the input seven themes. The proposed prediction model for the identification of flooding and nonflooding areas achieved reliable accuracy for the implemented approaches according to the area under the curve. Results demonstrate that the flash flood model was able to simulate flooding and nonflooding areas with improved accuracy. The NB and RF models achieved predictive performance with an accuracy of 85% to 88%, respectively. The susceptibility map was classified into flooding zones and nonflooding zones, which might be helpful for urbanization planning and management. Our findings indicate that about 83% of the field data were plotted into susceptible flooding zones and that eastern areas with gentle slopes have high potential for flash floods. ML can extract and generate useful information, and related models could be applied in such studies and similar areas. |
| ArticleNumber | 217 |
| Author | Abu El-Magd, Sherif Ahmed |
| Author_xml | – sequence: 1 givenname: Sherif Ahmed orcidid: 0000-0001-6029-7756 surname: Abu El-Magd fullname: Abu El-Magd, Sherif Ahmed email: sherif.abuelmagd@sci.suezuni.edu.eg organization: Geology Department, Faculty of Science, Suez University |
| BookMark | eNp9kUFKxDAUhoMo6KgXcBVwazVJbdMudRhHYUCY0Y2b8CZJbaQ2NUmFzi08iYfwYmYcUXAhgeQlfP97-flHaLu1rUboiJJTSgg_85RllCeEsYSUWUqTdAvt0SLPE56lxfZPTekuGnn_REheEF7sobc5tMo-48o67QOOF9zCx_urxpcwaI-h65wFWa9Lj4O1jV-zuGrA13G3VuEaVuAU9r2XugtmaRoTBtw5rYwMxrYneGH7UON57DBpkgcw4QRP-6bCtsKLXq_w2IKPb5PHoQsHaKeCxuvD73Mf3V9N7sbXyex2ejO-mCWSEUITBmWlmT6XBSvVkpeZZJoSJbWCXMUFXGeQQZ7TNON5pUqaURlRpYolB0bTfXS86RsNvvTRvHiyvWvjSMFyxkhZcEIiVWwo6az3TldCmgBrV8GBaQQlYh2A2AQgYgDiKwCRRin7I-2ceQY3_C9KNyIf4fZRu99f_aP6BDCVnKw |
| CitedBy_id | crossref_primary_10_1007_s12665_025_12129_z crossref_primary_10_1007_s11356_023_25938_1 crossref_primary_10_1016_j_pce_2024_103772 crossref_primary_10_3390_rs14164050 crossref_primary_10_1080_19475705_2022_2097131 crossref_primary_10_1007_s13762_022_04367_6 crossref_primary_10_3390_rs14246229 crossref_primary_10_1007_s11069_024_06596_z crossref_primary_10_1007_s11356_022_19903_7 crossref_primary_10_1007_s12517_024_12146_5 crossref_primary_10_1016_j_ejrh_2025_102243 crossref_primary_10_3390_w14244073 |
| Cites_doi | 10.1016/j.jhydrol.2019.02.051 10.1029/TR038i006p00913 10.1007/s12665-021-10013-0 10.1023/A:1010933404324 10.1016/j.jhydrol.2016.09.035 10.1051/proc/201760144 10.1016/J.CATENA.2016.11.032 10.1007/s10064-018-1403-6 10.3390/app9050942 10.1016/j.CATENA.2014.10.017 10.1002/sim.1501 10.1007/s11269-017-1660-3 10.12746/swrccc.v5i19.391 10.1007/s00704-018-2628-9 10.1007/s10661-018-6507-8 10.1186/s12859-016-0995-8 10.1007/s12665-019-8518-3 10.1007/978-3-540-33037-0_14 10.1016/j.scitotenv.2019.03.496 10.1080/20964471.2018.1472392 10.1016/j.jafrearsci.2019.103709 10.1007/s11269-017-1589-6 10.1007/s12145-021-00653-y 10.1007/s12665-010-0551-1 10.1007/s11069-011-9778-8 10.1007/978-3-030-15729-6_7 10.1007/s12665-015-4830-8 10.1201/9780203736678-10 10.1007/s12517-021-06466-z 10.1016/B978-0-12-815226-3.00010-7 10.1080/19475705.2015.1012750 10.3390/fre2030043 10.1007/978-3-642-02326-2_18 |
| ContentType | Journal Article |
| Copyright | Saudi Society for Geosciences 2022 Saudi Society for Geosciences 2022. |
| Copyright_xml | – notice: Saudi Society for Geosciences 2022 – notice: Saudi Society for Geosciences 2022. |
| DBID | AAYXX CITATION 7UA C1K F1W H96 L.G |
| DOI | 10.1007/s12517-022-09531-3 |
| DatabaseName | CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1866-7538 |
| ExternalDocumentID | 10_1007_s12517_022_09531_3 |
| GeographicLocations | Gulf of Suez Egypt |
| GeographicLocations_xml | – name: Gulf of Suez – name: Egypt |
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C 06D 0R~ 0VY 1N0 203 23M 2JN 2JY 2KG 2VQ 30V 4.4 406 408 409 40D 40E 5VS 67M 67Z 6NX 8TC 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P PT4 QOS R89 RLLFE ROL RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z85 ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7UA C1K F1W H96 L.G |
| ID | FETCH-LOGICAL-c2001-2a9fe2e4c829db795c2e10dceda6d6d6a7e5a5a6613576fd9151c29ddd8b7a213 |
| IEDL.DBID | AGYKE |
| ISSN | 1866-7511 |
| IngestDate | Wed Sep 17 23:58:00 EDT 2025 Wed Oct 01 02:28:44 EDT 2025 Thu Apr 24 22:52:29 EDT 2025 Fri Feb 21 02:47:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Wadi El-Dib Naïve Bayes Random forest Machine learning Egypt Flash flood model |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2001-2a9fe2e4c829db795c2e10dceda6d6d6a7e5a5a6613576fd9151c29ddd8b7a213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6029-7756 |
| PQID | 2622098700 |
| PQPubID | 2044009 |
| ParticipantIDs | proquest_journals_2622098700 crossref_citationtrail_10_1007_s12517_022_09531_3 crossref_primary_10_1007_s12517_022_09531_3 springer_journals_10_1007_s12517_022_09531_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Arabian journal of geosciences |
| PublicationTitleAbbrev | Arab J Geosci |
| PublicationYear | 2022 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Breiman (CR8) 2001; 45 Strahler (CR31) 1957; 38 Tehrany, Pradhan, Mansor, Ahmad (CR34) 2015; 125 CR17 CR39 CR38 CR15 CR37 CR14 Abdollahi, Pourghasemi, Ghanbarian, Safaeian (CR1) 2019; 78 CR13 Chen, Hardle, Unwin, Cox, Cox (CR9) 2008 CR11 Mohammady, Pourghasemi, Amiri (CR20) 2019; 78 CR32 Pradhan (CR23) 2010; 9 Rahmati, Falah, Naghibi, Biggs, Soltani, Deo, Tien Bui (CR26) 2019; 672 Abu El Magd, Orabi, Ali, Farhana Parvin, Pham (CR2) 2021; 80 Wright, Ziegler, König (CR35) 2016; 17 Ei-meliegy, El-shayeb, Meleik, Abdel-Raheim (CR12) 2000; 2000 Chen, Xie, Wang, Pradhan, Hong, Bui, Ma (CR10) 2017; 151 CR4 CR3 Naghibi, Ahmadi, Daneshi (CR21) 2017; 31 Probst, Boulesteix (CR24) 2017; 18 CR6 CR5 Jeong, Park (CR19) 2019; 572 CR7 CR28 CR27 CR25 Friedman, Meulman (CR16) 2003; 22 Golkarian, Naghibi, Kalantar, Pradhan (CR18) 2018; 190 Tehrany, Jones, Shabani, Martínez-Alvarez, Tien Bui (CR33) 2019; 137 CR41 Scornet (CR29) 2018; 60 Yaseen, Jaafar, Deo, Kisi, Adamowski, Quilty, ElShafie (CR36) 2016; 542 CR40 Shengping, Gilbert (CR30) 2017; 5 Park, Kim (CR22) 2019; 9 MN Wright (9531_CR35) 2016; 17 9531_CR32 SA Abu El Magd (9531_CR2) 2021; 80 L Breiman (9531_CR8) 2001; 45 9531_CR11 E Scornet (9531_CR29) 2018; 60 A Strahler (9531_CR31) 1957; 38 9531_CR13 9531_CR14 9531_CR15 9531_CR37 O Rahmati (9531_CR26) 2019; 672 9531_CR38 9531_CR17 J Jeong (9531_CR19) 2019; 572 9531_CR39 9531_CR7 9531_CR6 9531_CR5 9531_CR4 SA Naghibi (9531_CR21) 2017; 31 JH Friedman (9531_CR16) 2003; 22 S Abdollahi (9531_CR1) 2019; 78 A Ei-meliegy (9531_CR12) 2000; 2000 MS Tehrany (9531_CR33) 2019; 137 9531_CR40 9531_CR41 9531_CR25 9531_CR27 9531_CR28 9531_CR3 W Chen (9531_CR10) 2017; 151 ZM Yaseen (9531_CR36) 2016; 542 B Pradhan (9531_CR23) 2010; 9 A Golkarian (9531_CR18) 2018; 190 Y Shengping (9531_CR30) 2017; 5 P Probst (9531_CR24) 2017; 18 M Mohammady (9531_CR20) 2019; 78 C Chen (9531_CR9) 2008 MS Tehrany (9531_CR34) 2015; 125 S Park (9531_CR22) 2019; 9 |
| References_xml | – volume: 572 start-page: 261 year: 2019 end-page: 273 ident: CR19 article-title: Comparative applications of data-driven models representing water table fluctuations publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.02.051 – volume: 38 start-page: 913 issue: 6 year: 1957 end-page: 920 ident: CR31 article-title: Quantitative analysis of watershed Geomorphology publication-title: Eos Transactions on AGU doi: 10.1029/TR038i006p00913 – volume: 80 start-page: 694 year: 2021 ident: CR2 article-title: An integrated approach for evaluating the flash flood risk and potential erosion using the hydrologic indices and morpho tectonic parameters publication-title: Environ Earth Sci doi: 10.1007/s12665-021-10013-0 – volume: 2000 start-page: 179 year: 2000 end-page: 231 ident: CR12 article-title: Surface delineation of lithologies and nomalies, Wadi Dib Area, Eastern Desert, Egypt, using aeroradiospectrometric survey data publication-title: Sci J Fac Sci Minujiya Univ VoL XIC – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR8 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: CR4 – ident: CR14 – ident: CR39 – ident: CR37 – ident: CR6 – volume: 542 start-page: 603 year: 2016 end-page: 614 ident: CR36 article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.09.035 – volume: 60 start-page: 144 year: 2018 end-page: 162 ident: CR29 article-title: Tuning parameters in random forests publication-title: ESAIM: Proc Surv doi: 10.1051/proc/201760144 – volume: 151 start-page: 147 year: 2017 end-page: 160 ident: CR10 article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility publication-title: Catena doi: 10.1016/J.CATENA.2016.11.032 – volume: 78 start-page: 4017 issue: 6 year: 2019 end-page: 4034 ident: CR1 article-title: Prioritization of effective factors in the occurrence of land subsidence and its susceptibility mapping using an SVM model and their different kernel functions publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-018-1403-6 – volume: 9 start-page: 942 issue: 5 year: 2019 ident: CR22 article-title: Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance publication-title: Appl Sci doi: 10.3390/app9050942 – ident: CR40 – ident: CR25 – ident: CR27 – volume: 125 start-page: 101 issue: 91 year: 2015 ident: CR34 article-title: Flood susceptibility mapping using GIS-based support vector machine model with different kernel types publication-title: Catena doi: 10.1016/j.CATENA.2014.10.017 – volume: 22 start-page: 1365 year: 2003 end-page: 1381 ident: CR16 article-title: Multiple additive regression trees with application in epidemiology publication-title: Stat Med doi: 10.1002/sim.1501 – volume: 18 start-page: 1 year: 2017 end-page: 18 ident: CR24 article-title: To tune or not to tune the number of trees in a random forest? publication-title: J Mach Learn Res – ident: CR3 – ident: CR15 – volume: 31 start-page: 2761 issue: 9 year: 2017 end-page: 2775 ident: CR21 article-title: Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping publication-title: Water Resour Manag doi: 10.1007/s11269-017-1660-3 – ident: CR38 – volume: 9 start-page: 1 issue: 2 year: 2010 end-page: 18 ident: CR23 article-title: Flood susceptible mapping and risk area delineation using logistic regression, GIS, and remote sensing publication-title: J Spat Hydrol – ident: CR17 – volume: 5 start-page: 34 issue: 19 year: 2017 end-page: 36 ident: CR30 article-title: The receiver operating characteristic (ROC) curve publication-title: Southwest Respir Crit Care Chronicles doi: 10.12746/swrccc.v5i19.391 – ident: CR13 – ident: CR11 – volume: 137 start-page: 637 issue: 1–2 year: 2019 end-page: 653 ident: CR33 article-title: A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data publication-title: Theor Appl Climatol doi: 10.1007/s00704-018-2628-9 – ident: CR32 – volume: 190 start-page: 149 issue: 3 year: 2018 ident: CR18 article-title: Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS publication-title: Environ Monit Assess doi: 10.1007/s10661-018-6507-8 – ident: CR5 – volume: 17 start-page: 145 year: 2016 ident: CR35 article-title: Do little interactions get lost in dark random forests? publication-title: BMC Bioinform doi: 10.1186/s12859-016-0995-8 – ident: CR7 – volume: 78 start-page: 503 issue: 16 year: 2019 ident: CR20 article-title: Land subsidence susceptibility assessment using random forest machine learning algorithm publication-title: Environ Earth Sci doi: 10.1007/s12665-019-8518-3 – ident: CR28 – ident: CR41 – start-page: 315 year: 2008 end-page: 347 ident: CR9 article-title: Multidimensional scaling publication-title: Handbook of data visualization doi: 10.1007/978-3-540-33037-0_14 – volume: 672 start-page: 239 year: 2019 end-page: 252 ident: CR26 article-title: Land subsidence modelling using tree-based machine learning algorithms publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.03.496 – ident: 9531_CR25 – volume: 125 start-page: 101 issue: 91 year: 2015 ident: 9531_CR34 publication-title: Catena doi: 10.1016/j.CATENA.2014.10.017 – volume: 542 start-page: 603 year: 2016 ident: 9531_CR36 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.09.035 – ident: 9531_CR32 doi: 10.1080/20964471.2018.1472392 – ident: 9531_CR4 doi: 10.1016/j.jafrearsci.2019.103709 – volume: 9 start-page: 942 issue: 5 year: 2019 ident: 9531_CR22 publication-title: Appl Sci doi: 10.3390/app9050942 – ident: 9531_CR6 – ident: 9531_CR27 doi: 10.1007/s11269-017-1589-6 – volume: 17 start-page: 145 year: 2016 ident: 9531_CR35 publication-title: BMC Bioinform doi: 10.1186/s12859-016-0995-8 – volume: 22 start-page: 1365 year: 2003 ident: 9531_CR16 publication-title: Stat Med doi: 10.1002/sim.1501 – volume: 80 start-page: 694 year: 2021 ident: 9531_CR2 publication-title: Environ Earth Sci doi: 10.1007/s12665-021-10013-0 – ident: 9531_CR13 – ident: 9531_CR3 doi: 10.1007/s12145-021-00653-y – volume: 672 start-page: 239 year: 2019 ident: 9531_CR26 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.03.496 – ident: 9531_CR39 doi: 10.1007/s12665-010-0551-1 – ident: 9531_CR15 doi: 10.1007/s11069-011-9778-8 – volume: 18 start-page: 1 year: 2017 ident: 9531_CR24 publication-title: J Mach Learn Res – volume: 78 start-page: 503 issue: 16 year: 2019 ident: 9531_CR20 publication-title: Environ Earth Sci doi: 10.1007/s12665-019-8518-3 – volume: 151 start-page: 147 year: 2017 ident: 9531_CR10 publication-title: Catena doi: 10.1016/J.CATENA.2016.11.032 – volume: 572 start-page: 261 year: 2019 ident: 9531_CR19 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.02.051 – ident: 9531_CR28 doi: 10.1007/978-3-030-15729-6_7 – volume: 5 start-page: 34 issue: 19 year: 2017 ident: 9531_CR30 publication-title: Southwest Respir Crit Care Chronicles doi: 10.12746/swrccc.v5i19.391 – ident: 9531_CR40 doi: 10.1007/s12665-015-4830-8 – volume: 38 start-page: 913 issue: 6 year: 1957 ident: 9531_CR31 publication-title: Eos Transactions on AGU doi: 10.1029/TR038i006p00913 – volume: 9 start-page: 1 issue: 2 year: 2010 ident: 9531_CR23 publication-title: J Spat Hydrol – ident: 9531_CR14 doi: 10.1201/9780203736678-10 – ident: 9531_CR5 doi: 10.1007/s12517-021-06466-z – ident: 9531_CR38 doi: 10.1016/B978-0-12-815226-3.00010-7 – ident: 9531_CR11 – volume: 78 start-page: 4017 issue: 6 year: 2019 ident: 9531_CR1 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-018-1403-6 – ident: 9531_CR37 – volume: 31 start-page: 2761 issue: 9 year: 2017 ident: 9531_CR21 publication-title: Water Resour Manag doi: 10.1007/s11269-017-1660-3 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 9531_CR8 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 137 start-page: 637 issue: 1–2 year: 2019 ident: 9531_CR33 publication-title: Theor Appl Climatol doi: 10.1007/s00704-018-2628-9 – volume: 190 start-page: 149 issue: 3 year: 2018 ident: 9531_CR18 publication-title: Environ Monit Assess doi: 10.1007/s10661-018-6507-8 – volume: 60 start-page: 144 year: 2018 ident: 9531_CR29 publication-title: ESAIM: Proc Surv doi: 10.1051/proc/201760144 – ident: 9531_CR41 doi: 10.1080/19475705.2015.1012750 – start-page: 315 volume-title: Handbook of data visualization year: 2008 ident: 9531_CR9 doi: 10.1007/978-3-540-33037-0_14 – volume: 2000 start-page: 179 year: 2000 ident: 9531_CR12 publication-title: Sci J Fac Sci Minujiya Univ VoL XIC – ident: 9531_CR17 doi: 10.3390/fre2030043 – ident: 9531_CR7 doi: 10.1007/978-3-642-02326-2_18 |
| SSID | ssj0068078 |
| Score | 2.224761 |
| Snippet | Machine learning (ML) algorithms are reliable approaches to address incomplete datasets in existing studies. In this study, the ML algorithms naïve Bayes (NB)... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accuracy Algorithms Bayesian analysis Earth and Environmental Science Earth science Earth Sciences Elevation Flash flooding Flash floods Flood forecasting Flood hazards Flood mapping Flood predictions Flooding Floods Information processing Learning algorithms Machine learning Original Paper Performance prediction Prediction models Remote sensing River discharge Urbanization |
| Title | Random forest and naïve Bayes approaches as tools for flash flood hazard susceptibility prediction, South Ras El-Zait, Gulf of Suez Coast, Egypt |
| URI | https://link.springer.com/article/10.1007/s12517-022-09531-3 https://www.proquest.com/docview/2622098700 |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1866-7538 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068078 issn: 1866-7511 databaseCode: AFBBN dateStart: 20080701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1866-7538 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068078 issn: 1866-7511 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1866-7538 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0068078 issn: 1866-7511 databaseCode: U2A dateStart: 20080701 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbtMwFD5inZC44R_RMaZzwR311DiJU1-WqesEgotBpcFN5PhHmyjJtCST2rfgSXgIXoxjN6FiAqQpUpQf23LsE_uz_J3vALxKjM14YgUzPBMsUTxlkqZRljpXSMsdN8I7Cr__IE4Wyduz9KxzCqt7tnu_JRlG6q2zm1fXYp597jXSIhbvwG7Q2xrA7nT--d2sH4GF11D3C62JECwjRNE5y_y9lD8npC3KvLExGuab4wew6Gu6oZl8PWyb4lCvb4g43vZTHsL9DoDidGMxj-COLR_D3XkI8Lt6At9PVWmqb0hYluqHdIOl-vnj2uIbtbI19hrk_rLGpqqWtU-LjlD4OZ2ryuC5WpPdYd3WgTMT6LcrvLzye0LeDkYYAvfhKZUwW7Iv6qIZ4bxdOqwcfmztGo8qVdOzmY-R9hQWx7NPRyesC9vAdCBocSWd5TbREy5NkclUcxuNjbZGCUOHymyqUkXAIKbFjjOSQIempMZMikzxKH4Gg7Iq7XPPu4pUISkrLQESLSZFEUdWZUq7yFHHyiFEfd_lutM096E1lvlWjdk3dU5NnYemzuMhvP6d53Kj6PHf1Pu9SeTd313nXHA-ljTSjYcw6nt4-_rfpe3dLvkLuMeDkXj2zD4MmqvWviQM1BQHnckfwM6CT38BqWj93Q |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYKCNELgraILX9z4Na1tHESZ32kaGH5PVBWQr1ETmwLpCVBm12k3bfgSfoQfbHOmIQVqEWqIkX5Gc8hn2N_lme-YWw_MjYRkZXciETySIuYK5xGeexcpqxwwkhKFL64lP1BdHoT39RJYVUT7d5sSfqRep7sRupanKLPSSMt4OECWyIBK1LMH4iDZvyVpKBOy6yulDxBPlGnyvzdx-vpaM4x32yL-tnmaI2t1jQRDp5xXWcfbPGJLR_7MrzTz-zpShemvAdknOgH8AYK_fvXo4XvemoraJTC6bKCcVkOK7IFh1z5Fs9laeBWz7B3QDWpfGSLD5KdwsOIdm4IrTb48npwhR56Q_5T343bcDwZOigd_JjYGRyWusJnPapk9oUNjnrXh31eF1fguQ-jElo5K2yUd4UyWaLiXNigY3JrtDR46MTGOtY4fYe4JHFGITXI0dSYbpZoEYQbbLEoC7tJ0VGBzhQ2RaIe5bKbZWFgdaJzFzgEQLVY0HzjNK-Vx6kAxjCdayYTLiniknpc0rDFvr20eXjW3XjXeruBLq3_wSoVUoiOwvGo02LtBs756397-_p_5ntspX99cZ6en1yebbGPwvcuinfZZovj0cTuIGsZZ7u-k_4BP9_i4g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3battAEF0al5a-hF5S4iZp56Fv9RJrJa28j7nYSW-hpDWEvoiVdpcEHMlEcsD-i3xJPqI_1pm1VLclLQSB0GV2HjSjnbPszBnG3kbGJiKykhuRSB5pEXOFYZTHzmXKCieMpELhzyfyeBx9OIvPfqvi99nu7ZbksqaBWJqKendq3O6q8I2YtjhlohNfWsDDNfYwIqIE9Oix2GvnYkls6rTkGkjJE8QWTdnM3Tr-DE0rvPnXFqmPPKOnbL2BjLC3tPEz9sAWz9mjI9-Sd_6C3ZzqwpSXgOgT9QDeQKF_3F5b2NdzW0HLGk6XFdRlOalIFhzi5nM8l6WBc71AT4FqVvksF58wO4fpFe3ikOV64FvtwSlqGE74d31R9-BoNnFQOvg6sws4KHWFz4bU1WyDjUfDbwfHvGm0wHOfUiW0clbYKB8IZbJExbmwQd_k1mhp8NCJjXWsMZSHuDxxRiFMyFHUmEGWaBGEL1mnKAu7SZlSgc4UDkXQHuVykGVhYHWicxc4NIDqsqD9xmnesJBTM4xJuuJPJrukaJfU2yUNu-zdrzHTJQfHf6W3W9Olzf9YpUIK0Vc4N_W7rNeac_X639pe3U_8DXv85XCUfnp_8nGLPRHeuSj1ZZt16quZ3UEAU2evvY_-BGBM5x4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+forest+and+na%C3%AFve+Bayes+approaches+as+tools+for+flash+flood+hazard+susceptibility+prediction%2C+South+Ras+El-Zait%2C+Gulf+of+Suez+Coast%2C+Egypt&rft.jtitle=Arabian+journal+of+geosciences&rft.au=Abu+El-Magd%2C+Sherif+Ahmed&rft.date=2022-02-01&rft.issn=1866-7511&rft.eissn=1866-7538&rft.volume=15&rft.issue=3&rft_id=info:doi/10.1007%2Fs12517-022-09531-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12517_022_09531_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-7511&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-7511&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-7511&client=summon |