Construction and optimization of higher education teaching quality evaluation model under the background of education big data: Based on naive Bayes classification algorithm

Evaluating the teaching quality level of university courses is a very meaningful teaching research work. In the context of big data, various artificial intelligence algorithms can effectively utilize massive data to construct intelligent models for evaluating the teaching quality of universities. Po...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational methods in sciences and engineering
Main Author Zhang, Qiaohuan
Format Journal Article
LanguageEnglish
Published 08.07.2025
Online AccessGet full text
ISSN1472-7978
1875-8983
DOI10.1177/14727978251359841

Cover

Abstract Evaluating the teaching quality level of university courses is a very meaningful teaching research work. In the context of big data, various artificial intelligence algorithms can effectively utilize massive data to construct intelligent models for evaluating the teaching quality of universities. Popular algorithms include genetic algorithm, BP (Back Propagation) neural network, and support vector machine. However, the modeling steps of these algorithms are usually cumbersome and time-consuming. In response to this, this article proposed a university teaching quality evaluation model based on the Naive Bayes classification algorithm. The model calculated the posterior probability of labels using Bayesian formula and the posterior probability of features by statistically analyzing the feature distribution in the sample. The label with the highest posterior probability was selected as the evaluation result for the feature vector. This article designed experiments to verify the performance advantages and disadvantages of this model compared to other models, and compared the modeling time, accuracy, mean square error, and disciplinary generality of the Naive Bayes model with the three aforementioned models. The results indicated that the modeling time of the Naive Bayes model was 0.12 seconds, with an accuracy of 0.895 and a mean square error of 0.1902. The accuracy difference between science and philosophy disciplines was 0.029, with a mean square error difference of 0.0190. Although the model in this article does not have an advantage in prediction accuracy compared to other models, it has good disciplinary universality, mainly due to its simple model structure and extremely short modeling time.
AbstractList Evaluating the teaching quality level of university courses is a very meaningful teaching research work. In the context of big data, various artificial intelligence algorithms can effectively utilize massive data to construct intelligent models for evaluating the teaching quality of universities. Popular algorithms include genetic algorithm, BP (Back Propagation) neural network, and support vector machine. However, the modeling steps of these algorithms are usually cumbersome and time-consuming. In response to this, this article proposed a university teaching quality evaluation model based on the Naive Bayes classification algorithm. The model calculated the posterior probability of labels using Bayesian formula and the posterior probability of features by statistically analyzing the feature distribution in the sample. The label with the highest posterior probability was selected as the evaluation result for the feature vector. This article designed experiments to verify the performance advantages and disadvantages of this model compared to other models, and compared the modeling time, accuracy, mean square error, and disciplinary generality of the Naive Bayes model with the three aforementioned models. The results indicated that the modeling time of the Naive Bayes model was 0.12 seconds, with an accuracy of 0.895 and a mean square error of 0.1902. The accuracy difference between science and philosophy disciplines was 0.029, with a mean square error difference of 0.0190. Although the model in this article does not have an advantage in prediction accuracy compared to other models, it has good disciplinary universality, mainly due to its simple model structure and extremely short modeling time.
Author Zhang, Qiaohuan
Author_xml – sequence: 1
  givenname: Qiaohuan
  orcidid: 0009-0004-4358-1148
  surname: Zhang
  fullname: Zhang, Qiaohuan
  organization: School of Arts and Law, Zhengzhou Technology and Business University, Zhengzhou, China
BookMark eNplkMtOwzAQRS1UJNrCB7DzDwTsvGyzg4qXVIkNrKOJH4khsUvsVCr_xD-S0i6QWM3MvXfO4i7QzHmnEbqk5IpSxq5pzlImGE8LmhWC5_QEzSlnRcIFz2bTPvnJPnCGFiG8E5JPMTpH3yvvQhxGGa13GJzCfhNtb7_gV_AGt7Zp9YC1GuVBixpka12DP0fobNxhvYVuPHi9V7rDo1PTR2w1rkF-NIMf91zzh1HbBiuIcIPvIOjJdNiB3erp3OmAZQchWGOPaegaP9jY9ufo1EAX9MVxLtHbw_3r6ilZvzw-r27XiaRCxESlnEie1jkzQiuu0rwQJTWS05qRIieKE5IJyIhkpYaSUGm4FqwuaylKVuTZEtEDVw4-hEGbajPYHoZdRUm177v613f2AxWueT4
Cites_doi 10.1080/09243453.2018.1539015
10.1007/s11092-019-09299-3
10.5539/hes.v9n1p100
10.11591/eei.v12i2.4020
10.1016/j.jbusres.2018.12.051
10.1007/s00521-018-3902-6
10.1007/s00500-020-05297-6
10.31449/inf.v45i2.3407
10.1186/s41239-020-00223-0
10.1038/s43586-020-00001-2
10.21744/lingcure.v6nS3.2064
10.1007/s13042-019-00984-9
10.3389/fpsyg.2020.580820
10.21449/ijate.856143
10.1109/ACCESS.2020.3002791
10.3390/app11073130
10.1080/13603124.2020.1829711
10.3233/JIFS-211749
10.1080/03075079.2020.1739013
10.1016/j.neucom.2019.10.118
10.1016/j.caeai.2022.100068
10.1109/ACCESS.2019.2957447
10.3102/0091732X20903304
10.15293/2658-6762.1902.11
10.1007/s12065-023-00822-6
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1177/14727978251359841
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1875-8983
ExternalDocumentID 10_1177_14727978251359841
GroupedDBID .4S
.DC
0R~
4.4
AAPII
AAQXI
AAYXX
ABUJY
ACGFS
ACIWK
ACPQW
ADMLS
ADZMO
AFRHK
AHDMH
AJGYC
AJNRN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ARTOV
ASPBG
AVWKF
CITATION
DU5
EBS
EDO
HZ~
I-F
J8X
J9A
MET
MIO
MK~
MV1
NGNOM
O9-
PQQKQ
RNS
SAUOL
SCNPE
SFC
TUS
ID FETCH-LOGICAL-c199t-d280c82b47f9ed8d245961fc81b70540d80039a30c76ea601cf8e97b6bc967543
ISSN 1472-7978
IngestDate Wed Oct 01 05:47:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c199t-d280c82b47f9ed8d245961fc81b70540d80039a30c76ea601cf8e97b6bc967543
ORCID 0009-0004-4358-1148
ParticipantIDs crossref_primary_10_1177_14727978251359841
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-08
PublicationDateYYYYMMDD 2025-07-08
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-08
  day: 08
PublicationDecade 2020
PublicationTitle Journal of computational methods in sciences and engineering
PublicationYear 2025
References Lilan W (e_1_3_3_14_2) 2024; 12
Ma J (e_1_3_3_19_2) 2022; 46
Zhao X (e_1_3_3_17_2) 2022; 2022
Ai L (e_1_3_3_18_2) 2022; 2022
e_1_3_3_13_2
Reddy EMK (e_1_3_3_26_2) 2022
e_1_3_3_12_2
Chen L (e_1_3_3_16_2) 2022; 2022
e_1_3_3_15_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
Abbas M (e_1_3_3_28_2) 2019; 19
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_10_2
  doi: 10.1080/09243453.2018.1539015
– ident: e_1_3_3_8_2
  doi: 10.1007/s11092-019-09299-3
– ident: e_1_3_3_13_2
  doi: 10.5539/hes.v9n1p100
– volume: 19
  start-page: 62
  issue: 3
  year: 2019
  ident: e_1_3_3_28_2
  article-title: Multinomial Naive Bayes classification model for sentiment analysis
  publication-title: IJCSNS Int J Comput Sci Netw Secur
– ident: e_1_3_3_29_2
  doi: 10.11591/eei.v12i2.4020
– ident: e_1_3_3_22_2
  doi: 10.1016/j.jbusres.2018.12.051
– ident: e_1_3_3_31_2
  doi: 10.1007/s00521-018-3902-6
– ident: e_1_3_3_24_2
  doi: 10.1007/s00500-020-05297-6
– ident: e_1_3_3_27_2
  doi: 10.31449/inf.v45i2.3407
– ident: e_1_3_3_2_2
  doi: 10.1186/s41239-020-00223-0
– ident: e_1_3_3_25_2
  doi: 10.1038/s43586-020-00001-2
– ident: e_1_3_3_6_2
  doi: 10.21744/lingcure.v6nS3.2064
– ident: e_1_3_3_33_2
  doi: 10.1007/s13042-019-00984-9
– ident: e_1_3_3_3_2
  doi: 10.3389/fpsyg.2020.580820
– volume: 2022
  start-page: 3138885
  issue: 1
  year: 2022
  ident: e_1_3_3_16_2
  article-title: Teaching quality evaluation of animal science specialty based on IPSO‐BP neural network model
  publication-title: Comput Intell Neurosci
– ident: e_1_3_3_9_2
  doi: 10.21449/ijate.856143
– ident: e_1_3_3_7_2
  doi: 10.1109/ACCESS.2020.3002791
– ident: e_1_3_3_23_2
  doi: 10.3390/app11073130
– ident: e_1_3_3_12_2
  doi: 10.1080/13603124.2020.1829711
– ident: e_1_3_3_21_2
  doi: 10.3233/JIFS-211749
– ident: e_1_3_3_15_2
  doi: 10.1080/03075079.2020.1739013
– ident: e_1_3_3_32_2
  doi: 10.1016/j.neucom.2019.10.118
– volume: 2022
  start-page: 5761363
  issue: 1
  year: 2022
  ident: e_1_3_3_17_2
  article-title: Evaluation of women’s entrepreneurship education based on BP neural network
  publication-title: Sci Program
– volume: 46
  start-page: 9
  issue: 11
  year: 2022
  ident: e_1_3_3_19_2
  article-title: Research on quality evaluation of university MOOC teaching based on support vector machine
  publication-title: Inf Technol
– ident: e_1_3_3_5_2
  doi: 10.1016/j.caeai.2022.100068
– ident: e_1_3_3_20_2
  doi: 10.1109/ACCESS.2019.2957447
– ident: e_1_3_3_4_2
  doi: 10.3102/0091732X20903304
– ident: e_1_3_3_11_2
  doi: 10.15293/2658-6762.1902.11
– volume: 2022
  start-page: 8644276
  issue: 1
  year: 2022
  ident: e_1_3_3_18_2
  article-title: Application of BP neural network in teaching quality evaluation of higher vocational education
  publication-title: Mob Inf Syst
– ident: e_1_3_3_30_2
  doi: 10.1007/s12065-023-00822-6
– volume: 12
  start-page: 21
  year: 2024
  ident: e_1_3_3_14_2
  article-title: Research on the evaluation of undergraduate teaching quality in Guangxi ethnic regions universities based on bp neural network
  publication-title: Mod Voc Educ
– start-page: 1
  year: 2022
  ident: e_1_3_3_26_2
  article-title: Introduction to Naive Bayes and a review on its subtypes with applications
  publication-title: Bayesian Reason Gaussian Proces Mach Learn App
SSID ssj0043591
ssib019634244
ssib014147616
Score 2.3309407
SecondaryResourceType online_first
Snippet Evaluating the teaching quality level of university courses is a very meaningful teaching research work. In the context of big data, various artificial...
SourceID crossref
SourceType Index Database
Title Construction and optimization of higher education teaching quality evaluation model under the background of education big data: Based on naive Bayes classification algorithm
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1875-8983
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0043591
  issn: 1472-7978
  databaseCode: ADMLS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOiKegPDQHTqxSxXnZ5tbyUIUoEqKVeqtix2lX0A0q6aH8A34M_5EZ20lclkoUrRStrKyjzXya-Wx_M8PYC4rqsuEyEWnWJugly0RaaxKrcgx_GABrJ_nf-1jtHhTvD8vD2exnpFo67_WW-fHXvJL_sSqOoV0pS_Yalh0nxQH8jvbFK1oYr_9kY-q2OdR_dacAHTqA05BZ6WigV3HYQcWx6AfxpE-mvIiqffumOK4vrhce6tp8oaQPmreN5tDL4wUJS2kzYQeDYEMHDquaJEg79YX9vjDEyEmC5O-vvx53Z8v-5PQKImxcY4lhU9K3tHYq3RCdfRVpOxVOXNvs_rSsu5PzgPOwhZGVTu4ae91CIM1XvpfPlvVjuJBKpPJdbtb9vPCVApB94c-Qo1EhQl9B63JN7T9i3ahA5KHM-doUN9hGhgEinbON7Td7Hz4PzokXeGs1cWnyXIXjRj7sI-107RnH_xKO0Km619pDIhIUsZn9O-x2ePuw7TF1l83s6h67FRWnvM9-xegCNAHE6IKuBY8uGJEBA7ogoAsmdIFDFzh0AaILJnTRVNMciC4gdL0Chy3AIYctcNiCy9iCEVsP2MG7t_uvd5PQ3CMxXKk-aTKZGpnpQrTKNrLJilJVvDW4jBK0jGgkpY3XeWpEZesq5aaVVgldaaNwkVvkD9l81a3sIwZSc11myuCHdhtKZWqZC6E517kt8uwxezm87aNvvobL0ZX237zOzU_YzQnPT9kcjWKfIUnt9fMAn9_kmpMU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+and+optimization+of+higher+education+teaching+quality+evaluation+model+under+the+background+of+education+big+data%3A+Based+on+naive+Bayes+classification+algorithm&rft.jtitle=Journal+of+computational+methods+in+sciences+and+engineering&rft.au=Zhang%2C+Qiaohuan&rft.date=2025-07-08&rft.issn=1472-7978&rft.eissn=1875-8983&rft_id=info:doi/10.1177%2F14727978251359841&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_14727978251359841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-7978&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-7978&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-7978&client=summon