Construction and optimization of higher education teaching quality evaluation model under the background of education big data: Based on naive Bayes classification algorithm
Evaluating the teaching quality level of university courses is a very meaningful teaching research work. In the context of big data, various artificial intelligence algorithms can effectively utilize massive data to construct intelligent models for evaluating the teaching quality of universities. Po...
Saved in:
| Published in | Journal of computational methods in sciences and engineering |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
08.07.2025
|
| Online Access | Get full text |
| ISSN | 1472-7978 1875-8983 |
| DOI | 10.1177/14727978251359841 |
Cover
| Abstract | Evaluating the teaching quality level of university courses is a very meaningful teaching research work. In the context of big data, various artificial intelligence algorithms can effectively utilize massive data to construct intelligent models for evaluating the teaching quality of universities. Popular algorithms include genetic algorithm, BP (Back Propagation) neural network, and support vector machine. However, the modeling steps of these algorithms are usually cumbersome and time-consuming. In response to this, this article proposed a university teaching quality evaluation model based on the Naive Bayes classification algorithm. The model calculated the posterior probability of labels using Bayesian formula and the posterior probability of features by statistically analyzing the feature distribution in the sample. The label with the highest posterior probability was selected as the evaluation result for the feature vector. This article designed experiments to verify the performance advantages and disadvantages of this model compared to other models, and compared the modeling time, accuracy, mean square error, and disciplinary generality of the Naive Bayes model with the three aforementioned models. The results indicated that the modeling time of the Naive Bayes model was 0.12 seconds, with an accuracy of 0.895 and a mean square error of 0.1902. The accuracy difference between science and philosophy disciplines was 0.029, with a mean square error difference of 0.0190. Although the model in this article does not have an advantage in prediction accuracy compared to other models, it has good disciplinary universality, mainly due to its simple model structure and extremely short modeling time. |
|---|---|
| AbstractList | Evaluating the teaching quality level of university courses is a very meaningful teaching research work. In the context of big data, various artificial intelligence algorithms can effectively utilize massive data to construct intelligent models for evaluating the teaching quality of universities. Popular algorithms include genetic algorithm, BP (Back Propagation) neural network, and support vector machine. However, the modeling steps of these algorithms are usually cumbersome and time-consuming. In response to this, this article proposed a university teaching quality evaluation model based on the Naive Bayes classification algorithm. The model calculated the posterior probability of labels using Bayesian formula and the posterior probability of features by statistically analyzing the feature distribution in the sample. The label with the highest posterior probability was selected as the evaluation result for the feature vector. This article designed experiments to verify the performance advantages and disadvantages of this model compared to other models, and compared the modeling time, accuracy, mean square error, and disciplinary generality of the Naive Bayes model with the three aforementioned models. The results indicated that the modeling time of the Naive Bayes model was 0.12 seconds, with an accuracy of 0.895 and a mean square error of 0.1902. The accuracy difference between science and philosophy disciplines was 0.029, with a mean square error difference of 0.0190. Although the model in this article does not have an advantage in prediction accuracy compared to other models, it has good disciplinary universality, mainly due to its simple model structure and extremely short modeling time. |
| Author | Zhang, Qiaohuan |
| Author_xml | – sequence: 1 givenname: Qiaohuan orcidid: 0009-0004-4358-1148 surname: Zhang fullname: Zhang, Qiaohuan organization: School of Arts and Law, Zhengzhou Technology and Business University, Zhengzhou, China |
| BookMark | eNplkMtOwzAQRS1UJNrCB7DzDwTsvGyzg4qXVIkNrKOJH4khsUvsVCr_xD-S0i6QWM3MvXfO4i7QzHmnEbqk5IpSxq5pzlImGE8LmhWC5_QEzSlnRcIFz2bTPvnJPnCGFiG8E5JPMTpH3yvvQhxGGa13GJzCfhNtb7_gV_AGt7Zp9YC1GuVBixpka12DP0fobNxhvYVuPHi9V7rDo1PTR2w1rkF-NIMf91zzh1HbBiuIcIPvIOjJdNiB3erp3OmAZQchWGOPaegaP9jY9ufo1EAX9MVxLtHbw_3r6ilZvzw-r27XiaRCxESlnEie1jkzQiuu0rwQJTWS05qRIieKE5IJyIhkpYaSUGm4FqwuaylKVuTZEtEDVw4-hEGbajPYHoZdRUm177v613f2AxWueT4 |
| Cites_doi | 10.1080/09243453.2018.1539015 10.1007/s11092-019-09299-3 10.5539/hes.v9n1p100 10.11591/eei.v12i2.4020 10.1016/j.jbusres.2018.12.051 10.1007/s00521-018-3902-6 10.1007/s00500-020-05297-6 10.31449/inf.v45i2.3407 10.1186/s41239-020-00223-0 10.1038/s43586-020-00001-2 10.21744/lingcure.v6nS3.2064 10.1007/s13042-019-00984-9 10.3389/fpsyg.2020.580820 10.21449/ijate.856143 10.1109/ACCESS.2020.3002791 10.3390/app11073130 10.1080/13603124.2020.1829711 10.3233/JIFS-211749 10.1080/03075079.2020.1739013 10.1016/j.neucom.2019.10.118 10.1016/j.caeai.2022.100068 10.1109/ACCESS.2019.2957447 10.3102/0091732X20903304 10.15293/2658-6762.1902.11 10.1007/s12065-023-00822-6 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1177/14727978251359841 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1875-8983 |
| ExternalDocumentID | 10_1177_14727978251359841 |
| GroupedDBID | .4S .DC 0R~ 4.4 AAPII AAQXI AAYXX ABUJY ACGFS ACIWK ACPQW ADMLS ADZMO AFRHK AHDMH AJGYC AJNRN ALMA_UNASSIGNED_HOLDINGS ARCSS ARTOV ASPBG AVWKF CITATION DU5 EBS EDO HZ~ I-F J8X J9A MET MIO MK~ MV1 NGNOM O9- PQQKQ RNS SAUOL SCNPE SFC TUS |
| ID | FETCH-LOGICAL-c199t-d280c82b47f9ed8d245961fc81b70540d80039a30c76ea601cf8e97b6bc967543 |
| ISSN | 1472-7978 |
| IngestDate | Wed Oct 01 05:47:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c199t-d280c82b47f9ed8d245961fc81b70540d80039a30c76ea601cf8e97b6bc967543 |
| ORCID | 0009-0004-4358-1148 |
| ParticipantIDs | crossref_primary_10_1177_14727978251359841 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-08 |
| PublicationDateYYYYMMDD | 2025-07-08 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of computational methods in sciences and engineering |
| PublicationYear | 2025 |
| References | Lilan W (e_1_3_3_14_2) 2024; 12 Ma J (e_1_3_3_19_2) 2022; 46 Zhao X (e_1_3_3_17_2) 2022; 2022 Ai L (e_1_3_3_18_2) 2022; 2022 e_1_3_3_13_2 Reddy EMK (e_1_3_3_26_2) 2022 e_1_3_3_12_2 Chen L (e_1_3_3_16_2) 2022; 2022 e_1_3_3_15_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 Abbas M (e_1_3_3_28_2) 2019; 19 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
| References_xml | – ident: e_1_3_3_10_2 doi: 10.1080/09243453.2018.1539015 – ident: e_1_3_3_8_2 doi: 10.1007/s11092-019-09299-3 – ident: e_1_3_3_13_2 doi: 10.5539/hes.v9n1p100 – volume: 19 start-page: 62 issue: 3 year: 2019 ident: e_1_3_3_28_2 article-title: Multinomial Naive Bayes classification model for sentiment analysis publication-title: IJCSNS Int J Comput Sci Netw Secur – ident: e_1_3_3_29_2 doi: 10.11591/eei.v12i2.4020 – ident: e_1_3_3_22_2 doi: 10.1016/j.jbusres.2018.12.051 – ident: e_1_3_3_31_2 doi: 10.1007/s00521-018-3902-6 – ident: e_1_3_3_24_2 doi: 10.1007/s00500-020-05297-6 – ident: e_1_3_3_27_2 doi: 10.31449/inf.v45i2.3407 – ident: e_1_3_3_2_2 doi: 10.1186/s41239-020-00223-0 – ident: e_1_3_3_25_2 doi: 10.1038/s43586-020-00001-2 – ident: e_1_3_3_6_2 doi: 10.21744/lingcure.v6nS3.2064 – ident: e_1_3_3_33_2 doi: 10.1007/s13042-019-00984-9 – ident: e_1_3_3_3_2 doi: 10.3389/fpsyg.2020.580820 – volume: 2022 start-page: 3138885 issue: 1 year: 2022 ident: e_1_3_3_16_2 article-title: Teaching quality evaluation of animal science specialty based on IPSO‐BP neural network model publication-title: Comput Intell Neurosci – ident: e_1_3_3_9_2 doi: 10.21449/ijate.856143 – ident: e_1_3_3_7_2 doi: 10.1109/ACCESS.2020.3002791 – ident: e_1_3_3_23_2 doi: 10.3390/app11073130 – ident: e_1_3_3_12_2 doi: 10.1080/13603124.2020.1829711 – ident: e_1_3_3_21_2 doi: 10.3233/JIFS-211749 – ident: e_1_3_3_15_2 doi: 10.1080/03075079.2020.1739013 – ident: e_1_3_3_32_2 doi: 10.1016/j.neucom.2019.10.118 – volume: 2022 start-page: 5761363 issue: 1 year: 2022 ident: e_1_3_3_17_2 article-title: Evaluation of women’s entrepreneurship education based on BP neural network publication-title: Sci Program – volume: 46 start-page: 9 issue: 11 year: 2022 ident: e_1_3_3_19_2 article-title: Research on quality evaluation of university MOOC teaching based on support vector machine publication-title: Inf Technol – ident: e_1_3_3_5_2 doi: 10.1016/j.caeai.2022.100068 – ident: e_1_3_3_20_2 doi: 10.1109/ACCESS.2019.2957447 – ident: e_1_3_3_4_2 doi: 10.3102/0091732X20903304 – ident: e_1_3_3_11_2 doi: 10.15293/2658-6762.1902.11 – volume: 2022 start-page: 8644276 issue: 1 year: 2022 ident: e_1_3_3_18_2 article-title: Application of BP neural network in teaching quality evaluation of higher vocational education publication-title: Mob Inf Syst – ident: e_1_3_3_30_2 doi: 10.1007/s12065-023-00822-6 – volume: 12 start-page: 21 year: 2024 ident: e_1_3_3_14_2 article-title: Research on the evaluation of undergraduate teaching quality in Guangxi ethnic regions universities based on bp neural network publication-title: Mod Voc Educ – start-page: 1 year: 2022 ident: e_1_3_3_26_2 article-title: Introduction to Naive Bayes and a review on its subtypes with applications publication-title: Bayesian Reason Gaussian Proces Mach Learn App |
| SSID | ssj0043591 ssib019634244 ssib014147616 |
| Score | 2.3309407 |
| SecondaryResourceType | online_first |
| Snippet | Evaluating the teaching quality level of university courses is a very meaningful teaching research work. In the context of big data, various artificial... |
| SourceID | crossref |
| SourceType | Index Database |
| Title | Construction and optimization of higher education teaching quality evaluation model under the background of education big data: Based on naive Bayes classification algorithm |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1875-8983 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0043591 issn: 1472-7978 databaseCode: ADMLS dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOiKegPDQHTqxSxXnZ5tbyUIUoEqKVeqtix2lX0A0q6aH8A34M_5EZ20lclkoUrRStrKyjzXya-Wx_M8PYC4rqsuEyEWnWJugly0RaaxKrcgx_GABrJ_nf-1jtHhTvD8vD2exnpFo67_WW-fHXvJL_sSqOoV0pS_Yalh0nxQH8jvbFK1oYr_9kY-q2OdR_dacAHTqA05BZ6WigV3HYQcWx6AfxpE-mvIiqffumOK4vrhce6tp8oaQPmreN5tDL4wUJS2kzYQeDYEMHDquaJEg79YX9vjDEyEmC5O-vvx53Z8v-5PQKImxcY4lhU9K3tHYq3RCdfRVpOxVOXNvs_rSsu5PzgPOwhZGVTu4ae91CIM1XvpfPlvVjuJBKpPJdbtb9vPCVApB94c-Qo1EhQl9B63JN7T9i3ahA5KHM-doUN9hGhgEinbON7Td7Hz4PzokXeGs1cWnyXIXjRj7sI-107RnH_xKO0Km619pDIhIUsZn9O-x2ePuw7TF1l83s6h67FRWnvM9-xegCNAHE6IKuBY8uGJEBA7ogoAsmdIFDFzh0AaILJnTRVNMciC4gdL0Chy3AIYctcNiCy9iCEVsP2MG7t_uvd5PQ3CMxXKk-aTKZGpnpQrTKNrLJilJVvDW4jBK0jGgkpY3XeWpEZesq5aaVVgldaaNwkVvkD9l81a3sIwZSc11myuCHdhtKZWqZC6E517kt8uwxezm87aNvvobL0ZX237zOzU_YzQnPT9kcjWKfIUnt9fMAn9_kmpMU |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+and+optimization+of+higher+education+teaching+quality+evaluation+model+under+the+background+of+education+big+data%3A+Based+on+naive+Bayes+classification+algorithm&rft.jtitle=Journal+of+computational+methods+in+sciences+and+engineering&rft.au=Zhang%2C+Qiaohuan&rft.date=2025-07-08&rft.issn=1472-7978&rft.eissn=1875-8983&rft_id=info:doi/10.1177%2F14727978251359841&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_14727978251359841 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-7978&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-7978&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-7978&client=summon |