Geometries and electronic structures of Zr n Cu (n = 2–12) clusters: A joint machine-learning potential density functional theory investigation
Zr-based amorphous alloys have attracted extensive attention because of their large glassy formation ability, wide supercooled liquid region, high elasticity, and unique mechanical strength induced by their icosahedral local structures. To determine the microstructures of Zr–Cu clusters, the stable...
Saved in:
Published in | Chinese physics B Vol. 33; no. 1; pp. 16109 - 16116 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 2058-3834 |
DOI | 10.1088/1674-1056/acd5c2 |
Cover
Abstract | Zr-based amorphous alloys have attracted extensive attention because of their large glassy formation ability, wide supercooled liquid region, high elasticity, and unique mechanical strength induced by their icosahedral local structures. To determine the microstructures of Zr–Cu clusters, the stable and metastable geometry of Zr
n
Cu (
n
= 2–12) clusters are screened out via the CALYPSO method using machine-learning potentials, and then the electronic structures are investigated using density functional theory. The results show that the Zr
n
Cu (
n
≥ 3) clusters possess three-dimensional geometries, Zr
n
Cu (
n
≥ 9) possess cage-like geometries, and the Zr
12
Cu cluster has icosahedral geometry. The binding energy per atom gradually gets enlarged with the increase in the size of the clusters, and Zr
n
Cu (
n
= 5, 7, 9, 12) have relatively better stability than their neighbors. The magnetic moment of most Zr
n
Cu clusters is just 1
μ
B
, and the main components of the highest occupied molecular orbitals (HOMOs) in the Zr
12
Cu cluster come from the Zr-d state. There are hardly any localized two-center bonds, and there are about 20
σ
-type delocalized three-center bonds. |
---|---|
AbstractList | Zr-based amorphous alloys have attracted extensive attention because of their large glassy formation ability, wide supercooled liquid region, high elasticity, and unique mechanical strength induced by their icosahedral local structures. To determine the microstructures of Zr–Cu clusters, the stable and metastable geometry of Zr
n
Cu (
n
= 2–12) clusters are screened out via the CALYPSO method using machine-learning potentials, and then the electronic structures are investigated using density functional theory. The results show that the Zr
n
Cu (
n
≥ 3) clusters possess three-dimensional geometries, Zr
n
Cu (
n
≥ 9) possess cage-like geometries, and the Zr
12
Cu cluster has icosahedral geometry. The binding energy per atom gradually gets enlarged with the increase in the size of the clusters, and Zr
n
Cu (
n
= 5, 7, 9, 12) have relatively better stability than their neighbors. The magnetic moment of most Zr
n
Cu clusters is just 1
μ
B
, and the main components of the highest occupied molecular orbitals (HOMOs) in the Zr
12
Cu cluster come from the Zr-d state. There are hardly any localized two-center bonds, and there are about 20
σ
-type delocalized three-center bonds. |
Author | Jing, Qun Cui, Xiuhua Liu, Jing Duan, Haiming Wang, Yizhi Cao, Haibin |
Author_xml | – sequence: 1 givenname: Yizhi surname: Wang fullname: Wang, Yizhi organization: School of Physical Science and Technology, Xinjiang University , China – sequence: 2 givenname: Xiuhua surname: Cui fullname: Cui, Xiuhua organization: School of Physical Science and Technology, Xinjiang University , China – sequence: 3 givenname: Jing surname: Liu fullname: Liu, Jing organization: School of Physical Science and Technology, Xinjiang University , China – sequence: 4 givenname: Qun surname: Jing fullname: Jing, Qun organization: School of Physical Science and Technology, Xinjiang University , China – sequence: 5 givenname: Haiming surname: Duan fullname: Duan, Haiming organization: School of Physical Science and Technology, Xinjiang University , China – sequence: 6 givenname: Haibin surname: Cao fullname: Cao, Haibin organization: Department of Physics, College of Sciences, Shihezi University , China |
BookMark | eNqNkc2KFDEQgIOs4Ozq3WPdVLDd_Ez_CR6WQVdhwYtevITqpLKboSdpkrQyN19h2Tf0SexxxIPI4qmgqr6q4qtTdhJiIMaeCv5K8K47F027rgSvm3M0tjbyAVtJXneV6tT6hK3-lB-x05y3nDeCS7Vit5cUd1SSpwwYLNBIpqQYvIFc0mzKnJZKdPAlQYDNDM8DvAH54_udkC_AjHMulPJruIBt9KHADs2ND1SNhCn4cA1TLBSKxxEshezLHtwcTPExLKlyQzHtwYevlIu_xkP6MXvocMz05Hc8Y5_fvf20eV9dfbz8sLm4qozoe1kh7y03A4kesasdNspYK0j2hK2RwtUDir6t2xa7Yc2tsHboalwr1ThnUfbqjInj3DlMuP-G46in5HeY9lpwfXCqD9L0QZo-Ol2Y5siYFHNO5LTx5dfVJaEf7wP5X-B_7Hp5RHyc9DbOaRGW72t_9o92Mw1aKS00F8vDez1Zp34CdDms9w |
CitedBy_id | crossref_primary_10_1088_1674_1056_ad6a07 |
Cites_doi | 10.1103/PhysRevLett.104.136403 10.1039/C8SC02648C 10.1063/1.3658252 10.1021/acs.chemmater.5b04109 10.1016/j.scriptamat.2010.03.044 10.1063/1.4966192 10.1063/1.2158130 10.1103/PhysRevB.80.184201 10.1039/C6RA19284J 10.1016/j.cpc.2012.05.008 10.1063/1.3359683 10.1103/PhysRevA.25.978 10.1103/PhysRevLett.102.245501 10.1016/j.jnoncrysol.2014.01.041 10.1103/PhysRevLett.110.205505 10.1016/j.molstruc.2020.129371 10.1088/1361-648X/aa63cd 10.1063/1.1740588 10.1021/jp5120064 10.1016/j.jnoncrysol.2009.06.010 10.1080/08927022.2018.1447107 10.1021/acs.chemmater.7b05304 10.1103/PhysRevB.96.024104 10.1002/jcc.v33.5 10.1063/1.4757945 10.1103/PhysRevLett.91.115505 10.1016/j.comptc.2013.06.014 10.1021/jacs.8b03913 10.1109/MHS.1995.494215 10.1103/PhysRevLett.103.075502 10.1021/acs.jpcc.6b05068 10.1016/j.chemphys.2015.08.023 10.1080/0144235X.2016.1200347 10.2320/matertrans.43.766 10.1137/15M1054183 10.1007/s00214-002-0370-x 10.1038/ncomms13890 10.1038/nature04421 10.1063/1.5126336 10.1016/j.cpc.2021.108033 10.1038/s41598-017-17535-3 10.2320/matertrans1989.32.609 10.1063/1.4952607 10.1021/ja01348a011 10.1103/PhysRevLett.93.255506 10.1016/S1359-6454(99)00300-6 10.1088/2515-7639/ab084b 10.1016/j.molliq.2021.117603 10.1063/1.5019779 10.1021/acs.jpca.1c00751 10.1126/science.1232450 10.1021/acs.chemmater.6b02905 10.1016/j.actamat.2004.02.009 10.1021/acs.jpclett.0c02357 10.1038/s41524-019-0221-0 10.1103/PhysRevLett.77.3865 10.1016/j.jallcom.2009.05.111 10.1063/1.2213020 10.1021/acs.jpca.9b08723 10.1063/1.4746757 10.1016/0263-7855(96)00018-5 10.1016/j.intermet.2012.03.009 10.1002/qua.v115.16 10.1103/PhysRevLett.98.146401 10.1063/1.3553717 10.1039/b804083d 10.1007/s40192-018-0108-9 10.1063/1.3693303 10.1021/acs.jctc.9b00181 10.1063/1.5019667 10.1063/1.478401 10.1063/1.5131500 10.1038/s41467-018-03821-9 10.1016/j.commatsci.2018.04.033 10.1038/ncomms15679 10.1103/PhysRevX.4.011019 10.1016/j.jcp.2014.12.018 10.1016/j.actamat.2008.09.022 10.1103/PhysRevB.82.094116 10.1039/C8FD00055G 10.1016/j.jallcom.2010.02.067 10.1103/PhysRevB.103.054107 10.2320/matertrans1989.37.185 10.2320/matertrans1989.32.1005 10.1016/0927-0256(96)00008-0 10.1021/acs.jpclett.7b01046 |
ContentType | Journal Article |
Copyright | 2024 Chinese Physical Society and IOP Publishing Ltd |
Copyright_xml | – notice: 2024 Chinese Physical Society and IOP Publishing Ltd |
DBID | AAYXX CITATION ADTOC UNPAY |
DOI | 10.1088/1674-1056/acd5c2 |
DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
ExternalDocumentID | 10.1088/1674-1056/acd5c2 10_1088_1674_1056_acd5c2 cpb_33_1_016109 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT N5L PJBAE Q-- RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX AEINN CITATION 02O 1WK AALHV ACARI ADTOC AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. Q02 UNPAY |
ID | FETCH-LOGICAL-c1992-a09d0cbe19aa85fa63cdd1e29ea7c21f5ba197577a8b40d1ddb85a4336ffda293 |
IEDL.DBID | UNPAY |
ISSN | 1674-1056 2058-3834 |
IngestDate | Sun Sep 07 11:12:04 EDT 2025 Thu Apr 24 22:53:51 EDT 2025 Wed Oct 01 02:56:33 EDT 2025 Sun Aug 18 15:20:27 EDT 2024 Tue Aug 20 22:16:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. cc-by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1992-a09d0cbe19aa85fa63cdd1e29ea7c21f5ba197577a8b40d1ddb85a4336ffda293 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1674-1056/acd5c2 |
PageCount | 8 |
ParticipantIDs | unpaywall_primary_10_1088_1674_1056_acd5c2 crossref_citationtrail_10_1088_1674_1056_acd5c2 iop_journals_10_1088_1674_1056_acd5c2 crossref_primary_10_1088_1674_1056_acd5c2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231201 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231201 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationYear | 2023 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Schleder (cpb_33_1_016109bib38) 2019; 2 Inoue (cpb_33_1_016109bib10) 1996; 37 Megha (cpb_33_1_016109bib27) 2021; 125 Schmidt (cpb_33_1_016109bib39) 2019; 5 Wang (cpb_33_1_016109bib71) 2021; 267 Tong (cpb_33_1_016109bib37) 2020; 11 Behler (cpb_33_1_016109bib68) 2011; 134 Li (cpb_33_1_016109bib54) 2018; 150 Inoue (cpb_33_1_016109bib1) 2002; 43 Jiang (cpb_33_1_016109bib57) 2016; 35 Sun (cpb_33_1_016109bib36) 2017; 8 Trivedi (cpb_33_1_016109bib28) 2021; 1226 Lv (cpb_33_1_016109bib76) 2012; 137 Mulliken (cpb_33_1_016109bib85) 1995; 23 Isayev (cpb_33_1_016109bib45) 2017; 8 Inoue (cpb_33_1_016109bib3) 1991; 32 Lu (cpb_33_1_016109bib6) 2003; 91 Behler (cpb_33_1_016109bib61) 2007; 98 Cogollo-Olivo (cpb_33_1_016109bib34) 2015; 461 Xu (cpb_33_1_016109bib13) 2004; 52 Furmanchuk (cpb_33_1_016109bib41) 2016; 6 Kim (cpb_33_1_016109bib44) 2016; 28 Manzhos (cpb_33_1_016109bib56) 2015; 115 Ward (cpb_33_1_016109bib51) 2017; 96 Kauwe (cpb_33_1_016109bib47) 2018; 7 Schütt (cpb_33_1_016109bib62) 2017; 8 Shapeev (cpb_33_1_016109bib64) 2016; 14 Lu (cpb_33_1_016109bib83) 2012; 33 Cheng (cpb_33_1_016109bib17) 2009; 102 Zhang (cpb_33_1_016109bib11) 2011; 110 Sha (cpb_33_1_016109bib30) 2012; 26 Wen (cpb_33_1_016109bib21) 2014; 388 Tong (cpb_33_1_016109bib75) 2018; 211 Frisch (cpb_33_1_016109bib81) 2009 Gaultois (cpb_33_1_016109bib42) 2016; 4 Su (cpb_33_1_016109bib80) 2017; 29 Inoue (cpb_33_1_016109bib7) 2000; 48 Oliynyk (cpb_33_1_016109bib50) 2016; 28 Graser (cpb_33_1_016109bib53) 2018; 30 Sosso (cpb_33_1_016109bib48) 2018; 44 Ernzerhof (cpb_33_1_016109bib72) 1999; 110 Wang (cpb_33_1_016109bib14) 2012; 112 Zheng (cpb_33_1_016109bib49) 2018; 9 Jiang (cpb_33_1_016109bib26) 2021; 343 Wang (cpb_33_1_016109bib78) 2012; 183 Calaminici (cpb_33_1_016109bib35) 2013; 1021 Yuan (cpb_33_1_016109bib46) 2017; 7 Mattern (cpb_33_1_016109bib12) 2009; 485 Kim (cpb_33_1_016109bib43) 2016; 120 Schütt (cpb_33_1_016109bib63) 2018; 148 Unke (cpb_33_1_016109bib66) 2019; 15 Perdew (cpb_33_1_016109bib73) 1996; 77 Hui (cpb_33_1_016109bib18) 2009; 57 Li (cpb_33_1_016109bib23) 2009; 80 Zhang (cpb_33_1_016109bib25) 2012; 111 Wang (cpb_33_1_016109bib77) 2010; 82 Behler (cpb_33_1_016109bib58) 2016; 145 Sha (cpb_33_1_016109bib4) 2010; 107 Kresse (cpb_33_1_016109bib70) 1996; 6 Mendelev (cpb_33_1_016109bib19) 2019; 151 Carrete (cpb_33_1_016109bib40) 2014; 4 Wang (cpb_33_1_016109bib15) 2010; 63 Zuo (cpb_33_1_016109bib60) 2020; 124 Tong (cpb_33_1_016109bib74) 2021; 103 Fujita (cpb_33_1_016109bib22) 2009; 103 Stillinger (cpb_33_1_016109bib33) 1982; 25 Bartók (cpb_33_1_016109bib67) 2010; 104 Yang (cpb_33_1_016109bib32) 2006; 88 Pauling (cpb_33_1_016109bib86) 1932; 54 Zhang (cpb_33_1_016109bib2) 1991; 32 Lekka (cpb_33_1_016109bib31) 2010; 504 Hirata (cpb_33_1_016109bib8) 2013; 341 Kohout (cpb_33_1_016109bib87) 2002; 108 Balachandran (cpb_33_1_016109bib52) 2018; 9 Sun (cpb_33_1_016109bib20) 2009; 355 Liu (cpb_33_1_016109bib24) 2013; 110 Wang (cpb_33_1_016109bib29) 2015; 119 Eberhart (cpb_33_1_016109bib79) 1995 Ryan (cpb_33_1_016109bib55) 2018; 140 Zubarev (cpb_33_1_016109bib82) 2008; 10 Schroers (cpb_33_1_016109bib5) 2004; 93 Gastegger (cpb_33_1_016109bib69) 2018; 148 Mueller (cpb_33_1_016109bib59) 2020; 152 Thompson (cpb_33_1_016109bib65) 2015; 285 Sheng (cpb_33_1_016109bib9) 2006; 439 Xia (cpb_33_1_016109bib16) 2006; 99 Humphrey (cpb_33_1_016109bib84) 1996; 14 |
References_xml | – volume: 104 year: 2010 ident: cpb_33_1_016109bib67 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.136403 – volume: 9 start-page: 8426 year: 2018 ident: cpb_33_1_016109bib49 publication-title: Chem. Sci. doi: 10.1039/C8SC02648C – volume: 110 year: 2011 ident: cpb_33_1_016109bib11 publication-title: J. Appl. Phys. doi: 10.1063/1.3658252 – volume: 28 start-page: 1304 year: 2016 ident: cpb_33_1_016109bib44 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04109 – volume: 63 start-page: 178 year: 2010 ident: cpb_33_1_016109bib15 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2010.03.044 – volume: 145 year: 2016 ident: cpb_33_1_016109bib58 publication-title: J. Chem. Phys. doi: 10.1063/1.4966192 – volume: 99 year: 2006 ident: cpb_33_1_016109bib16 publication-title: J. Appl. Phys. doi: 10.1063/1.2158130 – volume: 80 year: 2009 ident: cpb_33_1_016109bib23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.184201 – volume: 6 year: 2016 ident: cpb_33_1_016109bib41 publication-title: RSC Adv. doi: 10.1039/C6RA19284J – volume: 183 start-page: 2063 year: 2012 ident: cpb_33_1_016109bib78 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.05.008 – volume: 107 year: 2010 ident: cpb_33_1_016109bib4 publication-title: J. Appl. Phys. doi: 10.1063/1.3359683 – volume: 25 start-page: 978 year: 1982 ident: cpb_33_1_016109bib33 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.25.978 – volume: 102 year: 2009 ident: cpb_33_1_016109bib17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.245501 – volume: 388 start-page: 75 year: 2014 ident: cpb_33_1_016109bib21 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2014.01.041 – volume: 110 year: 2013 ident: cpb_33_1_016109bib24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.205505 – volume: 1226 year: 2021 ident: cpb_33_1_016109bib28 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2020.129371 – volume: 29 year: 2017 ident: cpb_33_1_016109bib80 publication-title: J. Phys.: Condens. Matter doi: 10.1088/1361-648X/aa63cd – volume: 23 start-page: 1833 year: 1995 ident: cpb_33_1_016109bib85 publication-title: J. Chem. Phys. doi: 10.1063/1.1740588 – volume: 119 start-page: 806 year: 2015 ident: cpb_33_1_016109bib29 publication-title: J. Phys. Chem. A doi: 10.1021/jp5120064 – volume: 355 start-page: 1557 year: 2009 ident: cpb_33_1_016109bib20 publication-title: J. Non-Cryst. doi: 10.1016/j.jnoncrysol.2009.06.010 – volume: 44 start-page: 866 year: 2018 ident: cpb_33_1_016109bib48 publication-title: Mol. Simul. doi: 10.1080/08927022.2018.1447107 – volume: 30 start-page: 3601 year: 2018 ident: cpb_33_1_016109bib53 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b05304 – volume: 96 year: 2017 ident: cpb_33_1_016109bib51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.024104 – volume: 33 start-page: 580 year: 2012 ident: cpb_33_1_016109bib83 publication-title: J. Comput. Chem. doi: 10.1002/jcc.v33.5 – volume: 112 year: 2012 ident: cpb_33_1_016109bib14 publication-title: J. Appl. Phys. doi: 10.1063/1.4757945 – volume: 91 year: 2003 ident: cpb_33_1_016109bib6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.115505 – volume: 1021 start-page: 41 year: 2013 ident: cpb_33_1_016109bib35 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2013.06.014 – volume: 140 year: 2018 ident: cpb_33_1_016109bib55 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b03913 – start-page: 39 year: 1995 ident: cpb_33_1_016109bib79 doi: 10.1109/MHS.1995.494215 – volume: 103 year: 2009 ident: cpb_33_1_016109bib22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.075502 – volume: 120 year: 2016 ident: cpb_33_1_016109bib43 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b05068 – volume: 461 start-page: 20 year: 2015 ident: cpb_33_1_016109bib34 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2015.08.023 – volume: 35 start-page: 479 year: 2016 ident: cpb_33_1_016109bib57 publication-title: Int. Rev. Phys. Chem. doi: 10.1080/0144235X.2016.1200347 – volume: 43 start-page: 766 year: 2002 ident: cpb_33_1_016109bib1 publication-title: Mater. Trans. doi: 10.2320/matertrans.43.766 – volume: 14 start-page: 1153 year: 2016 ident: cpb_33_1_016109bib64 publication-title: Multiscale Model. Simul. doi: 10.1137/15M1054183 – volume: 108 start-page: 150 year: 2002 ident: cpb_33_1_016109bib87 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-002-0370-x – volume: 8 year: 2017 ident: cpb_33_1_016109bib62 publication-title: Nat. Commun. doi: 10.1038/ncomms13890 – volume: 439 start-page: 419 year: 2006 ident: cpb_33_1_016109bib9 publication-title: Nature doi: 10.1038/nature04421 – volume: 152 year: 2020 ident: cpb_33_1_016109bib59 publication-title: J. Chem. Phys. doi: 10.1063/1.5126336 – volume: 267 year: 2021 ident: cpb_33_1_016109bib71 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108033 – volume: 7 year: 2017 ident: cpb_33_1_016109bib46 publication-title: Sci. Rep. doi: 10.1038/s41598-017-17535-3 – volume: 32 start-page: 609 year: 1991 ident: cpb_33_1_016109bib3 publication-title: Mater. Trans. JIM doi: 10.2320/matertrans1989.32.609 – volume: 4 year: 2016 ident: cpb_33_1_016109bib42 publication-title: APL Mater. doi: 10.1063/1.4952607 – volume: 54 start-page: 3570 year: 1932 ident: cpb_33_1_016109bib86 publication-title: J. Amer. Chem. Soc. doi: 10.1021/ja01348a011 – volume: 93 year: 2004 ident: cpb_33_1_016109bib5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.255506 – volume: 48 start-page: 279 year: 2000 ident: cpb_33_1_016109bib7 publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00300-6 – volume: 2 year: 2019 ident: cpb_33_1_016109bib38 publication-title: J. Phys. Mater. doi: 10.1088/2515-7639/ab084b – volume: 343 year: 2021 ident: cpb_33_1_016109bib26 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.117603 – volume: 148 year: 2018 ident: cpb_33_1_016109bib63 publication-title: J. Chem. Phys. doi: 10.1063/1.5019779 – volume: 125 start-page: 2558 year: 2021 ident: cpb_33_1_016109bib27 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.1c00751 – volume: 341 start-page: 376 year: 2013 ident: cpb_33_1_016109bib8 publication-title: Science doi: 10.1126/science.1232450 – volume: 28 start-page: 6672 year: 2016 ident: cpb_33_1_016109bib50 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02905 – volume: 52 start-page: 2621 year: 2004 ident: cpb_33_1_016109bib13 publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.02.009 – volume: 11 start-page: 8710 year: 2020 ident: cpb_33_1_016109bib37 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02357 – volume: 5 year: 2019 ident: cpb_33_1_016109bib39 publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0221-0 – volume: 77 start-page: 3865 year: 1996 ident: cpb_33_1_016109bib73 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 485 start-page: 163 year: 2009 ident: cpb_33_1_016109bib12 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.05.111 – volume: 88 year: 2006 ident: cpb_33_1_016109bib32 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2213020 – volume: 124 start-page: 731 year: 2020 ident: cpb_33_1_016109bib60 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.9b08723 – volume: 137 year: 2012 ident: cpb_33_1_016109bib76 publication-title: J. Chem. Phys. doi: 10.1063/1.4746757 – volume: 14 start-page: 33 year: 1996 ident: cpb_33_1_016109bib84 publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(96)00018-5 – year: 2009 ident: cpb_33_1_016109bib81 – volume: 26 start-page: 8 year: 2012 ident: cpb_33_1_016109bib30 publication-title: Intermetallics doi: 10.1016/j.intermet.2012.03.009 – volume: 115 start-page: 1012 year: 2015 ident: cpb_33_1_016109bib56 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.v115.16 – volume: 98 year: 2007 ident: cpb_33_1_016109bib61 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.146401 – volume: 134 year: 2011 ident: cpb_33_1_016109bib68 publication-title: J. Chem. Phys. doi: 10.1063/1.3553717 – volume: 10 start-page: 5207 year: 2008 ident: cpb_33_1_016109bib82 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b804083d – volume: 7 start-page: 43 year: 2018 ident: cpb_33_1_016109bib47 publication-title: Integrat. Mater. Manuf. Innovation doi: 10.1007/s40192-018-0108-9 – volume: 111 year: 2012 ident: cpb_33_1_016109bib25 publication-title: J. Appl. Phys. doi: 10.1063/1.3693303 – volume: 15 start-page: 3678 year: 2019 ident: cpb_33_1_016109bib66 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00181 – volume: 148 year: 2018 ident: cpb_33_1_016109bib69 publication-title: J. Chem. Phys. doi: 10.1063/1.5019667 – volume: 110 start-page: 5029 year: 1999 ident: cpb_33_1_016109bib72 publication-title: J. Chem. Phys. doi: 10.1063/1.478401 – volume: 151 year: 2019 ident: cpb_33_1_016109bib19 publication-title: J. Chem. Phys. doi: 10.1063/1.5131500 – volume: 9 start-page: 1668 year: 2018 ident: cpb_33_1_016109bib52 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03821-9 – volume: 150 start-page: 454 year: 2018 ident: cpb_33_1_016109bib54 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.04.033 – volume: 8 year: 2017 ident: cpb_33_1_016109bib45 publication-title: Nat. Commun. doi: 10.1038/ncomms15679 – volume: 4 year: 2014 ident: cpb_33_1_016109bib40 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.4.011019 – volume: 285 start-page: 316 year: 2015 ident: cpb_33_1_016109bib65 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.12.018 – volume: 57 start-page: 376 year: 2009 ident: cpb_33_1_016109bib18 publication-title: Acta Mater. doi: 10.1016/j.actamat.2008.09.022 – volume: 82 year: 2010 ident: cpb_33_1_016109bib77 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.094116 – volume: 211 start-page: 31 year: 2018 ident: cpb_33_1_016109bib75 publication-title: Faraday Discuss. doi: 10.1039/C8FD00055G – volume: 504 start-page: 190 year: 2010 ident: cpb_33_1_016109bib31 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.02.067 – volume: 103 year: 2021 ident: cpb_33_1_016109bib74 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.054107 – volume: 37 start-page: 185 year: 1996 ident: cpb_33_1_016109bib10 publication-title: Mater. Trans., JIM doi: 10.2320/matertrans1989.37.185 – volume: 32 start-page: 1005 year: 1991 ident: cpb_33_1_016109bib2 publication-title: Mater. Trans. JIM doi: 10.2320/matertrans1989.32.1005 – volume: 6 start-page: 15 year: 1996 ident: cpb_33_1_016109bib70 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 8 start-page: 3434 year: 2017 ident: cpb_33_1_016109bib36 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b01046 |
SSID | ssj0061023 |
Score | 2.3216405 |
Snippet | Zr-based amorphous alloys have attracted extensive attention because of their large glassy formation ability, wide supercooled liquid region, high elasticity,... |
SourceID | unpaywall crossref iop |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 16109 |
SubjectTerms | geometries and electronic structures machine learning potentials magnetic and chemical bonds Zr-Cu clusters |
SummonAdditionalLinks | – databaseName: IOP Science Platform dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEaI9lGfVbQHNASSKlN3YedgBcagqSoXE40ClCiFZfgW13TpRN1G1PfEXUP9hfwl2nN1ShArilsPE44zH9jj-5huEnhZEmTQlODLMsChNhY4Y0yqShLBMUSU09QnO7z_ku3vpu_1sfwG9mufCVHW_9A_dYyAKDibsAXFs5HHzkS8YPxJKZ8qtvzcT5s4VPnvv46fZMpx7TgJ_2ppJ93eUf2rhyp50w-ldRrdbW4vpqRiPf9ludu6gr7OOBpTJ0bBt5FCd_cbh-J9fchet9GEobAXRe2jB2PvoVgcHVZMH6MdbUx13tbYmIKyGy2I5EAhnW3dKh6qELydgYbuF5xZeA7n4fo7JJqhx6-kXJi9hCw6rA9vAcQfZNFFfo-Ib1FXjYUquC9oj6Jsp-A02_JeELrlyCgeXFCCVfYj2dt583t6N-uINkeoQrSIudKykwYUQLCtFniitsSGFEVQRXGZS4IJmlAom01hjrSXLRJokeVlq4YKQVbRoK2vWELgQRxQszmXCshRLU1BNSSxF7BqhLnwdoNFs-Ljqmc19gY0x727YGePe0NwbmgdDD9Dm_I06sHpcI_vMjR_vp_bkGjm4IqdqyZOEY-6D6rjgtS4H6MXcrf6qd_0f9W6gJeJcPUBsHqFF5wXmsQuUGvmkmxA_AVlPDVM priority: 102 providerName: IOP Publishing |
Title | Geometries and electronic structures of Zr n Cu (n = 2–12) clusters: A joint machine-learning potential density functional theory investigation |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/acd5c2 https://doi.org/10.1088/1674-1056/acd5c2 |
UnpaywallVersion | publishedVersion |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics (IOP) Publishing Journals customDbUrl: eissn: 2058-3834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061023 issn: 2058-3834 databaseCode: IOP dateStart: 20080101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXarRDqAcqXugiqOYBEkdwmjhM7lTisKkpBovTASoWL5a-gha0TkURoOfEXUP8hvwQ7SVsWoQL3iWPNOPGM5_k9hB7lRFtKSYwttxxTKg3m3GisCOGpZloaFi44vz7KDqf01Ul6Mpx3hLswS_17X5wFkDwO6vC7UptU-5_tWhZaSSO0Nj06nrwL9dS5SdCRi1KOfdFFh47kn4ZY2oFWZ2W1jq63rpKLL3I-_2VzObjZMx3VHSdhwJR82mkbtaO__sbY-C_z3kA3hgwTJv2SuIVWrLuNrnVIT13fQd9f2PK0k9GqQToDlzo40HPJtr4Ah7KA95_BwX4LTxw8A_Lj21lMtkHP28CsUO_BBD6WM9fAaYfGtHiQn_gAVdkEBJKfggng-GYBYe_sjxyhuze5gNklu0fp7qLpwfO3-4d40GXAugOryig3kVY2zqXkaSGzRBsTW5JbyTSJi1TJOGcpY5IrGpnYGMVTSZMkKwojfX5xD41c6ewmAp-9yJxHmUp4SmNlc2YYiZSM_CDMZ6ZjtHseK6EH0vKgnTEXXfOccxEcLYKjRe_oMdq-eKLqCTuusH3swy-Gr7a-wg6W7HSlRJKIWIR8OcpFZYoxenqxhv763vv_Y_wAjXz07UOf-zRqC62-fHO8NSz-n-d8_9s |
linkProvider | Unpaywall |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVoERQWvFrE8LwLkChSZmInjh0kFlVhaHmULqhUsXH9CipMnYhJhKar_gLiD_kS7CTTUoQKErssrh-5fl3bx-cg9DAn2qYpwZHllkdpKk3EudGRIoRTzbQ0LDxwfruVbeykr3bpbq9z2r6FKat-6h_6z44ouHNhD4jjo4Cbj4Jg_EhqQzUZVaZYQOdpQlnQbth8tz2firPASxB2XPMU_T3ln3I5tS4t-LIvo6XGVXL2VU4mvyw546tob17ZDmnyedjUaqgPf-Nx_I-_uYau9OEorHXm19E5626gCy0sVE-X0beXtjxoNbemIJ2BE9Ec6IhnG79bh7KAD1_AwXoDjx08A_Lj6Dsmq6AnTaBhmD6FNfhU7rsaDlropo16rYqPUJV1gCv5KpiApK9nEBba7nwS2keWM9g_oQIp3QraGb94v74R9SIOkW6RrTLOTayVxbmUnBYyS7Qx2JLcSqYJLqiSOGeUMclVGhtsjOJUpkmSFYWRPhi5iRZd6ewtBD7UkTmPM5VwmmJlc2YYiZWMfSbMh7EDNJo3odA9w3kQ2piI9qadcxGcLYKzRefsAVo9TlF17B5n2D7ybSj6IT49ww5O2elKiSQRWITgOs6Fb98BenLctf5a7u1_LPcBurj9fCzebG69voMuEd_zO9TNXbToO4S952OnWt1vx8dP0QASvQ |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVgK4R64BuxCNAcQKJIaWPHjh0kDquKUiFRcWClwsXyV6qFrRM1idBy4i8g_iG_BDtJWxahAveJY8048Yzn-T2EHhfEOEoJTpxwIqFU2UQIaxJNiGCGG2V5vOD85iDfn9PXh-xwPO-Id2HW-vehOIsg-SSqw-8oY5kJP9uNPLaSJmhjfvB29j7WU6cmUUcuZSIJRRcdO5J_GmJtB7q8qOpNdLXztVp9VsvlL5vL3vWB6ajpOQkjpuTTdtfqbfPlN8bGf5n3DXRtzDBhNiyJm-iS87fQlR7paZrb6NsrVx33MloNKG_hXAcHBi7ZLhTgUJXw4QQ87Hbw1MMLID--fsdkC8yyi8wKzXOYwcdq4Vs47tGYLhnlJ46grtqIQApTsBEc364g7p3DkSP09yZXsDhn96j8HTTfe_ludz8ZdRkS04NVVVrY1GiHC6UEK1WeGWuxI4VT3BBcMq1wwRnnSmiaWmytFkzRLMvL0qqQX9xFE195dw9ByF5UIdJcZ4JRrF3BLSepVmkYhIfMdIp2TmMlzUhaHrUzlrJvngsho6NldLQcHD1FW2dP1ANhxwW2T0L45fjVNhfYwZqdqbXMMollzJfTQta2nKJnZ2vor--9_z_GD9AkRN89DLlPqx-Ny_4n7YX-0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometries+and+electronic+structures+of+Zr+n+Cu+%28n+%3D+2%E2%80%9312%29+clusters%3A+A+joint+machine-learning+potential+density+functional+theory+investigation&rft.jtitle=Chinese+physics+B&rft.au=Wang+%E7%8E%8B%2C+Yizhi+%E4%B8%80%E5%BF%97&rft.au=Cui+%E5%B4%94%2C+Xiuhua+%E7%A7%80%E8%8A%B1&rft.au=Liu+%E5%88%98%2C+Jing+%E9%9D%99&rft.au=Jing+%E4%BA%95%2C+Qun+%E7%BE%A4&rft.date=2023-12-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=33&rft.issue=1&rft.spage=16109&rft_id=info:doi/10.1088%2F1674-1056%2Facd5c2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_acd5c2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon |