eCAD-Net: Editable Parametric CAD Models Reconstruction from Dumb B-Rep Models Using Deep Neural Networks

This paper introduces a novel framework capable of reconstructing editable parametric CAD models from dumb B-Rep models. First, each B-Rep model is represented with a network-friendly formalism based on UV-graph, which is then used as input of eCAD-Net, the new deep neural network-based algorithm th...

Full description

Saved in:
Bibliographic Details
Published inComputer aided design Vol. 178; p. 103806
Main Authors Zhang, Chao, Polette, Arnaud, Pinquié, Romain, Carasi, Gregorio, De Charnace, Henri, Pernot, Jean-Philippe
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2025
Elsevier
Subjects
Online AccessGet full text
ISSN0010-4485
DOI10.1016/j.cad.2024.103806

Cover

Abstract This paper introduces a novel framework capable of reconstructing editable parametric CAD models from dumb B-Rep models. First, each B-Rep model is represented with a network-friendly formalism based on UV-graph, which is then used as input of eCAD-Net, the new deep neural network-based algorithm that predicts feature-based CAD modeling sequences from the graph. Then, the sequences are scaled and fine-tuned using a feature matching algorithm that retrieves the exact parameter values from the input dumb CAD model. The output sequences are then converted in a series of CAD modeling operations to create an editable parametric CAD model in any CAD modeler. A cleaned dataset is used to learn and validate the proposed approach, and is provided with the article. The experimental results show that our approach outperforms existing methods on such reconstruction tasks, and it outputs editable parametric CAD models compatible with existing CAD modelers and ready for use in downstream engineering applications. •A novel network to infer sequences of sketch-extrude operations from B-Rep models.•A feature-matching algorithm to fine-tune the sequences predicted by the networks.•A new algorithm to clean the dataset used for training and validation.
AbstractList This paper introduces a novel framework capable of reconstructing editable parametric CAD models from dumb B-Rep models. First, each B-Rep model is represented with a network-friendly formalism based on UV-graph, which is then used as input of eCAD-Net, the new deep neural network-based algorithm that predicts feature-based CAD modeling sequences from the graph. Then, the sequences are scaled and fine-tuned using a feature matching algorithm that retrieves the exact parameter values from the input dumb CAD model. The output sequences are then converted in a series of CAD modeling operations to create an editable parametric CAD model in any CAD modeler. A cleaned dataset is used to learn and validate the proposed approach, and is provided with the article. The experimental results show that our approach outperforms existing methods on such reconstruction tasks, and it outputs editable parametric CAD models compatible with existing CAD modelers and ready for use in downstream engineering applications. •A novel network to infer sequences of sketch-extrude operations from B-Rep models.•A feature-matching algorithm to fine-tune the sequences predicted by the networks.•A new algorithm to clean the dataset used for training and validation.
ArticleNumber 103806
Author Carasi, Gregorio
De Charnace, Henri
Polette, Arnaud
Pernot, Jean-Philippe
Zhang, Chao
Pinquié, Romain
Author_xml – sequence: 1
  givenname: Chao
  surname: Zhang
  fullname: Zhang, Chao
  organization: Arts et Métiers Institute of Technology, LISPEN, F-13617 Aix-en-Provence, France
– sequence: 2
  givenname: Arnaud
  surname: Polette
  fullname: Polette, Arnaud
  organization: Arts et Métiers Institute of Technology, LISPEN, F-13617 Aix-en-Provence, France
– sequence: 3
  givenname: Romain
  surname: Pinquié
  fullname: Pinquié, Romain
  organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France
– sequence: 4
  givenname: Gregorio
  surname: Carasi
  fullname: Carasi, Gregorio
  organization: Cognitive Design Systems, France
– sequence: 5
  givenname: Henri
  surname: De Charnace
  fullname: De Charnace, Henri
  organization: Cognitive Design Systems, France
– sequence: 6
  givenname: Jean-Philippe
  surname: Pernot
  fullname: Pernot, Jean-Philippe
  email: jean-philippe.pernot@ensam.eu
  organization: Arts et Métiers Institute of Technology, LISPEN, F-13617 Aix-en-Provence, France
BackLink https://paris1.hal.science/hal-04754103$$DView record in HAL
BookMark eNp9kDFPwzAQhT0UiRb4AWxeGVJsx0kcmEpbKFIpqKKz5TgXcEniyk6L-Pe4CjAyPd279066b4QGrW0BoUtKxpTQ9Ho71qocM8J4mGNB0gEaEkJJxLlITtHI-y0hhNE4HyID08ksWkF3g-el6VRRA35RTjXQOaNxWOInW0Lt8Rq0bX3n9roztsWVsw2e7ZsC30Vr2P2mNt60b3gGwVnB3qk6SPdp3Yc_RyeVqj1c_OgZ2tzPX6eLaPn88DidLCNNc9FFwNJCcJZpIfKyUCURWSVIEZcJywQkjFWMK1CsSBQXaQ4JpLESIslFRRRTIj5DV_3dd1XLnTONcl_SKiMXk6U8eoRnCQ9gDjRkaZ_VznrvoPorUCKPLOVWBpbyyFL2LEPntu-Ed-FgwEmvDbQaSuNAd7K05p_2N8TTfh8
Cites_doi 10.1109/ICCV48922.2021.00670
10.1016/j.cad.2022.103226
10.1016/j.advengsoft.2018.10.003
10.1109/ICCV51070.2023.00215
10.1109/CVPR52729.2023.01613
10.1016/j.cad.2009.11.008
10.1109/CVPR46437.2021.01153
10.1145/3414685.3417763
10.24963/ijcai.2023/200
10.1109/CVPR46437.2021.01258
10.1109/ICCV.2017.103
10.1145/3450626.3459818
10.1016/j.cag.2023.05.021
10.1145/3326362
10.1109/CVPR.2019.00983
10.1115/DETC2020-22355
10.1109/CVPR.2016.90
10.1145/325165.325218
10.1145/376957.376976
10.1145/3528223.3530078
10.1016/j.jmapro.2022.10.075
10.1109/CVPR.2019.00276
10.1109/CVPR42600.2020.00091
10.1109/CVPR.2015.7298935
10.1016/j.cad.2018.03.006
10.1007/s11831-020-09509-y
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.cad.2024.103806
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
ExternalDocumentID oai:HAL:hal-04754103v1
10_1016_j_cad_2024_103806
S0010448524001337
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABMAC
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
TWZ
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
1XC
ID FETCH-LOGICAL-c198t-e26b8427c889dbad087f80b3d5278e522f24aea2b5a4869e5e63a88598f0a2a83
IEDL.DBID .~1
ISSN 0010-4485
IngestDate Tue Oct 14 20:53:45 EDT 2025
Wed Oct 01 04:14:22 EDT 2025
Sat Nov 02 16:00:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep neural networks
Parametric modeling
Editable CAD models
CAD model reconstruction
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c198t-e26b8427c889dbad087f80b3d5278e522f24aea2b5a4869e5e63a88598f0a2a83
ORCID 0000-0002-9061-2937
0000-0001-5913-4714
0000-0002-8572-6454
ParticipantIDs hal_primary_oai_HAL_hal_04754103v1
crossref_primary_10_1016_j_cad_2024_103806
elsevier_sciencedirect_doi_10_1016_j_cad_2024_103806
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
2025-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Computer aided design
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Li L, Sung M, Dubrovina A, Yi L, Guibas LJ. Supervised fitting of geometric primitives to 3d point clouds. In: Proc. of the IEEE/CVF conf. on computer vision and pattern recognition. 2019, p. 2652–60.
Lee SH, Lee K. Partial entity structure: a compact non-manifold boundary representation based on partial topological entities. In: Proc. of the sixth ACM symp. on solid modeling and applications. 2001, p. 159–70.
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b19) 2017; 30
Jayaraman, Lambourne, Desai, Willis, Sanghi, Morris (b23) 2022
Varley, Company (b4) 2010; 42
Li, Pan, Bousseau, Mitra (b6) 2020; 39
Wang, Yang, You (b27) 2023; 85
Hu, Kleiner, Pernot, Zhang, Huang, Zhao, Yeung (b40) 2021; 28
Zhang, Pinquié, Polette, Carasi, De Charnace, Pernot (b5) 2023
Guo, Liu, Pan, Liu, Tong, Guo (b11) 2022; 41
Colligan, Robinson, Nolan, Hua, Cao (b26) 2022; 147
Qi, Yi, Su, Guibas (b9) 2017; 30
Sharma, Liu, Maji, Kalogerakis, Chaudhuri, Měch (b10) 2020
Zhang, Jaiswal, Rai (b28) 2018; 101
Kipf, Welling (b37) 2016
Falcidieno, Giannini, Léon, Pernot (b1) 2014; Vol. 1
Li P, Guo J, Zhang X, Yan D-M. SECAD-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude Operations. In: Proc. of the IEEE/CVF conf. on comp. vision and pattern recogn.. 2023, p. 16816–26.
Xu, Willis, Lambourne, Cheng, Jayaraman, Furukawa (b18) 2022
Zou C, Yumer E, Yang J, Ceylan D, Hoiem D. 3d-prnn: Generating shape primitives with recurrent neural networks. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 900–9.
Xu, Jayaraman, Lambourne, Willis, Furukawa (b22) 2023
Cao W, Robinson T, Hua Y, Boussuge F, Colligan AR, Pan W. Graph representation of 3D CAD models for machining feature recognition with deep learning. In: ASME-IDETC computers and information in engineering conference. Vol. 84003, 2020, p. V11AT11A003.
Zhang, Guan, Jiang, Ning, Wang, Tan (b12) 2024; 11
Wang, Sun, Liu, Sarma, Bronstein, Solomon (b30) 2019; 38
Chou G, Bahat Y, Heide F. Diffusion-sdf: Conditional generative modeling of signed distance functions. In: Proceedings of the IEEE/CVF international conference on computer vision. 2023, p. 2262–72.
Willis, Pu, Luo, Chu, Du, Lambourne, Solar-Lezama, Matusik (b17) 2021; 40
Li, Pan, Bousseau, Mitra (b7) 2022; 41
Carion, Massa, Synnaeve, Usunier, Kirillov, Zagoruyko (b39) 2020
Wu R, Zhuang Y, Xu K, Zhang H, Chen B. Pq-net: A generative part seq2seq network for 3d shapes. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020, p. 829–38.
Wu R, Xiao C, Zheng C. DeepCAD: A Deep Generative Network for Computer-Aided Design Models. In: Proceedings of the IEEE/CVF international conference on computer vision. ICCV, 2021, p. 6772–82.
Ansaldi, De Floriani, Falcidieno (b31) 1985; 19
Gilmer, Schoenholz, Riley, Vinyals, Dahl (b38) 2017
Lambourne JG, Willis KD, Jayaraman PK, Sanghi A, Meltzer P, Shayani H. Brepnet: A topological message passing system for solid models. In: Proc. of the IEEE/CVF conf. on comp. vision and pattern recogn.. 2021, p. 12773–82.
Zou, Feng (b2) 2019; 127
Zhou S, Tang T, Zhou B. CADParser: A Learning Approach of Sequence Modeling for B-Rep CAD.. In: Proceedings of the IJCAI international joint conference on artificial intelligence. 2023, p. 1804–12.
Koch S, Matveev A, Jiang Z, Williams F, Artemov A, Burnaev E, Alexa M, Zorin D, Panozzo D. Abc: A big cad model dataset for geometric deep learning. In: Computer vision and pattern recognition conf.. 2019, p. 9601–11.
Zhang, Tang, Niessner, Wonka (b13) 2023; 42
Jayaraman PK, Sanghi A, Lambourne JG, Willis KD, Davies T, Shayani H, Morris N. Uv-net: Learning from boundary representations. In: Computer vision and pattern recognition conf.. 2021, p. 11703–12.
Vinyals O, Toshev A, Bengio S, Erhan D. Show and tell: A neural image caption generator. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, p. 3156–64.
Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y. Show, attend and tell: Neural image caption generation with visual attention. In: Int. conf. on machine learning. 2015, p. 2048–57.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8.
Shervashidze, Schweitzer, Van Leeuwen, Mehlhorn, Borgwardt (b42) 2011; 12
Ioffe, Szegedy (b35) 2015
Falcidieno (10.1016/j.cad.2024.103806_b1) 2014; Vol. 1
Vaswani (10.1016/j.cad.2024.103806_b19) 2017; 30
Guo (10.1016/j.cad.2024.103806_b11) 2022; 41
Qi (10.1016/j.cad.2024.103806_b9) 2017; 30
Ioffe (10.1016/j.cad.2024.103806_b35) 2015
Xu (10.1016/j.cad.2024.103806_b22) 2023
Jayaraman (10.1016/j.cad.2024.103806_b23) 2022
Willis (10.1016/j.cad.2024.103806_b17) 2021; 40
Li (10.1016/j.cad.2024.103806_b7) 2022; 41
Varley (10.1016/j.cad.2024.103806_b4) 2010; 42
10.1016/j.cad.2024.103806_b29
Ansaldi (10.1016/j.cad.2024.103806_b31) 1985; 19
Zhang (10.1016/j.cad.2024.103806_b28) 2018; 101
10.1016/j.cad.2024.103806_b8
10.1016/j.cad.2024.103806_b20
10.1016/j.cad.2024.103806_b41
10.1016/j.cad.2024.103806_b21
10.1016/j.cad.2024.103806_b24
10.1016/j.cad.2024.103806_b3
Shervashidze (10.1016/j.cad.2024.103806_b42) 2011; 12
10.1016/j.cad.2024.103806_b25
Colligan (10.1016/j.cad.2024.103806_b26) 2022; 147
Hu (10.1016/j.cad.2024.103806_b40) 2021; 28
Wang (10.1016/j.cad.2024.103806_b30) 2019; 38
Zhang (10.1016/j.cad.2024.103806_b12) 2024; 11
10.1016/j.cad.2024.103806_b16
Carion (10.1016/j.cad.2024.103806_b39) 2020
Kipf (10.1016/j.cad.2024.103806_b37) 2016
Li (10.1016/j.cad.2024.103806_b6) 2020; 39
Wang (10.1016/j.cad.2024.103806_b27) 2023; 85
Zhang (10.1016/j.cad.2024.103806_b13) 2023; 42
Gilmer (10.1016/j.cad.2024.103806_b38) 2017
Zou (10.1016/j.cad.2024.103806_b2) 2019; 127
Sharma (10.1016/j.cad.2024.103806_b10) 2020
10.1016/j.cad.2024.103806_b33
Xu (10.1016/j.cad.2024.103806_b18) 2022
10.1016/j.cad.2024.103806_b32
Zhang (10.1016/j.cad.2024.103806_b5) 2023
10.1016/j.cad.2024.103806_b34
10.1016/j.cad.2024.103806_b15
10.1016/j.cad.2024.103806_b14
10.1016/j.cad.2024.103806_b36
References_xml – reference: Zou C, Yumer E, Yang J, Ceylan D, Hoiem D. 3d-prnn: Generating shape primitives with recurrent neural networks. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 900–9.
– volume: 39
  start-page: 1
  year: 2020
  end-page: 14
  ident: b6
  article-title: Sketch2cad: Sequential cad modeling by sketching in context
  publication-title: ACM Trans Graph (TOG)
– volume: 30
  start-page: 6000
  year: 2017
  end-page: 6010
  ident: b19
  article-title: Attention is all you need
  publication-title: Adv Neural Inf Process Syst
– start-page: 213
  year: 2020
  end-page: 229
  ident: b39
  article-title: End-to-end object detection with transformers
  publication-title: European conference on computer vision
– volume: 42
  start-page: 1
  year: 2023
  end-page: 16
  ident: b13
  article-title: 3Dshape2vecset: A 3d shape representation for neural fields and generative diffusion models
  publication-title: ACM Trans Graph
– volume: 147
  year: 2022
  ident: b26
  article-title: Hierarchical cadnet: Learning from b-reps for machining feature recognition
  publication-title: Comput Aided Des
– year: 2023
  ident: b22
  article-title: Hierarchical neural coding for controllable CAD model generation
– reference: Zhou S, Tang T, Zhou B. CADParser: A Learning Approach of Sequence Modeling for B-Rep CAD.. In: Proceedings of the IJCAI international joint conference on artificial intelligence. 2023, p. 1804–12.
– reference: Vinyals O, Toshev A, Bengio S, Erhan D. Show and tell: A neural image caption generator. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, p. 3156–64.
– reference: Li L, Sung M, Dubrovina A, Yi L, Guibas LJ. Supervised fitting of geometric primitives to 3d point clouds. In: Proc. of the IEEE/CVF conf. on computer vision and pattern recognition. 2019, p. 2652–60.
– volume: 11
  start-page: 110
  year: 2024
  end-page: 134
  ident: b12
  article-title: Brep2Seq: a dataset and hierarchical deep learning network for reconstruction and generation of computer-aided design models
  publication-title: J Comput Des Eng
– volume: 38
  start-page: 1
  year: 2019
  end-page: 12
  ident: b30
  article-title: Dynamic graph cnn for learning on point clouds
  publication-title: ACM Trans Graph (TOG)
– volume: 12
  start-page: 2539
  year: 2011
  end-page: 2561
  ident: b42
  article-title: Weisfeiler-lehman graph kernels.
  publication-title: J Mach Learn Res
– year: 2022
  ident: b18
  article-title: SkexGen: Autoregressive generation of CAD construction sequences with disentangled codebooks
– volume: 127
  start-page: 59
  year: 2019
  end-page: 69
  ident: b2
  article-title: Push-pull direct modeling of solid CAD models
  publication-title: Adv Eng Softw
– start-page: 448
  year: 2015
  end-page: 456
  ident: b35
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: International conference on machine learning
– reference: Lambourne JG, Willis KD, Jayaraman PK, Sanghi A, Meltzer P, Shayani H. Brepnet: A topological message passing system for solid models. In: Proc. of the IEEE/CVF conf. on comp. vision and pattern recogn.. 2021, p. 12773–82.
– volume: 30
  start-page: 5105
  year: 2017
  end-page: 5114
  ident: b9
  article-title: Pointnet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: Adv Neural Inf Process Syst
– volume: 101
  start-page: 12
  year: 2018
  end-page: 22
  ident: b28
  article-title: Featurenet: Machining feature recognition based on 3d convolution neural network
  publication-title: Comput Aided Des
– volume: 42
  start-page: 279
  year: 2010
  end-page: 309
  ident: b4
  article-title: A new algorithm for finding faces in wireframes
  publication-title: Comput Aided Des
– reference: Cao W, Robinson T, Hua Y, Boussuge F, Colligan AR, Pan W. Graph representation of 3D CAD models for machining feature recognition with deep learning. In: ASME-IDETC computers and information in engineering conference. Vol. 84003, 2020, p. V11AT11A003.
– reference: Koch S, Matveev A, Jiang Z, Williams F, Artemov A, Burnaev E, Alexa M, Zorin D, Panozzo D. Abc: A big cad model dataset for geometric deep learning. In: Computer vision and pattern recognition conf.. 2019, p. 9601–11.
– volume: 40
  start-page: 1
  year: 2021
  end-page: 24
  ident: b17
  article-title: Fusion 360 gallery: A dataset and environment for programmatic cad construction from human design sequences
  publication-title: ACM Trans Graph (TOG)
– reference: Li P, Guo J, Zhang X, Yan D-M. SECAD-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude Operations. In: Proc. of the IEEE/CVF conf. on comp. vision and pattern recogn.. 2023, p. 16816–26.
– start-page: 261
  year: 2020
  end-page: 276
  ident: b10
  article-title: Parsenet: A parametric surface fitting network for 3d point clouds
  publication-title: Computer vision–ECCV conference
– reference: Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y. Show, attend and tell: Neural image caption generation with visual attention. In: Int. conf. on machine learning. 2015, p. 2048–57.
– reference: Wu R, Xiao C, Zheng C. DeepCAD: A Deep Generative Network for Computer-Aided Design Models. In: Proceedings of the IEEE/CVF international conference on computer vision. ICCV, 2021, p. 6772–82.
– start-page: 1263
  year: 2017
  end-page: 1272
  ident: b38
  article-title: Neural message passing for quantum chemistry
  publication-title: International conference on machine learning
– reference: He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8.
– reference: Jayaraman PK, Sanghi A, Lambourne JG, Willis KD, Davies T, Shayani H, Morris N. Uv-net: Learning from boundary representations. In: Computer vision and pattern recognition conf.. 2021, p. 11703–12.
– volume: 41
  start-page: 1
  year: 2022
  end-page: 18
  ident: b11
  article-title: Complexgen: Cad reconstruction by b-rep chain complex generation
  publication-title: ACM Trans Graph (TOG)
– year: 2023
  ident: b5
  article-title: Automatic 3D CAD models reconstruction from 2D orthographic drawings
  publication-title: Comput Graph
– volume: 19
  start-page: 131
  year: 1985
  end-page: 139
  ident: b31
  article-title: Geometric modeling of solid objects by using a face adjacency graph representation
  publication-title: ACM SIGGRAPH Comput Graph
– reference: Lee SH, Lee K. Partial entity structure: a compact non-manifold boundary representation based on partial topological entities. In: Proc. of the sixth ACM symp. on solid modeling and applications. 2001, p. 159–70.
– year: 2016
  ident: b37
  article-title: Semi-supervised classification with graph convolutional networks
– start-page: 2203.13944
  year: 2022
  ident: b23
  article-title: SolidGen: An autoregressive model for direct B-rep synthesis
– reference: Chou G, Bahat Y, Heide F. Diffusion-sdf: Conditional generative modeling of signed distance functions. In: Proceedings of the IEEE/CVF international conference on computer vision. 2023, p. 2262–72.
– reference: Wu R, Zhuang Y, Xu K, Zhang H, Chen B. Pq-net: A generative part seq2seq network for 3d shapes. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020, p. 829–38.
– volume: 28
  start-page: 4331
  year: 2021
  end-page: 4355
  ident: b40
  article-title: Geometric over-constraints detection: a survey
  publication-title: Arch Comput Methods Eng
– volume: Vol. 1
  start-page: 317
  year: 2014
  end-page: 344
  ident: b1
  article-title: Processing free form objects within a product development process framework
  publication-title: Advances in computers and information in engineering research
– volume: 41
  start-page: 1
  year: 2022
  end-page: 16
  ident: b7
  article-title: Free2CAD: parsing freehand drawings into CAD commands
  publication-title: ACM Trans Graph (TOG)
– volume: 85
  start-page: 387
  year: 2023
  end-page: 404
  ident: b27
  article-title: A hybrid learning framework for manufacturing feature recognition using graph neural networks
  publication-title: J Manuf Process
– volume: 41
  start-page: 1
  issue: 4
  year: 2022
  ident: 10.1016/j.cad.2024.103806_b7
  article-title: Free2CAD: parsing freehand drawings into CAD commands
  publication-title: ACM Trans Graph (TOG)
– volume: 11
  start-page: 110
  issue: 1
  year: 2024
  ident: 10.1016/j.cad.2024.103806_b12
  article-title: Brep2Seq: a dataset and hierarchical deep learning network for reconstruction and generation of computer-aided design models
  publication-title: J Comput Des Eng
– year: 2023
  ident: 10.1016/j.cad.2024.103806_b22
– volume: 42
  start-page: 1
  issue: 4
  year: 2023
  ident: 10.1016/j.cad.2024.103806_b13
  article-title: 3Dshape2vecset: A 3d shape representation for neural fields and generative diffusion models
  publication-title: ACM Trans Graph
– ident: 10.1016/j.cad.2024.103806_b20
  doi: 10.1109/ICCV48922.2021.00670
– volume: 147
  year: 2022
  ident: 10.1016/j.cad.2024.103806_b26
  article-title: Hierarchical cadnet: Learning from b-reps for machining feature recognition
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2022.103226
– volume: 127
  start-page: 59
  year: 2019
  ident: 10.1016/j.cad.2024.103806_b2
  article-title: Push-pull direct modeling of solid CAD models
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2018.10.003
– start-page: 448
  year: 2015
  ident: 10.1016/j.cad.2024.103806_b35
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– ident: 10.1016/j.cad.2024.103806_b14
  doi: 10.1109/ICCV51070.2023.00215
– ident: 10.1016/j.cad.2024.103806_b29
  doi: 10.1109/CVPR52729.2023.01613
– volume: 42
  start-page: 279
  issue: 4
  year: 2010
  ident: 10.1016/j.cad.2024.103806_b4
  article-title: A new algorithm for finding faces in wireframes
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2009.11.008
– year: 2022
  ident: 10.1016/j.cad.2024.103806_b18
– ident: 10.1016/j.cad.2024.103806_b32
  doi: 10.1109/CVPR46437.2021.01153
– volume: 12
  start-page: 2539
  issue: 9
  year: 2011
  ident: 10.1016/j.cad.2024.103806_b42
  article-title: Weisfeiler-lehman graph kernels.
  publication-title: J Mach Learn Res
– volume: 39
  start-page: 1
  issue: 6
  year: 2020
  ident: 10.1016/j.cad.2024.103806_b6
  article-title: Sketch2cad: Sequential cad modeling by sketching in context
  publication-title: ACM Trans Graph (TOG)
  doi: 10.1145/3414685.3417763
– start-page: 213
  year: 2020
  ident: 10.1016/j.cad.2024.103806_b39
  article-title: End-to-end object detection with transformers
– ident: 10.1016/j.cad.2024.103806_b21
  doi: 10.24963/ijcai.2023/200
– volume: 30
  start-page: 6000
  year: 2017
  ident: 10.1016/j.cad.2024.103806_b19
  article-title: Attention is all you need
  publication-title: Adv Neural Inf Process Syst
– start-page: 261
  year: 2020
  ident: 10.1016/j.cad.2024.103806_b10
  article-title: Parsenet: A parametric surface fitting network for 3d point clouds
– ident: 10.1016/j.cad.2024.103806_b24
  doi: 10.1109/CVPR46437.2021.01258
– year: 2016
  ident: 10.1016/j.cad.2024.103806_b37
– ident: 10.1016/j.cad.2024.103806_b15
  doi: 10.1109/ICCV.2017.103
– volume: 40
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.cad.2024.103806_b17
  article-title: Fusion 360 gallery: A dataset and environment for programmatic cad construction from human design sequences
  publication-title: ACM Trans Graph (TOG)
  doi: 10.1145/3450626.3459818
– year: 2023
  ident: 10.1016/j.cad.2024.103806_b5
  article-title: Automatic 3D CAD models reconstruction from 2D orthographic drawings
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2023.05.021
– volume: 38
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.cad.2024.103806_b30
  article-title: Dynamic graph cnn for learning on point clouds
  publication-title: ACM Trans Graph (TOG)
  doi: 10.1145/3326362
– ident: 10.1016/j.cad.2024.103806_b41
  doi: 10.1109/CVPR.2019.00983
– ident: 10.1016/j.cad.2024.103806_b25
  doi: 10.1115/DETC2020-22355
– ident: 10.1016/j.cad.2024.103806_b34
– ident: 10.1016/j.cad.2024.103806_b36
  doi: 10.1109/CVPR.2016.90
– volume: 19
  start-page: 131
  issue: 3
  year: 1985
  ident: 10.1016/j.cad.2024.103806_b31
  article-title: Geometric modeling of solid objects by using a face adjacency graph representation
  publication-title: ACM SIGGRAPH Comput Graph
  doi: 10.1145/325165.325218
– start-page: 2203.13944
  year: 2022
  ident: 10.1016/j.cad.2024.103806_b23
– ident: 10.1016/j.cad.2024.103806_b3
  doi: 10.1145/376957.376976
– volume: 41
  start-page: 1
  issue: 4
  year: 2022
  ident: 10.1016/j.cad.2024.103806_b11
  article-title: Complexgen: Cad reconstruction by b-rep chain complex generation
  publication-title: ACM Trans Graph (TOG)
  doi: 10.1145/3528223.3530078
– volume: 85
  start-page: 387
  year: 2023
  ident: 10.1016/j.cad.2024.103806_b27
  article-title: A hybrid learning framework for manufacturing feature recognition using graph neural networks
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2022.10.075
– volume: 30
  start-page: 5105
  year: 2017
  ident: 10.1016/j.cad.2024.103806_b9
  article-title: Pointnet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: Adv Neural Inf Process Syst
– volume: Vol. 1
  start-page: 317
  year: 2014
  ident: 10.1016/j.cad.2024.103806_b1
  article-title: Processing free form objects within a product development process framework
– ident: 10.1016/j.cad.2024.103806_b8
  doi: 10.1109/CVPR.2019.00276
– ident: 10.1016/j.cad.2024.103806_b16
  doi: 10.1109/CVPR42600.2020.00091
– ident: 10.1016/j.cad.2024.103806_b33
  doi: 10.1109/CVPR.2015.7298935
– start-page: 1263
  year: 2017
  ident: 10.1016/j.cad.2024.103806_b38
  article-title: Neural message passing for quantum chemistry
– volume: 101
  start-page: 12
  year: 2018
  ident: 10.1016/j.cad.2024.103806_b28
  article-title: Featurenet: Machining feature recognition based on 3d convolution neural network
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2018.03.006
– volume: 28
  start-page: 4331
  issue: 7
  year: 2021
  ident: 10.1016/j.cad.2024.103806_b40
  article-title: Geometric over-constraints detection: a survey
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-020-09509-y
SSID ssj0002139
Score 2.4315953
Snippet This paper introduces a novel framework capable of reconstructing editable parametric CAD models from dumb B-Rep models. First, each B-Rep model is represented...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 103806
SubjectTerms CAD model reconstruction
Computer Aided Engineering
Computer Science
Deep neural networks
Editable CAD models
Parametric modeling
Title eCAD-Net: Editable Parametric CAD Models Reconstruction from Dumb B-Rep Models Using Deep Neural Networks
URI https://dx.doi.org/10.1016/j.cad.2024.103806
https://paris1.hal.science/hal-04754103
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0010-4485
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002139
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0010-4485
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002139
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0010-4485
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002139
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 0010-4485
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002139
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0010-4485
  databaseCode: AKRWK
  dateStart: 19680901
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002139
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKWWBAPEV5yUJMSIbGcZIzW6FU4VUxgNQtsmNbFJVSqYWR344vDwoSYmB1HCf6LjrfOd99R8iRdoHOndTMxk4woQ0wBTJgkVFgRR4bB1gofNeP00dxPYgGDXJR18IgrbLy_aVPL7x1NXJaoXk6GQ6xxtenEgIiZEH6TAsryoVIsIvBycec5sGDsAyBvb_B2fWfzYLjlSsUC-WikAnHpke_700LT_Upa7Hr9FbJShUu0k75RmukYcfrZPmbiOAGGVqPJuvb2Rm9ND7T1yNL7xVyrlB8n_qLFBuejaYUU825YCzFyhLafXvR9Jz5OLyeVZAIaNf6EVTu8E_vl1Tx6SZ57F0-XKSsaqDA8kDCjFkeaxA8yQGk0cq0IXHQ1qGJeALWR16OC2UV15ESEEsb2ThUAJEE11ZcQbhFmuPXsd0mVDvJneLSBcYI4xKZQ26U4oEKuUyCvEWOa-iySamTkdUEsufM45whzlmJc4uIGtzsh7Ez78f_uu3QG-JreRTGTju3GY61RRIJP-s92Pnf2rtkiWNn3-JwZY80vS3svg83Zvqg-J4OyGLn6ibtfwK3FtKf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELWAHgoH1BYQtJRaVU9Iho3jJGNufGoLuysOuxI3y45tsQiWlXbLkd_emXx0Qao4cHUcJ3oTjWecN28Y--Vi4sqonQh5VEI5D8KCTkTmLQRV5j4CFQr3B3l3pC5vspsldtrWwhCtsvH9tU-vvHUzctigeTgdj6nGF1MJBRmxIDHTKpbZB5XJgjKwg-cFz0MmaR0Do8Oh6e2vzYrkVVpSC5Wq0gmnrkf_35yWb9tj1mrbufjE1pt4kR_Xr_SZLYXJF7b2QkVwg40DwikGYX7Ezz2m-u4-8GtLpCtS3-d4kVPHs_sZp1xzoRjLqbSEn_15cPxEYCDezqpYBPws4AhJd-DTBzVXfLbJRhfnw9OuaDooiDLRMBdB5g6ULEoA7Z31HSgidFzqEScIGHpFqWyw0mVWQa5DFvLUAmQaYsdKC-kWW5k8TsI24y5qGa3UMfFe-VjoEkpvrUxsKnWRlDtsv4XOTGuhDNMyyO4M4mwIZ1PjvMNUC655ZW2Djvyt236iIf4tT8rY3eOeobGOKjKFs56Sr-9b-wf72B32e6b3e3D1ja1KavNbnbTsshW0S_iOscfc7VXf1l_Ej9Q0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=eCAD-Net%3A+Editable+Parametric+CAD+Models+Reconstruction+from+Dumb+B-Rep+Models+Using+Deep+Neural+Networks&rft.jtitle=Computer+aided+design&rft.au=Zhang%2C+Chao&rft.au=Polette%2C+Arnaud&rft.au=Pinqui%C3%A9%2C+Romain&rft.au=Carasi%2C+Gregorio&rft.date=2025-01-01&rft.issn=0010-4485&rft.volume=178&rft.spage=103806&rft_id=info:doi/10.1016%2Fj.cad.2024.103806&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cad_2024_103806
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon