eCAD-Net: Editable Parametric CAD Models Reconstruction from Dumb B-Rep Models Using Deep Neural Networks
This paper introduces a novel framework capable of reconstructing editable parametric CAD models from dumb B-Rep models. First, each B-Rep model is represented with a network-friendly formalism based on UV-graph, which is then used as input of eCAD-Net, the new deep neural network-based algorithm th...
        Saved in:
      
    
          | Published in | Computer aided design Vol. 178; p. 103806 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.01.2025
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0010-4485 | 
| DOI | 10.1016/j.cad.2024.103806 | 
Cover
| Abstract | This paper introduces a novel framework capable of reconstructing editable parametric CAD models from dumb B-Rep models. First, each B-Rep model is represented with a network-friendly formalism based on UV-graph, which is then used as input of eCAD-Net, the new deep neural network-based algorithm that predicts feature-based CAD modeling sequences from the graph. Then, the sequences are scaled and fine-tuned using a feature matching algorithm that retrieves the exact parameter values from the input dumb CAD model. The output sequences are then converted in a series of CAD modeling operations to create an editable parametric CAD model in any CAD modeler. A cleaned dataset is used to learn and validate the proposed approach, and is provided with the article. The experimental results show that our approach outperforms existing methods on such reconstruction tasks, and it outputs editable parametric CAD models compatible with existing CAD modelers and ready for use in downstream engineering applications.
•A novel network to infer sequences of sketch-extrude operations from B-Rep models.•A feature-matching algorithm to fine-tune the sequences predicted by the networks.•A new algorithm to clean the dataset used for training and validation. | 
    
|---|---|
| AbstractList | This paper introduces a novel framework capable of reconstructing editable parametric CAD models from dumb B-Rep models. First, each B-Rep model is represented with a network-friendly formalism based on UV-graph, which is then used as input of eCAD-Net, the new deep neural network-based algorithm that predicts feature-based CAD modeling sequences from the graph. Then, the sequences are scaled and fine-tuned using a feature matching algorithm that retrieves the exact parameter values from the input dumb CAD model. The output sequences are then converted in a series of CAD modeling operations to create an editable parametric CAD model in any CAD modeler. A cleaned dataset is used to learn and validate the proposed approach, and is provided with the article. The experimental results show that our approach outperforms existing methods on such reconstruction tasks, and it outputs editable parametric CAD models compatible with existing CAD modelers and ready for use in downstream engineering applications.
•A novel network to infer sequences of sketch-extrude operations from B-Rep models.•A feature-matching algorithm to fine-tune the sequences predicted by the networks.•A new algorithm to clean the dataset used for training and validation. | 
    
| ArticleNumber | 103806 | 
    
| Author | Carasi, Gregorio De Charnace, Henri Polette, Arnaud Pernot, Jean-Philippe Zhang, Chao Pinquié, Romain  | 
    
| Author_xml | – sequence: 1 givenname: Chao surname: Zhang fullname: Zhang, Chao organization: Arts et Métiers Institute of Technology, LISPEN, F-13617 Aix-en-Provence, France – sequence: 2 givenname: Arnaud surname: Polette fullname: Polette, Arnaud organization: Arts et Métiers Institute of Technology, LISPEN, F-13617 Aix-en-Provence, France – sequence: 3 givenname: Romain surname: Pinquié fullname: Pinquié, Romain organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France – sequence: 4 givenname: Gregorio surname: Carasi fullname: Carasi, Gregorio organization: Cognitive Design Systems, France – sequence: 5 givenname: Henri surname: De Charnace fullname: De Charnace, Henri organization: Cognitive Design Systems, France – sequence: 6 givenname: Jean-Philippe surname: Pernot fullname: Pernot, Jean-Philippe email: jean-philippe.pernot@ensam.eu organization: Arts et Métiers Institute of Technology, LISPEN, F-13617 Aix-en-Provence, France  | 
    
| BackLink | https://paris1.hal.science/hal-04754103$$DView record in HAL | 
    
| BookMark | eNp9kDFPwzAQhT0UiRb4AWxeGVJsx0kcmEpbKFIpqKKz5TgXcEniyk6L-Pe4CjAyPd279066b4QGrW0BoUtKxpTQ9Ho71qocM8J4mGNB0gEaEkJJxLlITtHI-y0hhNE4HyID08ksWkF3g-el6VRRA35RTjXQOaNxWOInW0Lt8Rq0bX3n9roztsWVsw2e7ZsC30Vr2P2mNt60b3gGwVnB3qk6SPdp3Yc_RyeVqj1c_OgZ2tzPX6eLaPn88DidLCNNc9FFwNJCcJZpIfKyUCURWSVIEZcJywQkjFWMK1CsSBQXaQ4JpLESIslFRRRTIj5DV_3dd1XLnTONcl_SKiMXk6U8eoRnCQ9gDjRkaZ_VznrvoPorUCKPLOVWBpbyyFL2LEPntu-Ed-FgwEmvDbQaSuNAd7K05p_2N8TTfh8 | 
    
| Cites_doi | 10.1109/ICCV48922.2021.00670 10.1016/j.cad.2022.103226 10.1016/j.advengsoft.2018.10.003 10.1109/ICCV51070.2023.00215 10.1109/CVPR52729.2023.01613 10.1016/j.cad.2009.11.008 10.1109/CVPR46437.2021.01153 10.1145/3414685.3417763 10.24963/ijcai.2023/200 10.1109/CVPR46437.2021.01258 10.1109/ICCV.2017.103 10.1145/3450626.3459818 10.1016/j.cag.2023.05.021 10.1145/3326362 10.1109/CVPR.2019.00983 10.1115/DETC2020-22355 10.1109/CVPR.2016.90 10.1145/325165.325218 10.1145/376957.376976 10.1145/3528223.3530078 10.1016/j.jmapro.2022.10.075 10.1109/CVPR.2019.00276 10.1109/CVPR42600.2020.00091 10.1109/CVPR.2015.7298935 10.1016/j.cad.2018.03.006 10.1007/s11831-020-09509-y  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | AAYXX CITATION 1XC  | 
    
| DOI | 10.1016/j.cad.2024.103806 | 
    
| DatabaseName | CrossRef Hyper Article en Ligne (HAL)  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| ExternalDocumentID | oai:HAL:hal-04754103v1 10_1016_j_cad_2024_103806 S0010448524001337  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABAOU ABBOA ABDPE ABEFU ABFNM ABFRF ABMAC ABXDB ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 1XC  | 
    
| ID | FETCH-LOGICAL-c198t-e26b8427c889dbad087f80b3d5278e522f24aea2b5a4869e5e63a88598f0a2a83 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0010-4485 | 
    
| IngestDate | Tue Oct 14 20:53:45 EDT 2025 Wed Oct 01 04:14:22 EDT 2025 Sat Nov 02 16:00:14 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Deep neural networks Parametric modeling Editable CAD models CAD model reconstruction  | 
    
| Language | English | 
    
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c198t-e26b8427c889dbad087f80b3d5278e522f24aea2b5a4869e5e63a88598f0a2a83 | 
    
| ORCID | 0000-0002-9061-2937 0000-0001-5913-4714 0000-0002-8572-6454  | 
    
| ParticipantIDs | hal_primary_oai_HAL_hal_04754103v1 crossref_primary_10_1016_j_cad_2024_103806 elsevier_sciencedirect_doi_10_1016_j_cad_2024_103806  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2025 2025-01-00 2025-01  | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Computer aided design | 
    
| PublicationYear | 2025 | 
    
| Publisher | Elsevier Ltd Elsevier  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier  | 
    
| References | Li L, Sung M, Dubrovina A, Yi L, Guibas LJ. Supervised fitting of geometric primitives to 3d point clouds. In: Proc. of the IEEE/CVF conf. on computer vision and pattern recognition. 2019, p. 2652–60. Lee SH, Lee K. Partial entity structure: a compact non-manifold boundary representation based on partial topological entities. In: Proc. of the sixth ACM symp. on solid modeling and applications. 2001, p. 159–70. Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b19) 2017; 30 Jayaraman, Lambourne, Desai, Willis, Sanghi, Morris (b23) 2022 Varley, Company (b4) 2010; 42 Li, Pan, Bousseau, Mitra (b6) 2020; 39 Wang, Yang, You (b27) 2023; 85 Hu, Kleiner, Pernot, Zhang, Huang, Zhao, Yeung (b40) 2021; 28 Zhang, Pinquié, Polette, Carasi, De Charnace, Pernot (b5) 2023 Guo, Liu, Pan, Liu, Tong, Guo (b11) 2022; 41 Colligan, Robinson, Nolan, Hua, Cao (b26) 2022; 147 Qi, Yi, Su, Guibas (b9) 2017; 30 Sharma, Liu, Maji, Kalogerakis, Chaudhuri, Měch (b10) 2020 Zhang, Jaiswal, Rai (b28) 2018; 101 Kipf, Welling (b37) 2016 Falcidieno, Giannini, Léon, Pernot (b1) 2014; Vol. 1 Li P, Guo J, Zhang X, Yan D-M. SECAD-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude Operations. In: Proc. of the IEEE/CVF conf. on comp. vision and pattern recogn.. 2023, p. 16816–26. Xu, Willis, Lambourne, Cheng, Jayaraman, Furukawa (b18) 2022 Zou C, Yumer E, Yang J, Ceylan D, Hoiem D. 3d-prnn: Generating shape primitives with recurrent neural networks. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 900–9. Xu, Jayaraman, Lambourne, Willis, Furukawa (b22) 2023 Cao W, Robinson T, Hua Y, Boussuge F, Colligan AR, Pan W. Graph representation of 3D CAD models for machining feature recognition with deep learning. In: ASME-IDETC computers and information in engineering conference. Vol. 84003, 2020, p. V11AT11A003. Zhang, Guan, Jiang, Ning, Wang, Tan (b12) 2024; 11 Wang, Sun, Liu, Sarma, Bronstein, Solomon (b30) 2019; 38 Chou G, Bahat Y, Heide F. Diffusion-sdf: Conditional generative modeling of signed distance functions. In: Proceedings of the IEEE/CVF international conference on computer vision. 2023, p. 2262–72. Willis, Pu, Luo, Chu, Du, Lambourne, Solar-Lezama, Matusik (b17) 2021; 40 Li, Pan, Bousseau, Mitra (b7) 2022; 41 Carion, Massa, Synnaeve, Usunier, Kirillov, Zagoruyko (b39) 2020 Wu R, Zhuang Y, Xu K, Zhang H, Chen B. Pq-net: A generative part seq2seq network for 3d shapes. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020, p. 829–38. Wu R, Xiao C, Zheng C. DeepCAD: A Deep Generative Network for Computer-Aided Design Models. In: Proceedings of the IEEE/CVF international conference on computer vision. ICCV, 2021, p. 6772–82. Ansaldi, De Floriani, Falcidieno (b31) 1985; 19 Gilmer, Schoenholz, Riley, Vinyals, Dahl (b38) 2017 Lambourne JG, Willis KD, Jayaraman PK, Sanghi A, Meltzer P, Shayani H. Brepnet: A topological message passing system for solid models. In: Proc. of the IEEE/CVF conf. on comp. vision and pattern recogn.. 2021, p. 12773–82. Zou, Feng (b2) 2019; 127 Zhou S, Tang T, Zhou B. CADParser: A Learning Approach of Sequence Modeling for B-Rep CAD.. In: Proceedings of the IJCAI international joint conference on artificial intelligence. 2023, p. 1804–12. Koch S, Matveev A, Jiang Z, Williams F, Artemov A, Burnaev E, Alexa M, Zorin D, Panozzo D. Abc: A big cad model dataset for geometric deep learning. In: Computer vision and pattern recognition conf.. 2019, p. 9601–11. Zhang, Tang, Niessner, Wonka (b13) 2023; 42 Jayaraman PK, Sanghi A, Lambourne JG, Willis KD, Davies T, Shayani H, Morris N. Uv-net: Learning from boundary representations. In: Computer vision and pattern recognition conf.. 2021, p. 11703–12. Vinyals O, Toshev A, Bengio S, Erhan D. Show and tell: A neural image caption generator. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, p. 3156–64. Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y. Show, attend and tell: Neural image caption generation with visual attention. In: Int. conf. on machine learning. 2015, p. 2048–57. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8. Shervashidze, Schweitzer, Van Leeuwen, Mehlhorn, Borgwardt (b42) 2011; 12 Ioffe, Szegedy (b35) 2015 Falcidieno (10.1016/j.cad.2024.103806_b1) 2014; Vol. 1 Vaswani (10.1016/j.cad.2024.103806_b19) 2017; 30 Guo (10.1016/j.cad.2024.103806_b11) 2022; 41 Qi (10.1016/j.cad.2024.103806_b9) 2017; 30 Ioffe (10.1016/j.cad.2024.103806_b35) 2015 Xu (10.1016/j.cad.2024.103806_b22) 2023 Jayaraman (10.1016/j.cad.2024.103806_b23) 2022 Willis (10.1016/j.cad.2024.103806_b17) 2021; 40 Li (10.1016/j.cad.2024.103806_b7) 2022; 41 Varley (10.1016/j.cad.2024.103806_b4) 2010; 42 10.1016/j.cad.2024.103806_b29 Ansaldi (10.1016/j.cad.2024.103806_b31) 1985; 19 Zhang (10.1016/j.cad.2024.103806_b28) 2018; 101 10.1016/j.cad.2024.103806_b8 10.1016/j.cad.2024.103806_b20 10.1016/j.cad.2024.103806_b41 10.1016/j.cad.2024.103806_b21 10.1016/j.cad.2024.103806_b24 10.1016/j.cad.2024.103806_b3 Shervashidze (10.1016/j.cad.2024.103806_b42) 2011; 12 10.1016/j.cad.2024.103806_b25 Colligan (10.1016/j.cad.2024.103806_b26) 2022; 147 Hu (10.1016/j.cad.2024.103806_b40) 2021; 28 Wang (10.1016/j.cad.2024.103806_b30) 2019; 38 Zhang (10.1016/j.cad.2024.103806_b12) 2024; 11 10.1016/j.cad.2024.103806_b16 Carion (10.1016/j.cad.2024.103806_b39) 2020 Kipf (10.1016/j.cad.2024.103806_b37) 2016 Li (10.1016/j.cad.2024.103806_b6) 2020; 39 Wang (10.1016/j.cad.2024.103806_b27) 2023; 85 Zhang (10.1016/j.cad.2024.103806_b13) 2023; 42 Gilmer (10.1016/j.cad.2024.103806_b38) 2017 Zou (10.1016/j.cad.2024.103806_b2) 2019; 127 Sharma (10.1016/j.cad.2024.103806_b10) 2020 10.1016/j.cad.2024.103806_b33 Xu (10.1016/j.cad.2024.103806_b18) 2022 10.1016/j.cad.2024.103806_b32 Zhang (10.1016/j.cad.2024.103806_b5) 2023 10.1016/j.cad.2024.103806_b34 10.1016/j.cad.2024.103806_b15 10.1016/j.cad.2024.103806_b14 10.1016/j.cad.2024.103806_b36  | 
    
| References_xml | – reference: Zou C, Yumer E, Yang J, Ceylan D, Hoiem D. 3d-prnn: Generating shape primitives with recurrent neural networks. In: Proceedings of the IEEE international conference on computer vision. 2017, p. 900–9. – volume: 39 start-page: 1 year: 2020 end-page: 14 ident: b6 article-title: Sketch2cad: Sequential cad modeling by sketching in context publication-title: ACM Trans Graph (TOG) – volume: 30 start-page: 6000 year: 2017 end-page: 6010 ident: b19 article-title: Attention is all you need publication-title: Adv Neural Inf Process Syst – start-page: 213 year: 2020 end-page: 229 ident: b39 article-title: End-to-end object detection with transformers publication-title: European conference on computer vision – volume: 42 start-page: 1 year: 2023 end-page: 16 ident: b13 article-title: 3Dshape2vecset: A 3d shape representation for neural fields and generative diffusion models publication-title: ACM Trans Graph – volume: 147 year: 2022 ident: b26 article-title: Hierarchical cadnet: Learning from b-reps for machining feature recognition publication-title: Comput Aided Des – year: 2023 ident: b22 article-title: Hierarchical neural coding for controllable CAD model generation – reference: Zhou S, Tang T, Zhou B. CADParser: A Learning Approach of Sequence Modeling for B-Rep CAD.. In: Proceedings of the IJCAI international joint conference on artificial intelligence. 2023, p. 1804–12. – reference: Vinyals O, Toshev A, Bengio S, Erhan D. Show and tell: A neural image caption generator. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, p. 3156–64. – reference: Li L, Sung M, Dubrovina A, Yi L, Guibas LJ. Supervised fitting of geometric primitives to 3d point clouds. In: Proc. of the IEEE/CVF conf. on computer vision and pattern recognition. 2019, p. 2652–60. – volume: 11 start-page: 110 year: 2024 end-page: 134 ident: b12 article-title: Brep2Seq: a dataset and hierarchical deep learning network for reconstruction and generation of computer-aided design models publication-title: J Comput Des Eng – volume: 38 start-page: 1 year: 2019 end-page: 12 ident: b30 article-title: Dynamic graph cnn for learning on point clouds publication-title: ACM Trans Graph (TOG) – volume: 12 start-page: 2539 year: 2011 end-page: 2561 ident: b42 article-title: Weisfeiler-lehman graph kernels. publication-title: J Mach Learn Res – year: 2022 ident: b18 article-title: SkexGen: Autoregressive generation of CAD construction sequences with disentangled codebooks – volume: 127 start-page: 59 year: 2019 end-page: 69 ident: b2 article-title: Push-pull direct modeling of solid CAD models publication-title: Adv Eng Softw – start-page: 448 year: 2015 end-page: 456 ident: b35 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: International conference on machine learning – reference: Lambourne JG, Willis KD, Jayaraman PK, Sanghi A, Meltzer P, Shayani H. Brepnet: A topological message passing system for solid models. In: Proc. of the IEEE/CVF conf. on comp. vision and pattern recogn.. 2021, p. 12773–82. – volume: 30 start-page: 5105 year: 2017 end-page: 5114 ident: b9 article-title: Pointnet++: Deep hierarchical feature learning on point sets in a metric space publication-title: Adv Neural Inf Process Syst – volume: 101 start-page: 12 year: 2018 end-page: 22 ident: b28 article-title: Featurenet: Machining feature recognition based on 3d convolution neural network publication-title: Comput Aided Des – volume: 42 start-page: 279 year: 2010 end-page: 309 ident: b4 article-title: A new algorithm for finding faces in wireframes publication-title: Comput Aided Des – reference: Cao W, Robinson T, Hua Y, Boussuge F, Colligan AR, Pan W. Graph representation of 3D CAD models for machining feature recognition with deep learning. In: ASME-IDETC computers and information in engineering conference. Vol. 84003, 2020, p. V11AT11A003. – reference: Koch S, Matveev A, Jiang Z, Williams F, Artemov A, Burnaev E, Alexa M, Zorin D, Panozzo D. Abc: A big cad model dataset for geometric deep learning. In: Computer vision and pattern recognition conf.. 2019, p. 9601–11. – volume: 40 start-page: 1 year: 2021 end-page: 24 ident: b17 article-title: Fusion 360 gallery: A dataset and environment for programmatic cad construction from human design sequences publication-title: ACM Trans Graph (TOG) – reference: Li P, Guo J, Zhang X, Yan D-M. SECAD-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude Operations. In: Proc. of the IEEE/CVF conf. on comp. vision and pattern recogn.. 2023, p. 16816–26. – start-page: 261 year: 2020 end-page: 276 ident: b10 article-title: Parsenet: A parametric surface fitting network for 3d point clouds publication-title: Computer vision–ECCV conference – reference: Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y. Show, attend and tell: Neural image caption generation with visual attention. In: Int. conf. on machine learning. 2015, p. 2048–57. – reference: Wu R, Xiao C, Zheng C. DeepCAD: A Deep Generative Network for Computer-Aided Design Models. In: Proceedings of the IEEE/CVF international conference on computer vision. ICCV, 2021, p. 6772–82. – start-page: 1263 year: 2017 end-page: 1272 ident: b38 article-title: Neural message passing for quantum chemistry publication-title: International conference on machine learning – reference: He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 770–8. – reference: Jayaraman PK, Sanghi A, Lambourne JG, Willis KD, Davies T, Shayani H, Morris N. Uv-net: Learning from boundary representations. In: Computer vision and pattern recognition conf.. 2021, p. 11703–12. – volume: 41 start-page: 1 year: 2022 end-page: 18 ident: b11 article-title: Complexgen: Cad reconstruction by b-rep chain complex generation publication-title: ACM Trans Graph (TOG) – year: 2023 ident: b5 article-title: Automatic 3D CAD models reconstruction from 2D orthographic drawings publication-title: Comput Graph – volume: 19 start-page: 131 year: 1985 end-page: 139 ident: b31 article-title: Geometric modeling of solid objects by using a face adjacency graph representation publication-title: ACM SIGGRAPH Comput Graph – reference: Lee SH, Lee K. Partial entity structure: a compact non-manifold boundary representation based on partial topological entities. In: Proc. of the sixth ACM symp. on solid modeling and applications. 2001, p. 159–70. – year: 2016 ident: b37 article-title: Semi-supervised classification with graph convolutional networks – start-page: 2203.13944 year: 2022 ident: b23 article-title: SolidGen: An autoregressive model for direct B-rep synthesis – reference: Chou G, Bahat Y, Heide F. Diffusion-sdf: Conditional generative modeling of signed distance functions. In: Proceedings of the IEEE/CVF international conference on computer vision. 2023, p. 2262–72. – reference: Wu R, Zhuang Y, Xu K, Zhang H, Chen B. Pq-net: A generative part seq2seq network for 3d shapes. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020, p. 829–38. – volume: 28 start-page: 4331 year: 2021 end-page: 4355 ident: b40 article-title: Geometric over-constraints detection: a survey publication-title: Arch Comput Methods Eng – volume: Vol. 1 start-page: 317 year: 2014 end-page: 344 ident: b1 article-title: Processing free form objects within a product development process framework publication-title: Advances in computers and information in engineering research – volume: 41 start-page: 1 year: 2022 end-page: 16 ident: b7 article-title: Free2CAD: parsing freehand drawings into CAD commands publication-title: ACM Trans Graph (TOG) – volume: 85 start-page: 387 year: 2023 end-page: 404 ident: b27 article-title: A hybrid learning framework for manufacturing feature recognition using graph neural networks publication-title: J Manuf Process – volume: 41 start-page: 1 issue: 4 year: 2022 ident: 10.1016/j.cad.2024.103806_b7 article-title: Free2CAD: parsing freehand drawings into CAD commands publication-title: ACM Trans Graph (TOG) – volume: 11 start-page: 110 issue: 1 year: 2024 ident: 10.1016/j.cad.2024.103806_b12 article-title: Brep2Seq: a dataset and hierarchical deep learning network for reconstruction and generation of computer-aided design models publication-title: J Comput Des Eng – year: 2023 ident: 10.1016/j.cad.2024.103806_b22 – volume: 42 start-page: 1 issue: 4 year: 2023 ident: 10.1016/j.cad.2024.103806_b13 article-title: 3Dshape2vecset: A 3d shape representation for neural fields and generative diffusion models publication-title: ACM Trans Graph – ident: 10.1016/j.cad.2024.103806_b20 doi: 10.1109/ICCV48922.2021.00670 – volume: 147 year: 2022 ident: 10.1016/j.cad.2024.103806_b26 article-title: Hierarchical cadnet: Learning from b-reps for machining feature recognition publication-title: Comput Aided Des doi: 10.1016/j.cad.2022.103226 – volume: 127 start-page: 59 year: 2019 ident: 10.1016/j.cad.2024.103806_b2 article-title: Push-pull direct modeling of solid CAD models publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2018.10.003 – start-page: 448 year: 2015 ident: 10.1016/j.cad.2024.103806_b35 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – ident: 10.1016/j.cad.2024.103806_b14 doi: 10.1109/ICCV51070.2023.00215 – ident: 10.1016/j.cad.2024.103806_b29 doi: 10.1109/CVPR52729.2023.01613 – volume: 42 start-page: 279 issue: 4 year: 2010 ident: 10.1016/j.cad.2024.103806_b4 article-title: A new algorithm for finding faces in wireframes publication-title: Comput Aided Des doi: 10.1016/j.cad.2009.11.008 – year: 2022 ident: 10.1016/j.cad.2024.103806_b18 – ident: 10.1016/j.cad.2024.103806_b32 doi: 10.1109/CVPR46437.2021.01153 – volume: 12 start-page: 2539 issue: 9 year: 2011 ident: 10.1016/j.cad.2024.103806_b42 article-title: Weisfeiler-lehman graph kernels. publication-title: J Mach Learn Res – volume: 39 start-page: 1 issue: 6 year: 2020 ident: 10.1016/j.cad.2024.103806_b6 article-title: Sketch2cad: Sequential cad modeling by sketching in context publication-title: ACM Trans Graph (TOG) doi: 10.1145/3414685.3417763 – start-page: 213 year: 2020 ident: 10.1016/j.cad.2024.103806_b39 article-title: End-to-end object detection with transformers – ident: 10.1016/j.cad.2024.103806_b21 doi: 10.24963/ijcai.2023/200 – volume: 30 start-page: 6000 year: 2017 ident: 10.1016/j.cad.2024.103806_b19 article-title: Attention is all you need publication-title: Adv Neural Inf Process Syst – start-page: 261 year: 2020 ident: 10.1016/j.cad.2024.103806_b10 article-title: Parsenet: A parametric surface fitting network for 3d point clouds – ident: 10.1016/j.cad.2024.103806_b24 doi: 10.1109/CVPR46437.2021.01258 – year: 2016 ident: 10.1016/j.cad.2024.103806_b37 – ident: 10.1016/j.cad.2024.103806_b15 doi: 10.1109/ICCV.2017.103 – volume: 40 start-page: 1 issue: 4 year: 2021 ident: 10.1016/j.cad.2024.103806_b17 article-title: Fusion 360 gallery: A dataset and environment for programmatic cad construction from human design sequences publication-title: ACM Trans Graph (TOG) doi: 10.1145/3450626.3459818 – year: 2023 ident: 10.1016/j.cad.2024.103806_b5 article-title: Automatic 3D CAD models reconstruction from 2D orthographic drawings publication-title: Comput Graph doi: 10.1016/j.cag.2023.05.021 – volume: 38 start-page: 1 issue: 5 year: 2019 ident: 10.1016/j.cad.2024.103806_b30 article-title: Dynamic graph cnn for learning on point clouds publication-title: ACM Trans Graph (TOG) doi: 10.1145/3326362 – ident: 10.1016/j.cad.2024.103806_b41 doi: 10.1109/CVPR.2019.00983 – ident: 10.1016/j.cad.2024.103806_b25 doi: 10.1115/DETC2020-22355 – ident: 10.1016/j.cad.2024.103806_b34 – ident: 10.1016/j.cad.2024.103806_b36 doi: 10.1109/CVPR.2016.90 – volume: 19 start-page: 131 issue: 3 year: 1985 ident: 10.1016/j.cad.2024.103806_b31 article-title: Geometric modeling of solid objects by using a face adjacency graph representation publication-title: ACM SIGGRAPH Comput Graph doi: 10.1145/325165.325218 – start-page: 2203.13944 year: 2022 ident: 10.1016/j.cad.2024.103806_b23 – ident: 10.1016/j.cad.2024.103806_b3 doi: 10.1145/376957.376976 – volume: 41 start-page: 1 issue: 4 year: 2022 ident: 10.1016/j.cad.2024.103806_b11 article-title: Complexgen: Cad reconstruction by b-rep chain complex generation publication-title: ACM Trans Graph (TOG) doi: 10.1145/3528223.3530078 – volume: 85 start-page: 387 year: 2023 ident: 10.1016/j.cad.2024.103806_b27 article-title: A hybrid learning framework for manufacturing feature recognition using graph neural networks publication-title: J Manuf Process doi: 10.1016/j.jmapro.2022.10.075 – volume: 30 start-page: 5105 year: 2017 ident: 10.1016/j.cad.2024.103806_b9 article-title: Pointnet++: Deep hierarchical feature learning on point sets in a metric space publication-title: Adv Neural Inf Process Syst – volume: Vol. 1 start-page: 317 year: 2014 ident: 10.1016/j.cad.2024.103806_b1 article-title: Processing free form objects within a product development process framework – ident: 10.1016/j.cad.2024.103806_b8 doi: 10.1109/CVPR.2019.00276 – ident: 10.1016/j.cad.2024.103806_b16 doi: 10.1109/CVPR42600.2020.00091 – ident: 10.1016/j.cad.2024.103806_b33 doi: 10.1109/CVPR.2015.7298935 – start-page: 1263 year: 2017 ident: 10.1016/j.cad.2024.103806_b38 article-title: Neural message passing for quantum chemistry – volume: 101 start-page: 12 year: 2018 ident: 10.1016/j.cad.2024.103806_b28 article-title: Featurenet: Machining feature recognition based on 3d convolution neural network publication-title: Comput Aided Des doi: 10.1016/j.cad.2018.03.006 – volume: 28 start-page: 4331 issue: 7 year: 2021 ident: 10.1016/j.cad.2024.103806_b40 article-title: Geometric over-constraints detection: a survey publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-020-09509-y  | 
    
| SSID | ssj0002139 | 
    
| Score | 2.4315953 | 
    
| Snippet | This paper introduces a novel framework capable of reconstructing editable parametric CAD models from dumb B-Rep models. First, each B-Rep model is represented... | 
    
| SourceID | hal crossref elsevier  | 
    
| SourceType | Open Access Repository Index Database Publisher  | 
    
| StartPage | 103806 | 
    
| SubjectTerms | CAD model reconstruction Computer Aided Engineering Computer Science Deep neural networks Editable CAD models Parametric modeling  | 
    
| Title | eCAD-Net: Editable Parametric CAD Models Reconstruction from Dumb B-Rep Models Using Deep Neural Networks | 
    
| URI | https://dx.doi.org/10.1016/j.cad.2024.103806 https://paris1.hal.science/hal-04754103  | 
    
| Volume | 178 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0010-4485 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002139 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0010-4485 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002139 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0010-4485 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002139 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0010-4485 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002139 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0010-4485 databaseCode: AKRWK dateStart: 19680901 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002139 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKWWBAPEV5yUJMSIbGcZIzW6FU4VUxgNQtsmNbFJVSqYWR344vDwoSYmB1HCf6LjrfOd99R8iRdoHOndTMxk4woQ0wBTJgkVFgRR4bB1gofNeP00dxPYgGDXJR18IgrbLy_aVPL7x1NXJaoXk6GQ6xxtenEgIiZEH6TAsryoVIsIvBycec5sGDsAyBvb_B2fWfzYLjlSsUC-WikAnHpke_700LT_Upa7Hr9FbJShUu0k75RmukYcfrZPmbiOAGGVqPJuvb2Rm9ND7T1yNL7xVyrlB8n_qLFBuejaYUU825YCzFyhLafXvR9Jz5OLyeVZAIaNf6EVTu8E_vl1Tx6SZ57F0-XKSsaqDA8kDCjFkeaxA8yQGk0cq0IXHQ1qGJeALWR16OC2UV15ESEEsb2ThUAJEE11ZcQbhFmuPXsd0mVDvJneLSBcYI4xKZQ26U4oEKuUyCvEWOa-iySamTkdUEsufM45whzlmJc4uIGtzsh7Ez78f_uu3QG-JreRTGTju3GY61RRIJP-s92Pnf2rtkiWNn3-JwZY80vS3svg83Zvqg-J4OyGLn6ibtfwK3FtKf | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELWAHgoH1BYQtJRaVU9Iho3jJGNufGoLuysOuxI3y45tsQiWlXbLkd_emXx0Qao4cHUcJ3oTjWecN28Y--Vi4sqonQh5VEI5D8KCTkTmLQRV5j4CFQr3B3l3pC5vspsldtrWwhCtsvH9tU-vvHUzctigeTgdj6nGF1MJBRmxIDHTKpbZB5XJgjKwg-cFz0MmaR0Do8Oh6e2vzYrkVVpSC5Wq0gmnrkf_35yWb9tj1mrbufjE1pt4kR_Xr_SZLYXJF7b2QkVwg40DwikGYX7Ezz2m-u4-8GtLpCtS3-d4kVPHs_sZp1xzoRjLqbSEn_15cPxEYCDezqpYBPws4AhJd-DTBzVXfLbJRhfnw9OuaDooiDLRMBdB5g6ULEoA7Z31HSgidFzqEScIGHpFqWyw0mVWQa5DFvLUAmQaYsdKC-kWW5k8TsI24y5qGa3UMfFe-VjoEkpvrUxsKnWRlDtsv4XOTGuhDNMyyO4M4mwIZ1PjvMNUC655ZW2Djvyt236iIf4tT8rY3eOeobGOKjKFs56Sr-9b-wf72B32e6b3e3D1ja1KavNbnbTsshW0S_iOscfc7VXf1l_Ej9Q0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=eCAD-Net%3A+Editable+Parametric+CAD+Models+Reconstruction+from+Dumb+B-Rep+Models+Using+Deep+Neural+Networks&rft.jtitle=Computer+aided+design&rft.au=Zhang%2C+Chao&rft.au=Polette%2C+Arnaud&rft.au=Pinqui%C3%A9%2C+Romain&rft.au=Carasi%2C+Gregorio&rft.date=2025-01-01&rft.issn=0010-4485&rft.volume=178&rft.spage=103806&rft_id=info:doi/10.1016%2Fj.cad.2024.103806&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cad_2024_103806 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |