Thermodynamics of Barrow Einstein-power-Yang-Mills AdS black hole in the restricted phase space

Due to quantum gravitational effects, Barrow proposed that the black hole horizon is "fractalized" into a sphereflake. Based on this idea, in this work we investigate the phase structure and stability of Einstein-Power-Yang-Mills (EPYM) AdS black holes in the restricted phase space, assumi...

Full description

Saved in:
Bibliographic Details
Published inChinese physics C Vol. 49; no. 7; p. 75102
Main Authors Du 杜, Yun-Zhi 云芝, Zhao 赵, Hui-Hua 惠华, Zhang 张, Yang 旸, Gu 古, Qiang 强
Format Journal Article
LanguageEnglish
Published 01.07.2025
Online AccessGet full text
ISSN1674-1137
2058-6132
DOI10.1088/1674-1137/adc7e1

Cover

Abstract Due to quantum gravitational effects, Barrow proposed that the black hole horizon is "fractalized" into a sphereflake. Based on this idea, in this work we investigate the phase structure and stability of Einstein-Power-Yang-Mills (EPYM) AdS black holes in the restricted phase space, assuming the black hole event horizon has a fractal structure. From the first law of thermodynamics for EPYM AdS black holes in the restricted phase space, we find that the mass parameter should be interpreted as the internal energy. Moreover, the Smarr relation for this system in the restricted phase space is not a homogeneous function due to the fractal structure, which differs significantly from the corresponding relation in the extended phase space. The presence of a fractal structure can be regarded as a probe for phase transitions. Interestingly, for a fixed central charge in the EPYM AdS black hole system with a fractal structure, a supercritical phase transition also exists, similar to the case in the standard EPYM AdS black hole system. Furthermore, we investigate the effects of the fractal parameter ∆ and non-linear Yang-Mills parameter γ on the thermodynamical stability of this system are also investigated.
AbstractList Due to quantum gravitational effects, Barrow proposed that the black hole horizon is "fractalized" into a sphereflake. Based on this idea, in this work we investigate the phase structure and stability of Einstein-Power-Yang-Mills (EPYM) AdS black holes in the restricted phase space, assuming the black hole event horizon has a fractal structure. From the first law of thermodynamics for EPYM AdS black holes in the restricted phase space, we find that the mass parameter should be interpreted as the internal energy. Moreover, the Smarr relation for this system in the restricted phase space is not a homogeneous function due to the fractal structure, which differs significantly from the corresponding relation in the extended phase space. The presence of a fractal structure can be regarded as a probe for phase transitions. Interestingly, for a fixed central charge in the EPYM AdS black hole system with a fractal structure, a supercritical phase transition also exists, similar to the case in the standard EPYM AdS black hole system. Furthermore, we investigate the effects of the fractal parameter ∆ and non-linear Yang-Mills parameter γ on the thermodynamical stability of this system are also investigated.
Author Gu 古, Qiang 强
Zhao 赵, Hui-Hua 惠华
Du 杜, Yun-Zhi 云芝
Zhang 张, Yang 旸
Author_xml – sequence: 1
  givenname: Yun-Zhi 云芝
  orcidid: 0000-0002-2799-5349
  surname: Du 杜
  fullname: Du 杜, Yun-Zhi 云芝
– sequence: 2
  givenname: Hui-Hua 惠华
  surname: Zhao 赵
  fullname: Zhao 赵, Hui-Hua 惠华
– sequence: 3
  givenname: Yang 旸
  orcidid: 0000-0002-9924-3832
  surname: Zhang 张
  fullname: Zhang 张, Yang 旸
– sequence: 4
  givenname: Qiang 强
  orcidid: 0009-0003-9972-5537
  surname: Gu 古
  fullname: Gu 古, Qiang 强
BookMark eNo90L1OwzAUBWALFYm0sDP6BUyv4_yOpSoUqYiBMjBZtnNDDKkd2ZGqvj2NipjucHSPjr45mTnvkJB7Dg8cqmrJizJjnItyqRpTIr8iSQp5xQou0hlJ_uMbMo_xG6DIzl8JkfsOw8E3J6cO1kTqW_qoQvBHurEujmgdG_wRA_tU7ou92r6PdNW8U90r80M73yO1jo4d0oBxDNaM2NChUxFpHJTBW3Ldqj7i3d9dkI-nzX69Zbu355f1ascMr6uR1Rpy0C1CdV4lBFdG5JimWWnaWmuVYQWlFg2qGjLkuc4ARduosgBT1znPxYLApdcEH2PAVg7BHlQ4SQ5yApKTgJwE5AVI_AJtfVxD
Cites_doi 10.1016/j.physletb.2017.11.037
10.4310/ATMP.1998.v2.n2.a1
10.1007/s10714-022-03024-0
10.1016/j.physletb.2009.10.006
10.1098/rspa.1934.0010
10.1007/JHEP01(2023)137
10.1103/PhysRevD.88.101502
10.1103/PhysRevD.91.044028
10.1142/S021773231950216X
10.1007/s10714-015-1851-2
10.1007/JHEP07(2022)030
10.1103/PhysRevD.60.064018
10.1140/epjc/s10052-022-11146-7
10.1103/PhysRevLett.75.1260
10.1103/PhysRevD.15.2752
10.1103/PhysRevLett.115.111302
10.1016/j.nuclphysb.2024.116551
10.1088/1126-6708/2007/12/068
10.1103/PhysRevLett.118.021301
10.1103/PhysRevD.102.104011
10.1016/j.physletb.2022.137181
10.1103/PhysRevE.72.036108
10.1016/j.physletb.2012.11.019
10.1103/PhysRevD.76.087501
10.1103/PhysRevD.101.124017
10.1016/j.astropartphys.2010.12.002
10.1007/JHEP02(2015)143
10.1007/JHEP11(2014)120
10.3390/e25040687
10.1016/j.dark.2024.101470
10.1007/s11433-023-2335-2
10.1140/epjc/s10052-022-11152-9
10.1140/epjc/s10052-020-8307-x
10.1007/JHEP07(2012)033
10.1103/PhysRevD.109.023505
10.1007/BF02345020
10.1103/PhysRevD.2.2341
10.1007/JHEP10(2014)179
10.1209/0295-5075/130/40005
10.1088/0034-4885/73/4/046901
10.1103/PhysRevD.102.123525
10.1140/epjc/s10052-024-13367-4
10.1007/JHEP09(2014)080
10.1103/PhysRevD.110.L081501
10.1088/1361-6382/ac4e9a
10.1103/PhysRevD.96.086008
10.1007/s10714-007-0397-3
10.1140/epjc/s10052-023-11575-y
10.1103/PhysRevD.7.2333
10.1007/JHEP11(2017)165
10.1103/PhysRevD.65.063501
10.1088/0264-9381/31/20/205002
10.1103/PhysRevLett.127.091301
10.1142/S0218271817501513
10.1103/PhysRevLett.129.191101
10.1103/PhysRevD.105.104013
10.3390/e18050169
10.1007/BF01208266
10.1016/j.physletb.2020.135805
10.1103/PhysRevD.105.106014
10.1140/epjc/s10052-013-2487-6
10.1088/1674-1137/ac87f1
10.1016/j.physletb.2020.135643
10.1088/0264-9381/31/24/242001
10.1088/1674-1137/ac1a4a
10.1103/PhysRevD.93.024008
10.1088/1126-6708/1999/09/032
10.1016/j.physletb.2018.02.052
10.4310/ATMP.1998.v2.n3.a3
10.1007/BF01016429
10.1016/j.physletb.2006.02.043
10.1103/PhysRevD.60.104026
10.1103/PhysRevD.90.044057
10.1142/S0217732318501756
10.1103/PhysRevD.78.126007
10.1103/PhysRevD.105.064031
10.1088/0264-9381/26/19/195011
10.1007/JHEP09(2013)005
10.1088/1674-1137/ac4f4c
10.1088/1361-6382/aa5c69
10.1007/JHEP12(2015)073
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1674-1137/adc7e1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-6132
ExternalDocumentID 10_1088_1674_1137_adc7e1
GroupedDBID -SA
-SC
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
7.M
AAGCD
AAGID
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ACAFW
ACGFS
ACHIP
ADEQX
AEINN
AENEX
AFYNE
AIBLX
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ATQHT
CAJEA
CAJEC
CCEZO
CCVFK
CEBXE
CHBEP
CITATION
CJUJL
CRLBU
DU5
EBS
EDWGO
EPQRW
EQZZN
ER.
IJHAN
IOP
IZVLO
KOT
N5L
OK1
PJBAE
RIN
ROL
RPA
SY9
U1G
U5K
U5M
W28
ID FETCH-LOGICAL-c198t-9b050bfe08088331ac35e2247cf9bba4e807b3dea904e15b40e3fda760c995153
ISSN 1674-1137
IngestDate Wed Oct 01 06:30:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c198t-9b050bfe08088331ac35e2247cf9bba4e807b3dea904e15b40e3fda760c995153
ORCID 0000-0002-9924-3832
0000-0002-2799-5349
0009-0003-9972-5537
ParticipantIDs crossref_primary_10_1088_1674_1137_adc7e1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics C
PublicationYear 2025
References A. Hennigar (cpc_49_7_075102_bib15) 2017; 118
R. Visser (cpc_49_7_075102_bib33) 2022; 105
W Wei (cpc_49_7_075102_bib20) 2024; 110
P. Dolan (cpc_49_7_075102_bib27) 2016; 18
Okcu (cpc_49_7_075102_bib48) 2024; 1004
W Wei (cpc_49_7_075102_bib21) 2022; 129
Kastor (cpc_49_7_075102_bib29) 2014; 2014
Kats (cpc_49_7_075102_bib55) 2007; 2007
Kastor (cpc_49_7_075102_bib9) 2009; 26
H Wang (cpc_49_7_075102_bib50) 2022; 831
Tsallis (cpc_49_7_075102_bib65) 1988; 52
W Wei (cpc_49_7_075102_bib17) 2014; 90
cpc_49_7_075102_bib59
Chakhchi (cpc_49_7_075102_bib82) 2022; 105
D. Barrow (cpc_49_7_075102_bib43) 2020; 808
Sinamuli (cpc_49_7_075102_bib31) 2017; 96
Z Du (cpc_49_7_075102_bib84) 2024; 84
L Zhang (cpc_49_7_075102_bib26) 2015; 91
Altamirano (cpc_49_7_075102_bib13) 2013; 88
A. De Lorenci (cpc_49_7_075102_bib40) 2002; 65
M. Stetsko (cpc_49_7_075102_bib81) 2020; 101
Bialynicka-Birula (cpc_49_7_075102_bib60) 1970; 2
M. C. Abreu (cpc_49_7_075102_bib42) 2020; 810
W. Hawking (cpc_49_7_075102_bib4) 1975; 43
Padmanabhan (cpc_49_7_075102_bib2) 2010; 73
Sayahian Jahromi (cpc_49_7_075102_bib70) 2018; 780
Chamblin (cpc_49_7_075102_bib77) 1999; 60
H Mazharimousavi (cpc_49_7_075102_bib80) 2007; 76
Z Du (cpc_49_7_075102_bib62) 2021; 45
P. Dolan (cpc_49_7_075102_bib28) 2014; 2014
G. Cai (cpc_49_7_075102_bib57) 2008; 78
Komatsu (cpc_49_7_075102_bib47) 2024; 109
Nozari (cpc_49_7_075102_bib68) 2006; 635
M. C. Abreu (cpc_49_7_075102_bib49) 2020; 130
Z Du (cpc_49_7_075102_bib74) 2022; 46
Tsallis (cpc_49_7_075102_bib66) 2013; 73
Chamblin (cpc_49_7_075102_bib8) 1999; 60
Moradpour (cpc_49_7_075102_bib45) 2020; 80
L Zhang (cpc_49_7_075102_bib75) 2015; 2015
cpc_49_7_075102_bib69
M. Maldacena (cpc_49_7_075102_bib6) 1998; 2
Born (cpc_49_7_075102_bib54) 1934; 143
Nozari (cpc_49_7_075102_bib67) 2007; 39
P. Dolan (cpc_49_7_075102_bib16) 2014; 31
D Li (cpc_49_7_075102_bib18) 2022; 105
Seiberg (cpc_49_7_075102_bib58) 1999; 1999
V. Johnson (cpc_49_7_075102_bib23) 2014; 31
McCarthy (cpc_49_7_075102_bib76) 2017; 2017
W. Hawking (cpc_49_7_075102_bib5) 1983; 87
Kubiznak (cpc_49_7_075102_bib25) 2017; 34
Gibbons (cpc_49_7_075102_bib78) 1977; 15
M. Frassino (cpc_49_7_075102_bib14) 2014; 2014
K. Yerra (cpc_49_7_075102_bib64) 2019; 34
Jacobson (cpc_49_7_075102_bib1) 1995; 75
Roychowdhury (cpc_49_7_075102_bib63) 2013; 718
B. Balakin (cpc_49_7_075102_bib79) 2016; 93
N. Saridakis (cpc_49_7_075102_bib44) 2020; 102
Witten (cpc_49_7_075102_bib7) 1998; 2
Zhang (cpc_49_7_075102_bib37) 2015; 47
El Moumni (cpc_49_7_075102_bib61) 2018; 776
W Wei (cpc_49_7_075102_bib11) 2015; 115
Karch (cpc_49_7_075102_bib30) 2015; 2015
D. Bekenstein (cpc_49_7_075102_bib3) 1973; 7
W Wei (cpc_49_7_075102_bib12) 2024; 67
Kubiznak (cpc_49_7_075102_bib10) 2012; 2012
Corda (cpc_49_7_075102_bib38) 2011; 34
G Cai (cpc_49_7_075102_bib22) 2013; 2013
Cong (cpc_49_7_075102_bib32) 2021; 127
H. Mazharimousavi (cpc_49_7_075102_bib39) 2009; 681
V. Johnson (cpc_49_7_075102_bib53) 2018; 33
Z Du (cpc_49_7_075102_bib72) 2023; 83
W Wei (cpc_49_7_075102_bib19) 2020; 102
Sadeghi (cpc_49_7_075102_bib36) 2022; 54
Gao (cpc_49_7_075102_bib34) 2022; 39
Zhao (cpc_49_7_075102_bib35) 2022; 46
Rani (cpc_49_7_075102_bib52) 2023; 83
Ladghami (cpc_49_7_075102_bib51) 2024; 44
Kaniadakis (cpc_49_7_075102_bib71) 2005; 72
Z Du (cpc_49_7_075102_bib83) 2023; 25
Z Du (cpc_49_7_075102_bib73) 2023; 2023
Salehi (cpc_49_7_075102_bib46) 2023; 83
Anninos (cpc_49_7_075102_bib56) 2009; 07
Xu (cpc_49_7_075102_bib24) 2017; 26
cpc_49_7_075102_bib41
References_xml – volume: 776
  start-page: 124
  year: 2018
  ident: cpc_49_7_075102_bib61
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.11.037
– volume: 2
  start-page: 231
  year: 1998
  ident: cpc_49_7_075102_bib6
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a1
– volume: 54
  start-page: 129
  year: 2022
  ident: cpc_49_7_075102_bib36
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/s10714-022-03024-0
– volume: 681
  start-page: 190
  year: 2009
  ident: cpc_49_7_075102_bib39
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2009.10.006
– volume: 143
  start-page: 849
  year: 1934
  ident: cpc_49_7_075102_bib54
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1934.0010
– volume: 2023
  start-page: 137
  year: 2023
  ident: cpc_49_7_075102_bib73
  publication-title: J. High Energ. Phys.
  doi: 10.1007/JHEP01(2023)137
– volume: 88
  start-page: 101502
  year: 2013
  ident: cpc_49_7_075102_bib13
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.101502
– volume: 91
  start-page: 044028
  year: 2015
  ident: cpc_49_7_075102_bib26
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.044028
– volume: 34
  start-page: 27
  year: 2019
  ident: cpc_49_7_075102_bib64
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S021773231950216X
– volume: 47
  start-page: 14
  year: 2015
  ident: cpc_49_7_075102_bib37
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/s10714-015-1851-2
– volume: 07
  start-page: 030
  year: 2009
  ident: cpc_49_7_075102_bib56
  publication-title: J. High Energ. Phys.
  doi: 10.1007/JHEP07(2022)030
– volume: 60
  start-page: 064018
  year: 1999
  ident: cpc_49_7_075102_bib8
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.60.064018
– volume: 83
  start-page: 8
  year: 2023
  ident: cpc_49_7_075102_bib52
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-11146-7
– volume: 75
  start-page: 1260
  year: 1995
  ident: cpc_49_7_075102_bib1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.1260
– volume: 15
  start-page: 2752
  year: 1977
  ident: cpc_49_7_075102_bib78
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.15.2752
– volume: 115
  start-page: 111302
  year: 2015
  ident: cpc_49_7_075102_bib11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.111302
– volume: 1004
  start-page: 116551
  year: 2024
  ident: cpc_49_7_075102_bib48
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2024.116551
– volume: 2007
  start-page: 068
  year: 2007
  ident: cpc_49_7_075102_bib55
  publication-title: J. High Energ. Phys.
  doi: 10.1088/1126-6708/2007/12/068
– volume: 118
  start-page: 021301
  year: 2017
  ident: cpc_49_7_075102_bib15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.021301
– volume: 102
  start-page: 104011
  year: 2020
  ident: cpc_49_7_075102_bib19
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.104011
– volume: 831
  start-page: 137181
  year: 2022
  ident: cpc_49_7_075102_bib50
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2022.137181
– volume: 72
  start-page: 036108
  year: 2005
  ident: cpc_49_7_075102_bib71
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.72.036108
– volume: 718
  start-page: 1089
  year: 2013
  ident: cpc_49_7_075102_bib63
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.11.019
– volume: 76
  start-page: 087501
  year: 2007
  ident: cpc_49_7_075102_bib80
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.76.087501
– volume: 101
  start-page: 124017
  year: 2020
  ident: cpc_49_7_075102_bib81
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.124017
– volume: 34
  start-page: 587
  year: 2011
  ident: cpc_49_7_075102_bib38
  publication-title: Astropart. Phys.
  doi: 10.1016/j.astropartphys.2010.12.002
– volume: 2015
  start-page: 143
  year: 2015
  ident: cpc_49_7_075102_bib75
  publication-title: J. High Energ. Phys.
  doi: 10.1007/JHEP02(2015)143
– volume: 2014
  start-page: 120
  year: 2014
  ident: cpc_49_7_075102_bib29
  publication-title: J. High Energ. Phys.
  doi: 10.1007/JHEP11(2014)120
– ident: cpc_49_7_075102_bib41
– volume: 25
  start-page: 687
  year: 2023
  ident: cpc_49_7_075102_bib83
  publication-title: Entropy
  doi: 10.3390/e25040687
– volume: 44
  start-page: 101470
  year: 2024
  ident: cpc_49_7_075102_bib51
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2024.101470
– volume: 67
  start-page: 250412
  year: 2024
  ident: cpc_49_7_075102_bib12
  publication-title: Sci. China Phys. Mech. Astron.
  doi: 10.1007/s11433-023-2335-2
– volume: 83
  start-page: 11
  year: 2023
  ident: cpc_49_7_075102_bib46
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-11152-9
– volume: 80
  start-page: 732
  year: 2020
  ident: cpc_49_7_075102_bib45
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-8307-x
– volume: 2012
  start-page: 033
  year: 2012
  ident: cpc_49_7_075102_bib10
  publication-title: J. High Energ. Phys.
  doi: 10.1007/JHEP07(2012)033
– volume: 109
  start-page: 023505
  year: 2024
  ident: cpc_49_7_075102_bib47
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.023505
– volume: 43
  start-page: 199
  year: 1975
  ident: cpc_49_7_075102_bib4
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02345020
– volume: 2
  start-page: 2341
  year: 1970
  ident: cpc_49_7_075102_bib60
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.2.2341
– volume: 2014
  start-page: 179
  year: 2014
  ident: cpc_49_7_075102_bib28
  publication-title: J. High Energ. Phys.
  doi: 10.1007/JHEP10(2014)179
– volume: 130
  start-page: 40005
  year: 2020
  ident: cpc_49_7_075102_bib49
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/130/40005
– volume: 73
  start-page: 046901
  year: 2010
  ident: cpc_49_7_075102_bib2
  publication-title: Rept. Prog. Phys.
  doi: 10.1088/0034-4885/73/4/046901
– volume: 102
  start-page: 123525
  year: 2020
  ident: cpc_49_7_075102_bib44
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.123525
– volume: 84
  start-page: 1025
  year: 2024
  ident: cpc_49_7_075102_bib84
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-024-13367-4
– volume: 2014
  start-page: 080
  year: 2014
  ident: cpc_49_7_075102_bib14
  publication-title: J. High Energ. Phys.
  doi: 10.1007/JHEP09(2014)080
– volume: 110
  start-page: L081501
  year: 2024
  ident: cpc_49_7_075102_bib20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.110.L081501
– volume: 39
  start-page: 7
  year: 2022
  ident: cpc_49_7_075102_bib34
  publication-title: Class. Quantum Grav.
  doi: 10.1088/1361-6382/ac4e9a
– ident: cpc_49_7_075102_bib69
– volume: 96
  start-page: 086008
  year: 2017
  ident: cpc_49_7_075102_bib31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.086008
– volume: 39
  start-page: 501
  year: 2007
  ident: cpc_49_7_075102_bib67
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/s10714-007-0397-3
– volume: 83
  start-page: 426
  year: 2023
  ident: cpc_49_7_075102_bib72
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-023-11575-y
– volume: 7
  start-page: 2333
  year: 1973
  ident: cpc_49_7_075102_bib3
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.7.2333
– volume: 2017
  start-page: 165
  year: 2017
  ident: cpc_49_7_075102_bib76
  publication-title: J. High Energ. Phys.
  doi: 10.1007/JHEP11(2017)165
– volume: 65
  start-page: 063501
  year: 2002
  ident: cpc_49_7_075102_bib40
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.65.063501
– volume: 31
  start-page: 205002
  year: 2014
  ident: cpc_49_7_075102_bib23
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/31/20/205002
– volume: 127
  start-page: 091301
  year: 2021
  ident: cpc_49_7_075102_bib32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.091301
– volume: 26
  start-page: 13
  year: 2017
  ident: cpc_49_7_075102_bib24
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271817501513
– volume: 129
  start-page: 191101
  year: 2022
  ident: cpc_49_7_075102_bib21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.191101
– volume: 105
  start-page: 104013
  year: 2022
  ident: cpc_49_7_075102_bib18
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.104013
– volume: 18
  start-page: 169
  year: 2016
  ident: cpc_49_7_075102_bib27
  publication-title: Entropy
  doi: 10.3390/e18050169
– ident: cpc_49_7_075102_bib59
– volume: 87
  start-page: 577
  year: 1983
  ident: cpc_49_7_075102_bib5
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01208266
– volume: 810
  start-page: 135805
  year: 2020
  ident: cpc_49_7_075102_bib42
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135805
– volume: 105
  start-page: 106014
  year: 2022
  ident: cpc_49_7_075102_bib33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.106014
– volume: 73
  start-page: 2487
  year: 2013
  ident: cpc_49_7_075102_bib66
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-013-2487-6
– volume: 46
  start-page: 122002
  year: 2022
  ident: cpc_49_7_075102_bib74
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/ac87f1
– volume: 808
  start-page: 135643
  year: 2020
  ident: cpc_49_7_075102_bib43
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135643
– volume: 31
  start-page: 242001
  year: 2014
  ident: cpc_49_7_075102_bib16
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/31/24/242001
– volume: 45
  start-page: 115103
  year: 2021
  ident: cpc_49_7_075102_bib62
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/ac1a4a
– volume: 93
  start-page: 024008
  year: 2016
  ident: cpc_49_7_075102_bib79
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.024008
– volume: 1999
  start-page: 032
  year: 1999
  ident: cpc_49_7_075102_bib58
  publication-title: J. High Energ. Phys.
  doi: 10.1088/1126-6708/1999/09/032
– volume: 780
  start-page: 21
  year: 2018
  ident: cpc_49_7_075102_bib70
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.02.052
– volume: 2
  start-page: 505
  year: 1998
  ident: cpc_49_7_075102_bib7
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n3.a3
– volume: 52
  start-page: 479
  year: 1988
  ident: cpc_49_7_075102_bib65
  publication-title: J. Statist. Phys.
  doi: 10.1007/BF01016429
– volume: 635
  start-page: 156
  year: 2006
  ident: cpc_49_7_075102_bib68
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2006.02.043
– volume: 60
  start-page: 104026
  year: 1999
  ident: cpc_49_7_075102_bib77
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.60.104026
– volume: 90
  start-page: 044057
  year: 2014
  ident: cpc_49_7_075102_bib17
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.044057
– volume: 33
  start-page: 1850175
  year: 2018
  ident: cpc_49_7_075102_bib53
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732318501756
– volume: 78
  start-page: 126007
  year: 2008
  ident: cpc_49_7_075102_bib57
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.126007
– volume: 105
  start-page: 064031
  year: 2022
  ident: cpc_49_7_075102_bib82
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.064031
– volume: 26
  start-page: 195011
  year: 2009
  ident: cpc_49_7_075102_bib9
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/26/19/195011
– volume: 2013
  start-page: 005
  year: 2013
  ident: cpc_49_7_075102_bib22
  publication-title: J. High Energ. Phys.
  doi: 10.1007/JHEP09(2013)005
– volume: 46
  start-page: 055105
  year: 2022
  ident: cpc_49_7_075102_bib35
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/ac4f4c
– volume: 34
  start-page: 063001
  year: 2017
  ident: cpc_49_7_075102_bib25
  publication-title: Class. Quantum Grav.
  doi: 10.1088/1361-6382/aa5c69
– volume: 2015
  start-page: 073
  year: 2015
  ident: cpc_49_7_075102_bib30
  publication-title: J. High Energ. Phys.
  doi: 10.1007/JHEP12(2015)073
SSID ssj0064088
Score 2.3458824
Snippet Due to quantum gravitational effects, Barrow proposed that the black hole horizon is "fractalized" into a sphereflake. Based on this idea, in this work we...
SourceID crossref
SourceType Index Database
StartPage 75102
Title Thermodynamics of Barrow Einstein-power-Yang-Mills AdS black hole in the restricted phase space
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 2058-6132
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064088
  issn: 1674-1137
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbblEIvpU_6RofqUIwT27Js6bgPh22hbUoTSHMxli13fah3SdaX_s_-n87Ij_WWBJrCIsysNALPx8xoPJoh5F2utVDcGDczIIYwKJWrOQygCCV2qeGZzc359DlanoUfz8X5ZPJ7lLXUbPVh_uvaeyX_I1WggVzxluwtJDswBQI8g3xhBAnD-K8yvvy5Ltqm8jYnY2ZrKjpJBV6fqWp3g03Q3O9Z_cPFW39XzrT45mgM2jnYGLfPcsQGHaAQ0fvcrMCuOaBn8v0qBivbq7KLhFztgquLxmFJxNSCqbnV503tXqwqIIZsNmXKZ4lkEh6G1OKLVbZ2kDoT-EPb11TussksI8nZ1GOJYHLBZDJagyENIM_m-D9u1FJg65jNdje_GztLHrNpiLO-VqOFXVCiC3IEYkiI7fVyFIeu77f1YQ6NpQWekHDy5XvKvK1_2oE2HmnmGJRPcK3NAD2L4Yt-BzSORR4bf2ch-6yAvwznkM5oP-RLmSKPFHmkLYc75G4QRxE21vjw5aR3EKLQs-1Qhx27r-dAPRpoRy2Hkbc0cntOH5IH3XmFTlvwPSITUz8m905aFDwh6T4E6bqkLQTpjRCkAEFqIUgRgrSqKUCQ7iBILQSpheBTcnacnM6Xbtezw819Jbeu0p7wdGngIIJtrP0s58KAmxjnpdI6C430Ys0LkykvNL7QoWd4WWRx5OUKnH3Bn5GDel2b54SGYSZ5XsQ-h3VBVOhYqawQBaoXXkjxgrzv3026aUuzpDdJ4uUt5r4i93cQfE0OtpeNeQOe51a_tXL8AwbwdX0
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamics+of+Barrow+Einstein-power-Yang-Mills+AdS+black+hole+in+the+restricted+phase+space&rft.jtitle=Chinese+physics+C&rft.au=Du+%E6%9D%9C%2C+Yun-Zhi+%E4%BA%91%E8%8A%9D&rft.au=Zhao+%E8%B5%B5%2C+Hui-Hua+%E6%83%A0%E5%8D%8E&rft.au=Zhang+%E5%BC%A0%2C+Yang+%E6%97%B8&rft.au=Gu+%E5%8F%A4%2C+Qiang+%E5%BC%BA&rft.date=2025-07-01&rft.issn=1674-1137&rft.eissn=2058-6132&rft.volume=49&rft.issue=7&rft.spage=75102&rft_id=info:doi/10.1088%2F1674-1137%2Fadc7e1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1137_adc7e1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1137&client=summon