Thermodynamics of Barrow Einstein-power-Yang-Mills AdS black hole in the restricted phase space
Due to quantum gravitational effects, Barrow proposed that the black hole horizon is "fractalized" into a sphereflake. Based on this idea, in this work we investigate the phase structure and stability of Einstein-Power-Yang-Mills (EPYM) AdS black holes in the restricted phase space, assumi...
Saved in:
Published in | Chinese physics C Vol. 49; no. 7; p. 75102 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.07.2025
|
Online Access | Get full text |
ISSN | 1674-1137 2058-6132 |
DOI | 10.1088/1674-1137/adc7e1 |
Cover
Abstract | Due to quantum gravitational effects, Barrow proposed that the black hole horizon is "fractalized" into a sphereflake. Based on this idea, in this work we investigate the phase structure and stability of Einstein-Power-Yang-Mills (EPYM) AdS black holes in the restricted phase space, assuming the black hole event horizon has a fractal structure. From the first law of thermodynamics for EPYM AdS black holes in the restricted phase space, we find that the mass parameter should be interpreted as the internal energy. Moreover, the Smarr relation for this system in the restricted phase space is not a homogeneous function due to the fractal structure, which differs significantly from the corresponding relation in the extended phase space. The presence of a fractal structure can be regarded as a probe for phase transitions. Interestingly, for a fixed central charge in the EPYM AdS black hole system with a fractal structure, a supercritical phase transition also exists, similar to the case in the standard EPYM AdS black hole system. Furthermore, we investigate the effects of the fractal parameter ∆ and non-linear Yang-Mills parameter γ on the thermodynamical stability of this system are also investigated. |
---|---|
AbstractList | Due to quantum gravitational effects, Barrow proposed that the black hole horizon is "fractalized" into a sphereflake. Based on this idea, in this work we investigate the phase structure and stability of Einstein-Power-Yang-Mills (EPYM) AdS black holes in the restricted phase space, assuming the black hole event horizon has a fractal structure. From the first law of thermodynamics for EPYM AdS black holes in the restricted phase space, we find that the mass parameter should be interpreted as the internal energy. Moreover, the Smarr relation for this system in the restricted phase space is not a homogeneous function due to the fractal structure, which differs significantly from the corresponding relation in the extended phase space. The presence of a fractal structure can be regarded as a probe for phase transitions. Interestingly, for a fixed central charge in the EPYM AdS black hole system with a fractal structure, a supercritical phase transition also exists, similar to the case in the standard EPYM AdS black hole system. Furthermore, we investigate the effects of the fractal parameter ∆ and non-linear Yang-Mills parameter γ on the thermodynamical stability of this system are also investigated. |
Author | Gu 古, Qiang 强 Zhao 赵, Hui-Hua 惠华 Du 杜, Yun-Zhi 云芝 Zhang 张, Yang 旸 |
Author_xml | – sequence: 1 givenname: Yun-Zhi 云芝 orcidid: 0000-0002-2799-5349 surname: Du 杜 fullname: Du 杜, Yun-Zhi 云芝 – sequence: 2 givenname: Hui-Hua 惠华 surname: Zhao 赵 fullname: Zhao 赵, Hui-Hua 惠华 – sequence: 3 givenname: Yang 旸 orcidid: 0000-0002-9924-3832 surname: Zhang 张 fullname: Zhang 张, Yang 旸 – sequence: 4 givenname: Qiang 强 orcidid: 0009-0003-9972-5537 surname: Gu 古 fullname: Gu 古, Qiang 强 |
BookMark | eNo90L1OwzAUBWALFYm0sDP6BUyv4_yOpSoUqYiBMjBZtnNDDKkd2ZGqvj2NipjucHSPjr45mTnvkJB7Dg8cqmrJizJjnItyqRpTIr8iSQp5xQou0hlJ_uMbMo_xG6DIzl8JkfsOw8E3J6cO1kTqW_qoQvBHurEujmgdG_wRA_tU7ou92r6PdNW8U90r80M73yO1jo4d0oBxDNaM2NChUxFpHJTBW3Ldqj7i3d9dkI-nzX69Zbu355f1ascMr6uR1Rpy0C1CdV4lBFdG5JimWWnaWmuVYQWlFg2qGjLkuc4ARduosgBT1znPxYLApdcEH2PAVg7BHlQ4SQ5yApKTgJwE5AVI_AJtfVxD |
Cites_doi | 10.1016/j.physletb.2017.11.037 10.4310/ATMP.1998.v2.n2.a1 10.1007/s10714-022-03024-0 10.1016/j.physletb.2009.10.006 10.1098/rspa.1934.0010 10.1007/JHEP01(2023)137 10.1103/PhysRevD.88.101502 10.1103/PhysRevD.91.044028 10.1142/S021773231950216X 10.1007/s10714-015-1851-2 10.1007/JHEP07(2022)030 10.1103/PhysRevD.60.064018 10.1140/epjc/s10052-022-11146-7 10.1103/PhysRevLett.75.1260 10.1103/PhysRevD.15.2752 10.1103/PhysRevLett.115.111302 10.1016/j.nuclphysb.2024.116551 10.1088/1126-6708/2007/12/068 10.1103/PhysRevLett.118.021301 10.1103/PhysRevD.102.104011 10.1016/j.physletb.2022.137181 10.1103/PhysRevE.72.036108 10.1016/j.physletb.2012.11.019 10.1103/PhysRevD.76.087501 10.1103/PhysRevD.101.124017 10.1016/j.astropartphys.2010.12.002 10.1007/JHEP02(2015)143 10.1007/JHEP11(2014)120 10.3390/e25040687 10.1016/j.dark.2024.101470 10.1007/s11433-023-2335-2 10.1140/epjc/s10052-022-11152-9 10.1140/epjc/s10052-020-8307-x 10.1007/JHEP07(2012)033 10.1103/PhysRevD.109.023505 10.1007/BF02345020 10.1103/PhysRevD.2.2341 10.1007/JHEP10(2014)179 10.1209/0295-5075/130/40005 10.1088/0034-4885/73/4/046901 10.1103/PhysRevD.102.123525 10.1140/epjc/s10052-024-13367-4 10.1007/JHEP09(2014)080 10.1103/PhysRevD.110.L081501 10.1088/1361-6382/ac4e9a 10.1103/PhysRevD.96.086008 10.1007/s10714-007-0397-3 10.1140/epjc/s10052-023-11575-y 10.1103/PhysRevD.7.2333 10.1007/JHEP11(2017)165 10.1103/PhysRevD.65.063501 10.1088/0264-9381/31/20/205002 10.1103/PhysRevLett.127.091301 10.1142/S0218271817501513 10.1103/PhysRevLett.129.191101 10.1103/PhysRevD.105.104013 10.3390/e18050169 10.1007/BF01208266 10.1016/j.physletb.2020.135805 10.1103/PhysRevD.105.106014 10.1140/epjc/s10052-013-2487-6 10.1088/1674-1137/ac87f1 10.1016/j.physletb.2020.135643 10.1088/0264-9381/31/24/242001 10.1088/1674-1137/ac1a4a 10.1103/PhysRevD.93.024008 10.1088/1126-6708/1999/09/032 10.1016/j.physletb.2018.02.052 10.4310/ATMP.1998.v2.n3.a3 10.1007/BF01016429 10.1016/j.physletb.2006.02.043 10.1103/PhysRevD.60.104026 10.1103/PhysRevD.90.044057 10.1142/S0217732318501756 10.1103/PhysRevD.78.126007 10.1103/PhysRevD.105.064031 10.1088/0264-9381/26/19/195011 10.1007/JHEP09(2013)005 10.1088/1674-1137/ac4f4c 10.1088/1361-6382/aa5c69 10.1007/JHEP12(2015)073 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1088/1674-1137/adc7e1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-6132 |
ExternalDocumentID | 10_1088_1674_1137_adc7e1 |
GroupedDBID | -SA -SC -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 7.M AAGCD AAGID AAJIO AAJKP AATNI AAYXX ABCXL ABHWH ABJNI ACAFW ACGFS ACHIP ADEQX AEINN AENEX AFYNE AIBLX AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ATQHT CAJEA CAJEC CCEZO CCVFK CEBXE CHBEP CITATION CJUJL CRLBU DU5 EBS EDWGO EPQRW EQZZN ER. IJHAN IOP IZVLO KOT N5L OK1 PJBAE RIN ROL RPA SY9 U1G U5K U5M W28 |
ID | FETCH-LOGICAL-c198t-9b050bfe08088331ac35e2247cf9bba4e807b3dea904e15b40e3fda760c995153 |
ISSN | 1674-1137 |
IngestDate | Wed Oct 01 06:30:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c198t-9b050bfe08088331ac35e2247cf9bba4e807b3dea904e15b40e3fda760c995153 |
ORCID | 0000-0002-9924-3832 0000-0002-2799-5349 0009-0003-9972-5537 |
ParticipantIDs | crossref_primary_10_1088_1674_1137_adc7e1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics C |
PublicationYear | 2025 |
References | A. Hennigar (cpc_49_7_075102_bib15) 2017; 118 R. Visser (cpc_49_7_075102_bib33) 2022; 105 W Wei (cpc_49_7_075102_bib20) 2024; 110 P. Dolan (cpc_49_7_075102_bib27) 2016; 18 Okcu (cpc_49_7_075102_bib48) 2024; 1004 W Wei (cpc_49_7_075102_bib21) 2022; 129 Kastor (cpc_49_7_075102_bib29) 2014; 2014 Kats (cpc_49_7_075102_bib55) 2007; 2007 Kastor (cpc_49_7_075102_bib9) 2009; 26 H Wang (cpc_49_7_075102_bib50) 2022; 831 Tsallis (cpc_49_7_075102_bib65) 1988; 52 W Wei (cpc_49_7_075102_bib17) 2014; 90 cpc_49_7_075102_bib59 Chakhchi (cpc_49_7_075102_bib82) 2022; 105 D. Barrow (cpc_49_7_075102_bib43) 2020; 808 Sinamuli (cpc_49_7_075102_bib31) 2017; 96 Z Du (cpc_49_7_075102_bib84) 2024; 84 L Zhang (cpc_49_7_075102_bib26) 2015; 91 Altamirano (cpc_49_7_075102_bib13) 2013; 88 A. De Lorenci (cpc_49_7_075102_bib40) 2002; 65 M. Stetsko (cpc_49_7_075102_bib81) 2020; 101 Bialynicka-Birula (cpc_49_7_075102_bib60) 1970; 2 M. C. Abreu (cpc_49_7_075102_bib42) 2020; 810 W. Hawking (cpc_49_7_075102_bib4) 1975; 43 Padmanabhan (cpc_49_7_075102_bib2) 2010; 73 Sayahian Jahromi (cpc_49_7_075102_bib70) 2018; 780 Chamblin (cpc_49_7_075102_bib77) 1999; 60 H Mazharimousavi (cpc_49_7_075102_bib80) 2007; 76 Z Du (cpc_49_7_075102_bib62) 2021; 45 P. Dolan (cpc_49_7_075102_bib28) 2014; 2014 G. Cai (cpc_49_7_075102_bib57) 2008; 78 Komatsu (cpc_49_7_075102_bib47) 2024; 109 Nozari (cpc_49_7_075102_bib68) 2006; 635 M. C. Abreu (cpc_49_7_075102_bib49) 2020; 130 Z Du (cpc_49_7_075102_bib74) 2022; 46 Tsallis (cpc_49_7_075102_bib66) 2013; 73 Chamblin (cpc_49_7_075102_bib8) 1999; 60 Moradpour (cpc_49_7_075102_bib45) 2020; 80 L Zhang (cpc_49_7_075102_bib75) 2015; 2015 cpc_49_7_075102_bib69 M. Maldacena (cpc_49_7_075102_bib6) 1998; 2 Born (cpc_49_7_075102_bib54) 1934; 143 Nozari (cpc_49_7_075102_bib67) 2007; 39 P. Dolan (cpc_49_7_075102_bib16) 2014; 31 D Li (cpc_49_7_075102_bib18) 2022; 105 Seiberg (cpc_49_7_075102_bib58) 1999; 1999 V. Johnson (cpc_49_7_075102_bib23) 2014; 31 McCarthy (cpc_49_7_075102_bib76) 2017; 2017 W. Hawking (cpc_49_7_075102_bib5) 1983; 87 Kubiznak (cpc_49_7_075102_bib25) 2017; 34 Gibbons (cpc_49_7_075102_bib78) 1977; 15 M. Frassino (cpc_49_7_075102_bib14) 2014; 2014 K. Yerra (cpc_49_7_075102_bib64) 2019; 34 Jacobson (cpc_49_7_075102_bib1) 1995; 75 Roychowdhury (cpc_49_7_075102_bib63) 2013; 718 B. Balakin (cpc_49_7_075102_bib79) 2016; 93 N. Saridakis (cpc_49_7_075102_bib44) 2020; 102 Witten (cpc_49_7_075102_bib7) 1998; 2 Zhang (cpc_49_7_075102_bib37) 2015; 47 El Moumni (cpc_49_7_075102_bib61) 2018; 776 W Wei (cpc_49_7_075102_bib11) 2015; 115 Karch (cpc_49_7_075102_bib30) 2015; 2015 D. Bekenstein (cpc_49_7_075102_bib3) 1973; 7 W Wei (cpc_49_7_075102_bib12) 2024; 67 Kubiznak (cpc_49_7_075102_bib10) 2012; 2012 Corda (cpc_49_7_075102_bib38) 2011; 34 G Cai (cpc_49_7_075102_bib22) 2013; 2013 Cong (cpc_49_7_075102_bib32) 2021; 127 H. Mazharimousavi (cpc_49_7_075102_bib39) 2009; 681 V. Johnson (cpc_49_7_075102_bib53) 2018; 33 Z Du (cpc_49_7_075102_bib72) 2023; 83 W Wei (cpc_49_7_075102_bib19) 2020; 102 Sadeghi (cpc_49_7_075102_bib36) 2022; 54 Gao (cpc_49_7_075102_bib34) 2022; 39 Zhao (cpc_49_7_075102_bib35) 2022; 46 Rani (cpc_49_7_075102_bib52) 2023; 83 Ladghami (cpc_49_7_075102_bib51) 2024; 44 Kaniadakis (cpc_49_7_075102_bib71) 2005; 72 Z Du (cpc_49_7_075102_bib83) 2023; 25 Z Du (cpc_49_7_075102_bib73) 2023; 2023 Salehi (cpc_49_7_075102_bib46) 2023; 83 Anninos (cpc_49_7_075102_bib56) 2009; 07 Xu (cpc_49_7_075102_bib24) 2017; 26 cpc_49_7_075102_bib41 |
References_xml | – volume: 776 start-page: 124 year: 2018 ident: cpc_49_7_075102_bib61 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.11.037 – volume: 2 start-page: 231 year: 1998 ident: cpc_49_7_075102_bib6 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a1 – volume: 54 start-page: 129 year: 2022 ident: cpc_49_7_075102_bib36 publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-022-03024-0 – volume: 681 start-page: 190 year: 2009 ident: cpc_49_7_075102_bib39 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2009.10.006 – volume: 143 start-page: 849 year: 1934 ident: cpc_49_7_075102_bib54 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1934.0010 – volume: 2023 start-page: 137 year: 2023 ident: cpc_49_7_075102_bib73 publication-title: J. High Energ. Phys. doi: 10.1007/JHEP01(2023)137 – volume: 88 start-page: 101502 year: 2013 ident: cpc_49_7_075102_bib13 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.101502 – volume: 91 start-page: 044028 year: 2015 ident: cpc_49_7_075102_bib26 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.044028 – volume: 34 start-page: 27 year: 2019 ident: cpc_49_7_075102_bib64 publication-title: Mod. Phys. Lett. A doi: 10.1142/S021773231950216X – volume: 47 start-page: 14 year: 2015 ident: cpc_49_7_075102_bib37 publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-015-1851-2 – volume: 07 start-page: 030 year: 2009 ident: cpc_49_7_075102_bib56 publication-title: J. High Energ. Phys. doi: 10.1007/JHEP07(2022)030 – volume: 60 start-page: 064018 year: 1999 ident: cpc_49_7_075102_bib8 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.60.064018 – volume: 83 start-page: 8 year: 2023 ident: cpc_49_7_075102_bib52 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-022-11146-7 – volume: 75 start-page: 1260 year: 1995 ident: cpc_49_7_075102_bib1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.1260 – volume: 15 start-page: 2752 year: 1977 ident: cpc_49_7_075102_bib78 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.15.2752 – volume: 115 start-page: 111302 year: 2015 ident: cpc_49_7_075102_bib11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.111302 – volume: 1004 start-page: 116551 year: 2024 ident: cpc_49_7_075102_bib48 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2024.116551 – volume: 2007 start-page: 068 year: 2007 ident: cpc_49_7_075102_bib55 publication-title: J. High Energ. Phys. doi: 10.1088/1126-6708/2007/12/068 – volume: 118 start-page: 021301 year: 2017 ident: cpc_49_7_075102_bib15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.021301 – volume: 102 start-page: 104011 year: 2020 ident: cpc_49_7_075102_bib19 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.104011 – volume: 831 start-page: 137181 year: 2022 ident: cpc_49_7_075102_bib50 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2022.137181 – volume: 72 start-page: 036108 year: 2005 ident: cpc_49_7_075102_bib71 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.72.036108 – volume: 718 start-page: 1089 year: 2013 ident: cpc_49_7_075102_bib63 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2012.11.019 – volume: 76 start-page: 087501 year: 2007 ident: cpc_49_7_075102_bib80 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.76.087501 – volume: 101 start-page: 124017 year: 2020 ident: cpc_49_7_075102_bib81 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.124017 – volume: 34 start-page: 587 year: 2011 ident: cpc_49_7_075102_bib38 publication-title: Astropart. Phys. doi: 10.1016/j.astropartphys.2010.12.002 – volume: 2015 start-page: 143 year: 2015 ident: cpc_49_7_075102_bib75 publication-title: J. High Energ. Phys. doi: 10.1007/JHEP02(2015)143 – volume: 2014 start-page: 120 year: 2014 ident: cpc_49_7_075102_bib29 publication-title: J. High Energ. Phys. doi: 10.1007/JHEP11(2014)120 – ident: cpc_49_7_075102_bib41 – volume: 25 start-page: 687 year: 2023 ident: cpc_49_7_075102_bib83 publication-title: Entropy doi: 10.3390/e25040687 – volume: 44 start-page: 101470 year: 2024 ident: cpc_49_7_075102_bib51 publication-title: Phys. Dark Univ. doi: 10.1016/j.dark.2024.101470 – volume: 67 start-page: 250412 year: 2024 ident: cpc_49_7_075102_bib12 publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-023-2335-2 – volume: 83 start-page: 11 year: 2023 ident: cpc_49_7_075102_bib46 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-022-11152-9 – volume: 80 start-page: 732 year: 2020 ident: cpc_49_7_075102_bib45 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-8307-x – volume: 2012 start-page: 033 year: 2012 ident: cpc_49_7_075102_bib10 publication-title: J. High Energ. Phys. doi: 10.1007/JHEP07(2012)033 – volume: 109 start-page: 023505 year: 2024 ident: cpc_49_7_075102_bib47 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.109.023505 – volume: 43 start-page: 199 year: 1975 ident: cpc_49_7_075102_bib4 publication-title: Commun. Math. Phys. doi: 10.1007/BF02345020 – volume: 2 start-page: 2341 year: 1970 ident: cpc_49_7_075102_bib60 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.2.2341 – volume: 2014 start-page: 179 year: 2014 ident: cpc_49_7_075102_bib28 publication-title: J. High Energ. Phys. doi: 10.1007/JHEP10(2014)179 – volume: 130 start-page: 40005 year: 2020 ident: cpc_49_7_075102_bib49 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/130/40005 – volume: 73 start-page: 046901 year: 2010 ident: cpc_49_7_075102_bib2 publication-title: Rept. Prog. Phys. doi: 10.1088/0034-4885/73/4/046901 – volume: 102 start-page: 123525 year: 2020 ident: cpc_49_7_075102_bib44 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.123525 – volume: 84 start-page: 1025 year: 2024 ident: cpc_49_7_075102_bib84 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-024-13367-4 – volume: 2014 start-page: 080 year: 2014 ident: cpc_49_7_075102_bib14 publication-title: J. High Energ. Phys. doi: 10.1007/JHEP09(2014)080 – volume: 110 start-page: L081501 year: 2024 ident: cpc_49_7_075102_bib20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.110.L081501 – volume: 39 start-page: 7 year: 2022 ident: cpc_49_7_075102_bib34 publication-title: Class. Quantum Grav. doi: 10.1088/1361-6382/ac4e9a – ident: cpc_49_7_075102_bib69 – volume: 96 start-page: 086008 year: 2017 ident: cpc_49_7_075102_bib31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.086008 – volume: 39 start-page: 501 year: 2007 ident: cpc_49_7_075102_bib67 publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-007-0397-3 – volume: 83 start-page: 426 year: 2023 ident: cpc_49_7_075102_bib72 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-023-11575-y – volume: 7 start-page: 2333 year: 1973 ident: cpc_49_7_075102_bib3 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.7.2333 – volume: 2017 start-page: 165 year: 2017 ident: cpc_49_7_075102_bib76 publication-title: J. High Energ. Phys. doi: 10.1007/JHEP11(2017)165 – volume: 65 start-page: 063501 year: 2002 ident: cpc_49_7_075102_bib40 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.65.063501 – volume: 31 start-page: 205002 year: 2014 ident: cpc_49_7_075102_bib23 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/31/20/205002 – volume: 127 start-page: 091301 year: 2021 ident: cpc_49_7_075102_bib32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.091301 – volume: 26 start-page: 13 year: 2017 ident: cpc_49_7_075102_bib24 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271817501513 – volume: 129 start-page: 191101 year: 2022 ident: cpc_49_7_075102_bib21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.191101 – volume: 105 start-page: 104013 year: 2022 ident: cpc_49_7_075102_bib18 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.104013 – volume: 18 start-page: 169 year: 2016 ident: cpc_49_7_075102_bib27 publication-title: Entropy doi: 10.3390/e18050169 – ident: cpc_49_7_075102_bib59 – volume: 87 start-page: 577 year: 1983 ident: cpc_49_7_075102_bib5 publication-title: Commun. Math. Phys. doi: 10.1007/BF01208266 – volume: 810 start-page: 135805 year: 2020 ident: cpc_49_7_075102_bib42 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135805 – volume: 105 start-page: 106014 year: 2022 ident: cpc_49_7_075102_bib33 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.106014 – volume: 73 start-page: 2487 year: 2013 ident: cpc_49_7_075102_bib66 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-013-2487-6 – volume: 46 start-page: 122002 year: 2022 ident: cpc_49_7_075102_bib74 publication-title: Chin. Phys. C doi: 10.1088/1674-1137/ac87f1 – volume: 808 start-page: 135643 year: 2020 ident: cpc_49_7_075102_bib43 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135643 – volume: 31 start-page: 242001 year: 2014 ident: cpc_49_7_075102_bib16 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/31/24/242001 – volume: 45 start-page: 115103 year: 2021 ident: cpc_49_7_075102_bib62 publication-title: Chin. Phys. C doi: 10.1088/1674-1137/ac1a4a – volume: 93 start-page: 024008 year: 2016 ident: cpc_49_7_075102_bib79 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.024008 – volume: 1999 start-page: 032 year: 1999 ident: cpc_49_7_075102_bib58 publication-title: J. High Energ. Phys. doi: 10.1088/1126-6708/1999/09/032 – volume: 780 start-page: 21 year: 2018 ident: cpc_49_7_075102_bib70 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2018.02.052 – volume: 2 start-page: 505 year: 1998 ident: cpc_49_7_075102_bib7 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n3.a3 – volume: 52 start-page: 479 year: 1988 ident: cpc_49_7_075102_bib65 publication-title: J. Statist. Phys. doi: 10.1007/BF01016429 – volume: 635 start-page: 156 year: 2006 ident: cpc_49_7_075102_bib68 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2006.02.043 – volume: 60 start-page: 104026 year: 1999 ident: cpc_49_7_075102_bib77 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.60.104026 – volume: 90 start-page: 044057 year: 2014 ident: cpc_49_7_075102_bib17 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.044057 – volume: 33 start-page: 1850175 year: 2018 ident: cpc_49_7_075102_bib53 publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732318501756 – volume: 78 start-page: 126007 year: 2008 ident: cpc_49_7_075102_bib57 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.126007 – volume: 105 start-page: 064031 year: 2022 ident: cpc_49_7_075102_bib82 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.064031 – volume: 26 start-page: 195011 year: 2009 ident: cpc_49_7_075102_bib9 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/26/19/195011 – volume: 2013 start-page: 005 year: 2013 ident: cpc_49_7_075102_bib22 publication-title: J. High Energ. Phys. doi: 10.1007/JHEP09(2013)005 – volume: 46 start-page: 055105 year: 2022 ident: cpc_49_7_075102_bib35 publication-title: Chin. Phys. C doi: 10.1088/1674-1137/ac4f4c – volume: 34 start-page: 063001 year: 2017 ident: cpc_49_7_075102_bib25 publication-title: Class. Quantum Grav. doi: 10.1088/1361-6382/aa5c69 – volume: 2015 start-page: 073 year: 2015 ident: cpc_49_7_075102_bib30 publication-title: J. High Energ. Phys. doi: 10.1007/JHEP12(2015)073 |
SSID | ssj0064088 |
Score | 2.3458824 |
Snippet | Due to quantum gravitational effects, Barrow proposed that the black hole horizon is "fractalized" into a sphereflake. Based on this idea, in this work we... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 75102 |
Title | Thermodynamics of Barrow Einstein-power-Yang-Mills AdS black hole in the restricted phase space |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 2058-6132 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064088 issn: 1674-1137 databaseCode: IOP dateStart: 20080101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbblEIvpU_6RofqUIwT27Js6bgPh22hbUoTSHMxli13fah3SdaX_s_-n87Ij_WWBJrCIsysNALPx8xoPJoh5F2utVDcGDczIIYwKJWrOQygCCV2qeGZzc359DlanoUfz8X5ZPJ7lLXUbPVh_uvaeyX_I1WggVzxluwtJDswBQI8g3xhBAnD-K8yvvy5Ltqm8jYnY2ZrKjpJBV6fqWp3g03Q3O9Z_cPFW39XzrT45mgM2jnYGLfPcsQGHaAQ0fvcrMCuOaBn8v0qBivbq7KLhFztgquLxmFJxNSCqbnV503tXqwqIIZsNmXKZ4lkEh6G1OKLVbZ2kDoT-EPb11TussksI8nZ1GOJYHLBZDJagyENIM_m-D9u1FJg65jNdje_GztLHrNpiLO-VqOFXVCiC3IEYkiI7fVyFIeu77f1YQ6NpQWekHDy5XvKvK1_2oE2HmnmGJRPcK3NAD2L4Yt-BzSORR4bf2ch-6yAvwznkM5oP-RLmSKPFHmkLYc75G4QRxE21vjw5aR3EKLQs-1Qhx27r-dAPRpoRy2Hkbc0cntOH5IH3XmFTlvwPSITUz8m905aFDwh6T4E6bqkLQTpjRCkAEFqIUgRgrSqKUCQ7iBILQSpheBTcnacnM6Xbtezw819Jbeu0p7wdGngIIJtrP0s58KAmxjnpdI6C430Ys0LkykvNL7QoWd4WWRx5OUKnH3Bn5GDel2b54SGYSZ5XsQ-h3VBVOhYqawQBaoXXkjxgrzv3026aUuzpDdJ4uUt5r4i93cQfE0OtpeNeQOe51a_tXL8AwbwdX0 |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamics+of+Barrow+Einstein-power-Yang-Mills+AdS+black+hole+in+the+restricted+phase+space&rft.jtitle=Chinese+physics+C&rft.au=Du+%E6%9D%9C%2C+Yun-Zhi+%E4%BA%91%E8%8A%9D&rft.au=Zhao+%E8%B5%B5%2C+Hui-Hua+%E6%83%A0%E5%8D%8E&rft.au=Zhang+%E5%BC%A0%2C+Yang+%E6%97%B8&rft.au=Gu+%E5%8F%A4%2C+Qiang+%E5%BC%BA&rft.date=2025-07-01&rft.issn=1674-1137&rft.eissn=2058-6132&rft.volume=49&rft.issue=7&rft.spage=75102&rft_id=info:doi/10.1088%2F1674-1137%2Fadc7e1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1137_adc7e1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1137&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1137&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1137&client=summon |