Vegetation mapping of Yunnan Province by integrating remote sensing, field observations, and models

Vegetation maps are crucial for ecologists and decision-makers, providing essential information on the spatial distribution of various vegetation types to support ecosystem exploration and management. Despite advancements in Earth observation and machine learning enabling large-scale vegetation mapp...

Full description

Saved in:
Bibliographic Details
Published inScience China. Earth sciences Vol. 68; no. 3; pp. 836 - 849
Main Authors Xiahou, Mingjian, Peng, Mingchun, Shen, Zehao, Wen, Qingzhong, Wang, Chongyun, Liu, Yannan, Zhang, Qiuyuan, Peng, Lei, Yu, Changyuan, Ou, Xiaokun, Fang, Jingyun
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1674-7313
1869-1897
DOI10.1007/s11430-024-1509-3

Cover

Abstract Vegetation maps are crucial for ecologists and decision-makers, providing essential information on the spatial distribution of various vegetation types to support ecosystem exploration and management. Despite advancements in Earth observation and machine learning enabling large-scale vegetation mapping, creating detailed and accurate maps in biodiversity hotspots remains challenging due to significant environmental heterogeneity and frequent human disturbances. The lack of sufficient ground-based data and complex climate-vegetation interactions further limits mapping accuracy. In this study, we developed an integrated framework for multi-source data fusion to enhance vegetation mapping and validation in Yunnan Province, a global biodiversity hotspot region in Southwest China. The mapping process involved four key steps: (1) vegetation classification using random forest and Landsat imagery, (2) boundary calibration based on a locally calibrated static climate-vegetation model, (3) patch correction with independent forest inventory data, and (4) validation using adequate field observations. This approach enabled the mapping of 17 vegetation types and 44 subtypes in Yunnan Province (1:50000), categorized based on the growth-form composition of dominant species of the community. The overall accuracies were 0.747 and 0.710 for natural vegetation types and subtypes, and 0.905 and 0.891 for artificial types and subtypes. This high-resolution map enhances our understanding of vegetation distribution and ecological complexity in this region, offering valuable insights for policymakers to support conservation efforts and sustainable management strategies.
AbstractList Vegetation maps are crucial for ecologists and decision-makers, providing essential information on the spatial distribution of various vegetation types to support ecosystem exploration and management. Despite advancements in Earth observation and machine learning enabling large-scale vegetation mapping, creating detailed and accurate maps in biodiversity hotspots remains challenging due to significant environmental heterogeneity and frequent human disturbances. The lack of sufficient ground-based data and complex climate-vegetation interactions further limits mapping accuracy. In this study, we developed an integrated framework for multi-source data fusion to enhance vegetation mapping and validation in Yunnan Province, a global biodiversity hotspot region in Southwest China. The mapping process involved four key steps: (1) vegetation classification using random forest and Landsat imagery, (2) boundary calibration based on a locally calibrated static climate-vegetation model, (3) patch correction with independent forest inventory data, and (4) validation using adequate field observations. This approach enabled the mapping of 17 vegetation types and 44 subtypes in Yunnan Province (1:50000), categorized based on the growth-form composition of dominant species of the community. The overall accuracies were 0.747 and 0.710 for natural vegetation types and subtypes, and 0.905 and 0.891 for artificial types and subtypes. This high-resolution map enhances our understanding of vegetation distribution and ecological complexity in this region, offering valuable insights for policymakers to support conservation efforts and sustainable management strategies.
Author Liu, Yannan
Ou, Xiaokun
Shen, Zehao
Fang, Jingyun
Xiahou, Mingjian
Zhang, Qiuyuan
Peng, Mingchun
Wen, Qingzhong
Peng, Lei
Wang, Chongyun
Yu, Changyuan
Author_xml – sequence: 1
  givenname: Mingjian
  surname: Xiahou
  fullname: Xiahou, Mingjian
  organization: Key Laboratory of Ministry of Education for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University
– sequence: 2
  givenname: Mingchun
  surname: Peng
  fullname: Peng, Mingchun
  organization: School of Ecology and Environment, Yunnan University
– sequence: 3
  givenname: Zehao
  surname: Shen
  fullname: Shen, Zehao
  email: shzh@urban.pku.edu.cn
  organization: Key Laboratory of Ministry of Education for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, School of Ecology and Environment, Yunnan University
– sequence: 4
  givenname: Qingzhong
  surname: Wen
  fullname: Wen, Qingzhong
  organization: Yunnan Institute of Forest Inventory and Planning
– sequence: 5
  givenname: Chongyun
  surname: Wang
  fullname: Wang, Chongyun
  organization: School of Ecology and Environment, Yunnan University
– sequence: 6
  givenname: Yannan
  surname: Liu
  fullname: Liu, Yannan
  organization: School of Ecology and Environment, Yunnan University
– sequence: 7
  givenname: Qiuyuan
  surname: Zhang
  fullname: Zhang, Qiuyuan
  organization: School of Ecology and Environment, Yunnan University
– sequence: 8
  givenname: Lei
  surname: Peng
  fullname: Peng, Lei
  organization: School of Ecology and Environment, Yunnan University
– sequence: 9
  givenname: Changyuan
  surname: Yu
  fullname: Yu, Changyuan
  organization: Yunnan Institute of Forest Inventory and Planning
– sequence: 10
  givenname: Xiaokun
  surname: Ou
  fullname: Ou, Xiaokun
  organization: School of Ecology and Environment, Yunnan University
– sequence: 11
  givenname: Jingyun
  surname: Fang
  fullname: Fang, Jingyun
  organization: Key Laboratory of Ministry of Education for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University
BookMark eNp1kEtLxDAUhYOM4KjzA9wF3E41t2mbZCmDLxjQhQquQh83pcM0qUlnYP69GSu4MpuTS75zLjnnZGadRUKugN0AY-I2AGScJSzNEsiZSvgJmYMsVAJSiVm8FyJLBAd-RhYhbFg8PL6kYk7qD2xxLMfOWdqXw9DZljpDP3fWlpa-erfvbI20OtDOjtj6SEbCY-9GpAFtiOOSmg63DXVVQL__yQpLWtqG9q7Bbbgkp6bcBlz86gV5f7h_Wz0l65fH59XdOqlByTERFc8xFVzlaV6YrC4a4HkWvyClQtNkgFgBi1oYBiwtpTRKVliVdY4qzXJ-Qa6n3MG7rx2GUW_cztu4UnMQAIVirIgUTFTtXQgejR5815f-oIHpY516qlPHOvWxTs2jJ508IbK2Rf-X_L_pG_leeYE
Cites_doi 10.1016/j.rse.2010.03.008
10.3390/rs13112139
10.1016/j.isprsjprs.2020.12.010
10.3390/rs12040609
10.1080/02693799508902045
10.1111/brv.12519
10.1016/j.scib.2020.04.004
10.1002/rse2.111
10.1016/j.isprsjprs.2016.01.011
10.1038/s41893-019-0220-7
10.1002/joc.5404
10.1111/1365-2435.12925
10.1016/j.rse.2017.03.016
10.1016/j.isprsjprs.2022.12.011
10.1177/030913339501900403
10.1007/s11442-020-1727-6
10.1016/j.biocon.2015.01.031
10.1038/35002501
10.1016/j.rse.2019.111582
10.1016/j.rse.2014.04.010
10.1016/j.scitotenv.2020.141344
10.3390/rs13030429
10.1007/s11442-024-2286-z
10.1016/j.ecolind.2019.05.008
10.1109/MGRS.2013.2244672
10.1657/1938-4246-43.3.429
10.1016/j.isprsjprs.2021.06.005
10.1016/j.rse.2020.111673
10.1016/j.isprsjprs.2019.09.016
10.1016/j.isprsjprs.2010.11.001
10.1016/j.quascirev.2018.06.007
10.3390/rs12121952
10.1002/rse2.139
10.1080/10106049.2018.1516245
10.1038/nclimate3004
10.1016/j.isprsjprs.2020.07.013
10.3390/rs5062795
10.1071/RJ20096
10.1016/j.scitotenv.2021.148918
10.1080/10106049.2012.756940
10.1016/j.gloenvcha.2006.11.010
10.3390/rs11121505
10.1080/13658816.2011.577745
10.1093/jpe/rtm005
10.1038/srep09396
10.1038/nature25508
10.3390/rs10060927
10.1016/j.isprsjprs.2012.04.001
10.1007/s11434-011-4870-8
10.1016/j.rse.2018.07.006
10.1007/s11769-020-1120-5
10.1038/nclimate1329
10.1111/j.1654-1103.2005.tb02365.x
10.1016/j.rse.2011.08.024
10.3390/rs12193150
10.1016/j.rse.2019.05.026
10.1007/s11273-009-9169-z
10.1016/0034-4257(92)90068-U
10.1016/j.rse.2020.111953
10.1016/j.rse.2018.07.007
10.1016/j.isprsjprs.2015.05.005
10.1016/j.rse.2019.111297
10.3390/rs13020249
ContentType Journal Article
Copyright Science China Press 2025
Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: Science China Press 2025
– notice: Copyright Springer Nature B.V. Mar 2025
DBID AAYXX
CITATION
7TG
7UA
C1K
F1W
H96
KL.
L.G
DOI 10.1007/s11430-024-1509-3
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1869-1897
EndPage 849
ExternalDocumentID 10_1007_s11430_024_1509_3
GeographicLocations China
Yunnan China
GeographicLocations_xml – name: Yunnan China
– name: China
GroupedDBID -5A
-5G
-BR
-EM
-SA
-S~
-Y2
-~C
.VR
06D
0R~
0VY
1N0
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
40D
40E
5VR
5VS
67M
88I
8FE
8FH
8TC
8UJ
95-
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFRAH
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CAJEA
CCEZO
CCPQU
CCVFK
CHBEP
CJPJV
COF
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
L8X
LK5
LLZTM
M2P
M4Y
M7R
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9J
PCBAR
PF0
PQQKQ
PROAC
PT4
Q--
Q2X
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TR2
TSG
TUC
TUS
U1G
U2A
U5K
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z5O
Z7R
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PUEGO
7TG
7UA
C1K
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-c198t-7b35e27395256f4c6d1354189889efd41eeb10d416f0102a88f98bebac5e92453
IEDL.DBID U2A
ISSN 1674-7313
IngestDate Thu Jul 24 04:21:16 EDT 2025
Wed Oct 01 06:53:18 EDT 2025
Wed Feb 26 08:55:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Data-fusion framework
Biodiversity hotspot region
Multi-source data
Ecological diversity
Vegetation mapping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c198t-7b35e27395256f4c6d1354189889efd41eeb10d416f0102a88f98bebac5e92453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3171169006
PQPubID 54336
PageCount 14
ParticipantIDs proquest_journals_3171169006
crossref_primary_10_1007_s11430_024_1509_3
springer_journals_10_1007_s11430_024_1509_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250300
2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 3
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Dordrecht
PublicationTitle Science China. Earth sciences
PublicationTitleAbbrev Sci. China Earth Sci
PublicationYear 2025
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References Y Liu (1509_CR33) 2020; 30
F Pedrotti (1509_CR40) 2012
1509_CR45
H Zhang (1509_CR77) 2019; 11
X Wang (1509_CR68) 2018; 192
H Shi (1509_CR51) 2018; 38
J Chen (1509_CR8) 2020; 12
X Y Tong (1509_CR56) 2023; 196
R Li (1509_CR28) 2015; 5
S Madonsela (1509_CR36) 2017; 58
J Ni (1509_CR39) 2011; 43
E van der Maarel (1509_CR62) 2012
A Räsänen (1509_CR43) 2019; 230
E Adam (1509_CR1) 2010; 18
J Verrelst (1509_CR64) 2015; 108
Z Wu (1509_CR70) 1987
T Wu (1509_CR69) 2021; 13
J Franklin (1509_CR16) 1995; 19
M Gašparović (1509_CR18) 2020; 12
F H Wagner (1509_CR65) 2019; 5
S Preidl (1509_CR41) 2020; 240
D W Roberts (1509_CR46) 1989
Y Zeng (1509_CR75) 2019; 104
R J Zomer (1509_CR79) 2015; 184
1509_CR54
M Lopes (1509_CR34) 2020; 6
S Grimaldi (1509_CR21) 2020; 237
Y Yao (1509_CR73) 2020; 30
H Sun (1509_CR53) 2021; 2021
D Schulz (1509_CR48) 2021; 178
Z Zhu (1509_CR78) 2016; 6
M N Tuanmu (1509_CR60) 2010; 114
Z Gao (1509_CR17) 2021
Z Fan (1509_CR14) 2021; 796
M Belgiu (1509_CR3) 2016; 114
C Homer (1509_CR23) 2015; 81
T Kattenborn (1509_CR26) 2021; 173
Y H Ran (1509_CR42) 2012; 26
P M Treitz (1509_CR57) 1992; 42
Y H Tsai (1509_CR59) 2018; 10
J Liu (1509_CR32) 2019; 94
A I de Castro (1509_CR9) 2021; 13
A Ghorbanian (1509_CR19) 2020; 167
M K Raynolds (1509_CR44) 2019; 232
F Wang (1509_CR67) 2017; 31
N Myers (1509_CR38) 2000; 403
J M Bioucas-Dias (1509_CR5) 2013; 1
A W Kuchler (1509_CR27) 1967
Y Su (1509_CR52) 2020; 65
D Ienco (1509_CR25) 2019; 158
T G Liang (1509_CR30) 2012; 57
C Zhang (1509_CR76) 2014; 29
F A Azizan (1509_CR2) 2021; 13
C Chen (1509_CR7) 2019; 2
M F Hutchinson (1509_CR24) 1995; 9
F Taubert (1509_CR55) 2018; 554
D A Walker (1509_CR66) 2005; 16
P S Roy (1509_CR47) 2015; 39
W Liang (1509_CR31) 2020; 12
P Ye (1509_CR74) 2020; 23
M Gottfried (1509_CR20) 2012; 2
Y Shao (1509_CR50) 2012; 70
P Macintyre (1509_CR35) 2020; 85
M C Hansen (1509_CR22) 2012; 122
S van Beijma (1509_CR61) 2014; 149
B Verrall (1509_CR63) 2020; 748
M E Fagan (1509_CR13) 2018; 216
G Mountrakis (1509_CR37) 2011; 66
W Li (1509_CR29) 2020; 247
J M B Carreiras (1509_CR6) 2017; 194
J J Erinjery (1509_CR12) 2018; 216
H Du (1509_CR11) 2022; 43
F Biermann (1509_CR4) 2007; 17
T M Del Valle (1509_CR10) 2022; 115
M Xiahou (1509_CR71) 2024; 34
N Flood (1509_CR15) 2019; 82
C Senf (1509_CR49) 2013; 5
Y Xie (1509_CR72) 2008; 1
B H Trisasongko (1509_CR58) 2020; 35
References_xml – volume: 114
  start-page: 1833
  year: 2010
  ident: 1509_CR60
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2010.03.008
– volume: 115
  start-page: 103092
  year: 2022
  ident: 1509_CR10
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 13
  start-page: 2139
  year: 2021
  ident: 1509_CR9
  publication-title: Remote Sens
  doi: 10.3390/rs13112139
– volume: 173
  start-page: 24
  year: 2021
  ident: 1509_CR26
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2020.12.010
– volume-title: Vegetation Mapping
  year: 1967
  ident: 1509_CR27
– volume: 12
  start-page: 609
  year: 2020
  ident: 1509_CR31
  publication-title: Remote Sens
  doi: 10.3390/rs12040609
– volume: 9
  start-page: 385
  year: 1995
  ident: 1509_CR24
  publication-title: Int J Geogr Inf Syst
  doi: 10.1080/02693799508902045
– volume: 94
  start-page: 1636
  year: 2019
  ident: 1509_CR32
  publication-title: Biol Rev
  doi: 10.1111/brv.12519
– volume: 65
  start-page: 1125
  year: 2020
  ident: 1509_CR52
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2020.04.004
– volume: 5
  start-page: 360
  year: 2019
  ident: 1509_CR65
  publication-title: Remote Sens Ecol Conserv
  doi: 10.1002/rse2.111
– volume: 114
  start-page: 24
  year: 2016
  ident: 1509_CR3
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 2
  start-page: 122
  year: 2019
  ident: 1509_CR7
  publication-title: Nat Sustain
  doi: 10.1038/s41893-019-0220-7
– volume: 38
  start-page: 2520
  year: 2018
  ident: 1509_CR51
  publication-title: Int J Climatol
  doi: 10.1002/joc.5404
– volume: 23
  start-page: e01005
  year: 2020
  ident: 1509_CR74
  publication-title: Glob Ecol Conserv
– volume: 31
  start-page: 2344
  year: 2017
  ident: 1509_CR67
  publication-title: Funct Ecol
  doi: 10.1111/1365-2435.12925
– volume: 194
  start-page: 16
  year: 2017
  ident: 1509_CR6
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2017.03.016
– volume: 2021
  start-page: 1
  year: 2021
  ident: 1509_CR53
  publication-title: Adv Meteor
– volume: 196
  start-page: 178
  year: 2023
  ident: 1509_CR56
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2022.12.011
– volume: 19
  start-page: 474
  year: 1995
  ident: 1509_CR16
  publication-title: Prog Phys Geog
  doi: 10.1177/030913339501900403
– volume: 30
  start-page: 267
  year: 2020
  ident: 1509_CR73
  publication-title: J Geogr Sci
  doi: 10.1007/s11442-020-1727-6
– volume: 184
  start-page: 335
  year: 2015
  ident: 1509_CR79
  publication-title: Biol Conserv
  doi: 10.1016/j.biocon.2015.01.031
– volume: 403
  start-page: 853
  year: 2000
  ident: 1509_CR38
  publication-title: Nature
  doi: 10.1038/35002501
– ident: 1509_CR45
– volume: 237
  start-page: 111582
  year: 2020
  ident: 1509_CR21
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2019.111582
– volume: 149
  start-page: 118
  year: 2014
  ident: 1509_CR61
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2014.04.010
– volume-title: Vegetation Ecology
  year: 2012
  ident: 1509_CR62
– volume: 748
  start-page: 141344
  year: 2020
  ident: 1509_CR63
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.141344
– volume: 13
  start-page: 429
  year: 2021
  ident: 1509_CR2
  publication-title: Remote Sens
  doi: 10.3390/rs13030429
– volume: 34
  start-page: 2128
  year: 2024
  ident: 1509_CR71
  publication-title: J Geogr Sci
  doi: 10.1007/s11442-024-2286-z
– volume: 104
  start-page: 248
  year: 2019
  ident: 1509_CR75
  publication-title: Ecol Indicators
  doi: 10.1016/j.ecolind.2019.05.008
– volume: 1
  start-page: 6
  year: 2013
  ident: 1509_CR5
  publication-title: IEEE Geosci Remote Sens Mag
  doi: 10.1109/MGRS.2013.2244672
– volume: 43
  start-page: 429
  year: 2011
  ident: 1509_CR39
  publication-title: Arctic Antarctic Alpine Res
  doi: 10.1657/1938-4246-43.3.429
– volume: 178
  start-page: 97
  year: 2021
  ident: 1509_CR48
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2021.06.005
– volume: 82
  start-page: 101897
  year: 2019
  ident: 1509_CR15
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 240
  start-page: 111673
  year: 2020
  ident: 1509_CR41
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2020.111673
– volume: 158
  start-page: 11
  year: 2019
  ident: 1509_CR25
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2019.09.016
– volume: 66
  start-page: 247
  year: 2011
  ident: 1509_CR37
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2010.11.001
– volume: 39
  start-page: 142
  year: 2015
  ident: 1509_CR47
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 192
  start-page: 236
  year: 2018
  ident: 1509_CR68
  publication-title: Quat Sci Rev
  doi: 10.1016/j.quascirev.2018.06.007
– volume: 12
  start-page: 1952
  year: 2020
  ident: 1509_CR18
  publication-title: Remote Sens
  doi: 10.3390/rs12121952
– volume: 6
  start-page: 316
  year: 2020
  ident: 1509_CR34
  publication-title: Remote Sens Ecol Conserv
  doi: 10.1002/rse2.139
– volume: 35
  start-page: 317
  year: 2020
  ident: 1509_CR58
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2018.1516245
– volume: 6
  start-page: 791
  year: 2016
  ident: 1509_CR78
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate3004
– volume: 167
  start-page: 276
  year: 2020
  ident: 1509_CR19
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2020.07.013
– volume: 81
  start-page: 345
  year: 2015
  ident: 1509_CR23
  publication-title: Photogramm Eng Remote Sens
– volume: 5
  start-page: 2795
  year: 2013
  ident: 1509_CR49
  publication-title: Remote Sens
  doi: 10.3390/rs5062795
– volume: 43
  start-page: 353
  year: 2022
  ident: 1509_CR11
  publication-title: Rangeland J
  doi: 10.1071/RJ20096
– volume-title: Yunnan Vegetation
  year: 1987
  ident: 1509_CR70
– volume: 796
  start-page: 148918
  year: 2021
  ident: 1509_CR14
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.148918
– volume: 29
  start-page: 228
  year: 2014
  ident: 1509_CR76
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2012.756940
– volume: 17
  start-page: 326
  year: 2007
  ident: 1509_CR4
  publication-title: Glob Environ Change
  doi: 10.1016/j.gloenvcha.2006.11.010
– volume: 11
  start-page: 1505
  year: 2019
  ident: 1509_CR77
  publication-title: Remote Sens
  doi: 10.3390/rs11121505
– volume: 26
  start-page: 169
  year: 2012
  ident: 1509_CR42
  publication-title: Int J Geogr Inf Sci
  doi: 10.1080/13658816.2011.577745
– volume: 1
  start-page: 9
  year: 2008
  ident: 1509_CR72
  publication-title: J Plant Ecol
  doi: 10.1093/jpe/rtm005
– volume: 5
  start-page: 9396
  year: 2015
  ident: 1509_CR28
  publication-title: Sci Rep
  doi: 10.1038/srep09396
– volume: 58
  start-page: 65
  year: 2017
  ident: 1509_CR36
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 554
  start-page: 519
  year: 2018
  ident: 1509_CR55
  publication-title: Nature
  doi: 10.1038/nature25508
– volume: 10
  start-page: 927
  year: 2018
  ident: 1509_CR59
  publication-title: Remote Sens
  doi: 10.3390/rs10060927
– volume: 70
  start-page: 78
  year: 2012
  ident: 1509_CR50
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2012.04.001
– start-page: 90
  volume-title: Land Classification Based on Vegetation: Applications for Resource Management
  year: 1989
  ident: 1509_CR46
– volume: 57
  start-page: 1298
  year: 2012
  ident: 1509_CR30
  publication-title: Chin Sci Bull
  doi: 10.1007/s11434-011-4870-8
– volume: 216
  start-page: 345
  year: 2018
  ident: 1509_CR12
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2018.07.006
– volume: 30
  start-page: 410
  year: 2020
  ident: 1509_CR33
  publication-title: Chin Geogr Sci
  doi: 10.1007/s11769-020-1120-5
– volume: 2
  start-page: 111
  year: 2012
  ident: 1509_CR20
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate1329
– volume: 16
  start-page: 267
  year: 2005
  ident: 1509_CR66
  publication-title: J Veg Sci
  doi: 10.1111/j.1654-1103.2005.tb02365.x
– volume: 122
  start-page: 66
  year: 2012
  ident: 1509_CR22
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2011.08.024
– volume: 12
  start-page: 3150
  year: 2020
  ident: 1509_CR8
  publication-title: Remote Sens
  doi: 10.3390/rs12193150
– volume: 230
  start-page: 111207
  year: 2019
  ident: 1509_CR43
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2019.05.026
– volume: 18
  start-page: 281
  year: 2010
  ident: 1509_CR1
  publication-title: Wetlands Ecol Manage
  doi: 10.1007/s11273-009-9169-z
– volume: 42
  start-page: 65
  year: 1992
  ident: 1509_CR57
  publication-title: Remote Sens Environ
  doi: 10.1016/0034-4257(92)90068-U
– volume: 247
  start-page: 111953
  year: 2020
  ident: 1509_CR29
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2020.111953
– volume: 85
  start-page: 101980
  year: 2020
  ident: 1509_CR35
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 216
  start-page: 415
  year: 2018
  ident: 1509_CR13
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2018.07.007
– volume-title: Plant and Vegetation Mapping
  year: 2012
  ident: 1509_CR40
– ident: 1509_CR54
– volume: 108
  start-page: 273
  year: 2015
  ident: 1509_CR64
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2015.05.005
– volume: 232
  start-page: 111297
  year: 2019
  ident: 1509_CR44
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2019.111297
– volume-title: Ecosystems List of Yunnan Province
  year: 2021
  ident: 1509_CR17
– volume: 13
  start-page: 249
  year: 2021
  ident: 1509_CR69
  publication-title: Remote Sens
  doi: 10.3390/rs13020249
SSID ssj0000389727
Score 2.4175622
Snippet Vegetation maps are crucial for ecologists and decision-makers, providing essential information on the spatial distribution of various vegetation types to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 836
SubjectTerms Accuracy
Biodiversity
Biodiversity hot spots
Climate
Climate and vegetation
Climate models
Complexity
Data integration
Decision trees
Dominant species
Earth and Environmental Science
Earth Sciences
Ecologists
Heterogeneity
Hot spots
Human impact
Landsat
Machine learning
Mapping
Natural vegetation
Observational learning
Remote sensing
Satellite imagery
Spatial distribution
Sustainability management
Vegetation
Vegetation distribution
Vegetation mapping
Vegetation surveys
Title Vegetation mapping of Yunnan Province by integrating remote sensing, field observations, and models
URI https://link.springer.com/article/10.1007/s11430-024-1509-3
https://www.proquest.com/docview/3171169006
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1869-1897
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000389727
  issn: 1674-7313
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1869-1897
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000389727
  issn: 1674-7313
  databaseCode: U2A
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgFRIL4ikKpfLABLUUx7FjjxUqrUAgBoraKbIduxMpasrQv8d2k0YgGJgyxPJw_LjnPnwuANdapVIrlSBCjHNQCGdI8EggiWMmbKwNDgG3p2c2niQPUzqt3nGXdbV7nZIMN3Xz2M2Z9gg5m4IciRGI7II29WpebhNP4sE2sOIV49LQqtUX2KOUYFJnM3-b5bs9akjmj7xoMDf3h-Cg4olwsFnYI7BjimOwNwp9eNcnQL85b3-TRYfv0msszOHCwpmjo7KALyFOoA1Ua1jrQfgRS-MWxsDSF60X8z4M5WtwobaR2bIPZZHD0B6nPAWT--Hr3RhV_RKQxoKvUKoINbHPvDkeYxPNckxogrngXBibJ9i4izlyX2a9kpzk3AqujJKaGueGUXIGWsWiMOcARrlkkTCMU-rNHFexNUmkLNMYa8fHO-CmRi372MhiZI0Asoc4cxBnHuKMdEC3xjWrTkiZOd6CfYouYh1wW2Pd_P5zsot_jb4E-7Fv2BuKxrqgtVp-mivHIlaqB9qD0exx2Au75wvxvr61
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFLSgCMGC-BSFAh6YoJbiOHHssUKUAm3F0KIyWbFjdyJFTRn677HdpBEIBqYMsTycE7_zu-d7AFwrmaRKyggRou0BhTCKOAs4SnFIuQmVxj7hNhjS3jh6msST8h53UVW7V5Kk36nry242tAfIxhRkSQxHZBNsOf8qZ5g_DjvrxIpzjEt8q1ZXYI8SgkmlZv42y_d4VJPMH7qoDzfdfbBX8kTYWS3sAdjQ-SHYfvB9eJdHQL3a0_5KRYfvqfNYmMKZgW-WjqY5fPF5AqWhXMLKD8KNmGu7MBoWrmg9n7ahL1-DM7nOzBZtmOYZ9O1ximMw7t6P7nqo7JeAFOZsgRJJYh065c3yGBMpmmESR5hxxrg2WYS13ZgD-6TGOcmljBnOpJapirU9hsXkBDTyWa5PAQyylAZcUxbHLswxGRodBdJQhbGyfLwJbirUxMfKFkPUBsgOYmEhFg5iQZqgVeEqyj-kEJa3YCfRBbQJbius69d_Tnb2r9FXYKc3GvRF_3H4fA52Q9e81xeQtUBjMf_UF5ZRLOSl_4K-AAVowA0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFLSgCMSC-BSFAh6YoFbjOHHssQJK-ao6UFSmKHbsTqRVE4b-e2wnaQWCgSlDLA9nJ-_83vMdAJdSRIkUIkCEKHNAIYwizjyOEuxTrn2psEu4vQxofxQ8jsNx5XOa193udUmyvNNgVZqyojNLdWd18c2EeQ-Z-IIMoeGIrIONwOokmA098rvLJItVj4ucbatttkcRwaSubP42y_fYtCKcP2qkLvT0dsFOxRlht1zkPbCmsn2wee88eRcHQL6Zk39ZUYcfidVbmMCphu-GmiYZHLqcgVRQLGCtDWFHzJVZJAVz28CeTdrQtbLBqVhmafM2TLIUOquc_BCMenevN31UeScgiTkrUCRIqHxbhTOcRgeSppiEAWacMa50GmBlftKeeVJtVeUSxjRnQolEhsocyUJyBBrZNFPHAHppQj2uKAtDG_KY8LUKPKGpxFgabt4EVzVq8ayUyIhXYsgW4thAHFuIY9IErRrXuPpa8thwGGzLdR5tgusa69XrPyc7-dfoC7A1vO3Fzw-Dp1Ow7VsfX9dL1gKNYv6pzgy5KMS520Bfek3ESQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vegetation+mapping+of+Yunnan+Province+by+integrating+remote+sensing%2C+field+observations%2C+and+models&rft.jtitle=Science+China.+Earth+sciences&rft.au=Xiahou%2C+Mingjian&rft.au=Peng%2C+Mingchun&rft.au=Shen%2C+Zehao&rft.au=Wen%2C+Qingzhong&rft.date=2025-03-01&rft.issn=1674-7313&rft.eissn=1869-1897&rft.volume=68&rft.issue=3&rft.spage=836&rft.epage=849&rft_id=info:doi/10.1007%2Fs11430-024-1509-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11430_024_1509_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7313&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7313&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7313&client=summon