Vegetation mapping of Yunnan Province by integrating remote sensing, field observations, and models
Vegetation maps are crucial for ecologists and decision-makers, providing essential information on the spatial distribution of various vegetation types to support ecosystem exploration and management. Despite advancements in Earth observation and machine learning enabling large-scale vegetation mapp...
        Saved in:
      
    
          | Published in | Science China. Earth sciences Vol. 68; no. 3; pp. 836 - 849 | 
|---|---|
| Main Authors | , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Beijing
          Science China Press
    
        01.03.2025
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1674-7313 1869-1897  | 
| DOI | 10.1007/s11430-024-1509-3 | 
Cover
| Abstract | Vegetation maps are crucial for ecologists and decision-makers, providing essential information on the spatial distribution of various vegetation types to support ecosystem exploration and management. Despite advancements in Earth observation and machine learning enabling large-scale vegetation mapping, creating detailed and accurate maps in biodiversity hotspots remains challenging due to significant environmental heterogeneity and frequent human disturbances. The lack of sufficient ground-based data and complex climate-vegetation interactions further limits mapping accuracy. In this study, we developed an integrated framework for multi-source data fusion to enhance vegetation mapping and validation in Yunnan Province, a global biodiversity hotspot region in Southwest China. The mapping process involved four key steps: (1) vegetation classification using random forest and Landsat imagery, (2) boundary calibration based on a locally calibrated static climate-vegetation model, (3) patch correction with independent forest inventory data, and (4) validation using adequate field observations. This approach enabled the mapping of 17 vegetation types and 44 subtypes in Yunnan Province (1:50000), categorized based on the growth-form composition of dominant species of the community. The overall accuracies were 0.747 and 0.710 for natural vegetation types and subtypes, and 0.905 and 0.891 for artificial types and subtypes. This high-resolution map enhances our understanding of vegetation distribution and ecological complexity in this region, offering valuable insights for policymakers to support conservation efforts and sustainable management strategies. | 
    
|---|---|
| AbstractList | Vegetation maps are crucial for ecologists and decision-makers, providing essential information on the spatial distribution of various vegetation types to support ecosystem exploration and management. Despite advancements in Earth observation and machine learning enabling large-scale vegetation mapping, creating detailed and accurate maps in biodiversity hotspots remains challenging due to significant environmental heterogeneity and frequent human disturbances. The lack of sufficient ground-based data and complex climate-vegetation interactions further limits mapping accuracy. In this study, we developed an integrated framework for multi-source data fusion to enhance vegetation mapping and validation in Yunnan Province, a global biodiversity hotspot region in Southwest China. The mapping process involved four key steps: (1) vegetation classification using random forest and Landsat imagery, (2) boundary calibration based on a locally calibrated static climate-vegetation model, (3) patch correction with independent forest inventory data, and (4) validation using adequate field observations. This approach enabled the mapping of 17 vegetation types and 44 subtypes in Yunnan Province (1:50000), categorized based on the growth-form composition of dominant species of the community. The overall accuracies were 0.747 and 0.710 for natural vegetation types and subtypes, and 0.905 and 0.891 for artificial types and subtypes. This high-resolution map enhances our understanding of vegetation distribution and ecological complexity in this region, offering valuable insights for policymakers to support conservation efforts and sustainable management strategies. | 
    
| Author | Liu, Yannan Ou, Xiaokun Shen, Zehao Fang, Jingyun Xiahou, Mingjian Zhang, Qiuyuan Peng, Mingchun Wen, Qingzhong Peng, Lei Wang, Chongyun Yu, Changyuan  | 
    
| Author_xml | – sequence: 1 givenname: Mingjian surname: Xiahou fullname: Xiahou, Mingjian organization: Key Laboratory of Ministry of Education for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University – sequence: 2 givenname: Mingchun surname: Peng fullname: Peng, Mingchun organization: School of Ecology and Environment, Yunnan University – sequence: 3 givenname: Zehao surname: Shen fullname: Shen, Zehao email: shzh@urban.pku.edu.cn organization: Key Laboratory of Ministry of Education for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, School of Ecology and Environment, Yunnan University – sequence: 4 givenname: Qingzhong surname: Wen fullname: Wen, Qingzhong organization: Yunnan Institute of Forest Inventory and Planning – sequence: 5 givenname: Chongyun surname: Wang fullname: Wang, Chongyun organization: School of Ecology and Environment, Yunnan University – sequence: 6 givenname: Yannan surname: Liu fullname: Liu, Yannan organization: School of Ecology and Environment, Yunnan University – sequence: 7 givenname: Qiuyuan surname: Zhang fullname: Zhang, Qiuyuan organization: School of Ecology and Environment, Yunnan University – sequence: 8 givenname: Lei surname: Peng fullname: Peng, Lei organization: School of Ecology and Environment, Yunnan University – sequence: 9 givenname: Changyuan surname: Yu fullname: Yu, Changyuan organization: Yunnan Institute of Forest Inventory and Planning – sequence: 10 givenname: Xiaokun surname: Ou fullname: Ou, Xiaokun organization: School of Ecology and Environment, Yunnan University – sequence: 11 givenname: Jingyun surname: Fang fullname: Fang, Jingyun organization: Key Laboratory of Ministry of Education for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University  | 
    
| BookMark | eNp1kEtLxDAUhYOM4KjzA9wF3E41t2mbZCmDLxjQhQquQh83pcM0qUlnYP69GSu4MpuTS75zLjnnZGadRUKugN0AY-I2AGScJSzNEsiZSvgJmYMsVAJSiVm8FyJLBAd-RhYhbFg8PL6kYk7qD2xxLMfOWdqXw9DZljpDP3fWlpa-erfvbI20OtDOjtj6SEbCY-9GpAFtiOOSmg63DXVVQL__yQpLWtqG9q7Bbbgkp6bcBlz86gV5f7h_Wz0l65fH59XdOqlByTERFc8xFVzlaV6YrC4a4HkWvyClQtNkgFgBi1oYBiwtpTRKVliVdY4qzXJ-Qa6n3MG7rx2GUW_cztu4UnMQAIVirIgUTFTtXQgejR5815f-oIHpY516qlPHOvWxTs2jJ508IbK2Rf-X_L_pG_leeYE | 
    
| Cites_doi | 10.1016/j.rse.2010.03.008 10.3390/rs13112139 10.1016/j.isprsjprs.2020.12.010 10.3390/rs12040609 10.1080/02693799508902045 10.1111/brv.12519 10.1016/j.scib.2020.04.004 10.1002/rse2.111 10.1016/j.isprsjprs.2016.01.011 10.1038/s41893-019-0220-7 10.1002/joc.5404 10.1111/1365-2435.12925 10.1016/j.rse.2017.03.016 10.1016/j.isprsjprs.2022.12.011 10.1177/030913339501900403 10.1007/s11442-020-1727-6 10.1016/j.biocon.2015.01.031 10.1038/35002501 10.1016/j.rse.2019.111582 10.1016/j.rse.2014.04.010 10.1016/j.scitotenv.2020.141344 10.3390/rs13030429 10.1007/s11442-024-2286-z 10.1016/j.ecolind.2019.05.008 10.1109/MGRS.2013.2244672 10.1657/1938-4246-43.3.429 10.1016/j.isprsjprs.2021.06.005 10.1016/j.rse.2020.111673 10.1016/j.isprsjprs.2019.09.016 10.1016/j.isprsjprs.2010.11.001 10.1016/j.quascirev.2018.06.007 10.3390/rs12121952 10.1002/rse2.139 10.1080/10106049.2018.1516245 10.1038/nclimate3004 10.1016/j.isprsjprs.2020.07.013 10.3390/rs5062795 10.1071/RJ20096 10.1016/j.scitotenv.2021.148918 10.1080/10106049.2012.756940 10.1016/j.gloenvcha.2006.11.010 10.3390/rs11121505 10.1080/13658816.2011.577745 10.1093/jpe/rtm005 10.1038/srep09396 10.1038/nature25508 10.3390/rs10060927 10.1016/j.isprsjprs.2012.04.001 10.1007/s11434-011-4870-8 10.1016/j.rse.2018.07.006 10.1007/s11769-020-1120-5 10.1038/nclimate1329 10.1111/j.1654-1103.2005.tb02365.x 10.1016/j.rse.2011.08.024 10.3390/rs12193150 10.1016/j.rse.2019.05.026 10.1007/s11273-009-9169-z 10.1016/0034-4257(92)90068-U 10.1016/j.rse.2020.111953 10.1016/j.rse.2018.07.007 10.1016/j.isprsjprs.2015.05.005 10.1016/j.rse.2019.111297 10.3390/rs13020249  | 
    
| ContentType | Journal Article | 
    
| Copyright | Science China Press 2025 Copyright Springer Nature B.V. Mar 2025  | 
    
| Copyright_xml | – notice: Science China Press 2025 – notice: Copyright Springer Nature B.V. Mar 2025  | 
    
| DBID | AAYXX CITATION 7TG 7UA C1K F1W H96 KL. L.G  | 
    
| DOI | 10.1007/s11430-024-1509-3 | 
    
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional  | 
    
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geology | 
    
| EISSN | 1869-1897 | 
    
| EndPage | 849 | 
    
| ExternalDocumentID | 10_1007_s11430_024_1509_3 | 
    
| GeographicLocations | China Yunnan China  | 
    
| GeographicLocations_xml | – name: Yunnan China – name: China  | 
    
| GroupedDBID | -5A -5G -BR -EM -SA -S~ -Y2 -~C .VR 06D 0R~ 0VY 1N0 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 40D 40E 5VR 5VS 67M 88I 8FE 8FH 8TC 8UJ 95- 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFKRA AFLOW AFQWF AFRAH AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CAJEA CCEZO CCPQU CCVFK CHBEP CJPJV COF CSCUP CW9 DDRTE DNIVK DPUIP DWQXO EBD EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV L8X LK5 LLZTM M2P M4Y M7R MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9J PCBAR PF0 PQQKQ PROAC PT4 Q-- Q2X QOS R89 RIG ROL RSV S16 S3B SAP SCL SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TR2 TSG TUC TUS U1G U2A U5K UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z5O Z7R ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABRTQ ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT PUEGO 7TG 7UA C1K F1W H96 KL. L.G  | 
    
| ID | FETCH-LOGICAL-c198t-7b35e27395256f4c6d1354189889efd41eeb10d416f0102a88f98bebac5e92453 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1674-7313 | 
    
| IngestDate | Thu Jul 24 04:21:16 EDT 2025 Wed Oct 01 06:53:18 EDT 2025 Wed Feb 26 08:55:49 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Data-fusion framework Biodiversity hotspot region Multi-source data Ecological diversity Vegetation mapping  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c198t-7b35e27395256f4c6d1354189889efd41eeb10d416f0102a88f98bebac5e92453 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3171169006 | 
    
| PQPubID | 54336 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_journals_3171169006 crossref_primary_10_1007_s11430_024_1509_3 springer_journals_10_1007_s11430_024_1509_3  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20250300 2025-03-00 20250301  | 
    
| PublicationDateYYYYMMDD | 2025-03-01 | 
    
| PublicationDate_xml | – month: 3 year: 2025 text: 20250300  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Beijing | 
    
| PublicationPlace_xml | – name: Beijing – name: Dordrecht  | 
    
| PublicationTitle | Science China. Earth sciences | 
    
| PublicationTitleAbbrev | Sci. China Earth Sci | 
    
| PublicationYear | 2025 | 
    
| Publisher | Science China Press Springer Nature B.V  | 
    
| Publisher_xml | – name: Science China Press – name: Springer Nature B.V  | 
    
| References | Y Liu (1509_CR33) 2020; 30 F Pedrotti (1509_CR40) 2012 1509_CR45 H Zhang (1509_CR77) 2019; 11 X Wang (1509_CR68) 2018; 192 H Shi (1509_CR51) 2018; 38 J Chen (1509_CR8) 2020; 12 X Y Tong (1509_CR56) 2023; 196 R Li (1509_CR28) 2015; 5 S Madonsela (1509_CR36) 2017; 58 J Ni (1509_CR39) 2011; 43 E van der Maarel (1509_CR62) 2012 A Räsänen (1509_CR43) 2019; 230 E Adam (1509_CR1) 2010; 18 J Verrelst (1509_CR64) 2015; 108 Z Wu (1509_CR70) 1987 T Wu (1509_CR69) 2021; 13 J Franklin (1509_CR16) 1995; 19 M Gašparović (1509_CR18) 2020; 12 F H Wagner (1509_CR65) 2019; 5 S Preidl (1509_CR41) 2020; 240 D W Roberts (1509_CR46) 1989 Y Zeng (1509_CR75) 2019; 104 R J Zomer (1509_CR79) 2015; 184 1509_CR54 M Lopes (1509_CR34) 2020; 6 S Grimaldi (1509_CR21) 2020; 237 Y Yao (1509_CR73) 2020; 30 H Sun (1509_CR53) 2021; 2021 D Schulz (1509_CR48) 2021; 178 Z Zhu (1509_CR78) 2016; 6 M N Tuanmu (1509_CR60) 2010; 114 Z Gao (1509_CR17) 2021 Z Fan (1509_CR14) 2021; 796 M Belgiu (1509_CR3) 2016; 114 C Homer (1509_CR23) 2015; 81 T Kattenborn (1509_CR26) 2021; 173 Y H Ran (1509_CR42) 2012; 26 P M Treitz (1509_CR57) 1992; 42 Y H Tsai (1509_CR59) 2018; 10 J Liu (1509_CR32) 2019; 94 A I de Castro (1509_CR9) 2021; 13 A Ghorbanian (1509_CR19) 2020; 167 M K Raynolds (1509_CR44) 2019; 232 F Wang (1509_CR67) 2017; 31 N Myers (1509_CR38) 2000; 403 J M Bioucas-Dias (1509_CR5) 2013; 1 A W Kuchler (1509_CR27) 1967 Y Su (1509_CR52) 2020; 65 D Ienco (1509_CR25) 2019; 158 T G Liang (1509_CR30) 2012; 57 C Zhang (1509_CR76) 2014; 29 F A Azizan (1509_CR2) 2021; 13 C Chen (1509_CR7) 2019; 2 M F Hutchinson (1509_CR24) 1995; 9 F Taubert (1509_CR55) 2018; 554 D A Walker (1509_CR66) 2005; 16 P S Roy (1509_CR47) 2015; 39 W Liang (1509_CR31) 2020; 12 P Ye (1509_CR74) 2020; 23 M Gottfried (1509_CR20) 2012; 2 Y Shao (1509_CR50) 2012; 70 P Macintyre (1509_CR35) 2020; 85 M C Hansen (1509_CR22) 2012; 122 S van Beijma (1509_CR61) 2014; 149 B Verrall (1509_CR63) 2020; 748 M E Fagan (1509_CR13) 2018; 216 G Mountrakis (1509_CR37) 2011; 66 W Li (1509_CR29) 2020; 247 J M B Carreiras (1509_CR6) 2017; 194 J J Erinjery (1509_CR12) 2018; 216 H Du (1509_CR11) 2022; 43 F Biermann (1509_CR4) 2007; 17 T M Del Valle (1509_CR10) 2022; 115 M Xiahou (1509_CR71) 2024; 34 N Flood (1509_CR15) 2019; 82 C Senf (1509_CR49) 2013; 5 Y Xie (1509_CR72) 2008; 1 B H Trisasongko (1509_CR58) 2020; 35  | 
    
| References_xml | – volume: 114 start-page: 1833 year: 2010 ident: 1509_CR60 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2010.03.008 – volume: 115 start-page: 103092 year: 2022 ident: 1509_CR10 publication-title: Int J Appl Earth Obs Geoinf – volume: 13 start-page: 2139 year: 2021 ident: 1509_CR9 publication-title: Remote Sens doi: 10.3390/rs13112139 – volume: 173 start-page: 24 year: 2021 ident: 1509_CR26 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2020.12.010 – volume-title: Vegetation Mapping year: 1967 ident: 1509_CR27 – volume: 12 start-page: 609 year: 2020 ident: 1509_CR31 publication-title: Remote Sens doi: 10.3390/rs12040609 – volume: 9 start-page: 385 year: 1995 ident: 1509_CR24 publication-title: Int J Geogr Inf Syst doi: 10.1080/02693799508902045 – volume: 94 start-page: 1636 year: 2019 ident: 1509_CR32 publication-title: Biol Rev doi: 10.1111/brv.12519 – volume: 65 start-page: 1125 year: 2020 ident: 1509_CR52 publication-title: Sci Bull doi: 10.1016/j.scib.2020.04.004 – volume: 5 start-page: 360 year: 2019 ident: 1509_CR65 publication-title: Remote Sens Ecol Conserv doi: 10.1002/rse2.111 – volume: 114 start-page: 24 year: 2016 ident: 1509_CR3 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 2 start-page: 122 year: 2019 ident: 1509_CR7 publication-title: Nat Sustain doi: 10.1038/s41893-019-0220-7 – volume: 38 start-page: 2520 year: 2018 ident: 1509_CR51 publication-title: Int J Climatol doi: 10.1002/joc.5404 – volume: 23 start-page: e01005 year: 2020 ident: 1509_CR74 publication-title: Glob Ecol Conserv – volume: 31 start-page: 2344 year: 2017 ident: 1509_CR67 publication-title: Funct Ecol doi: 10.1111/1365-2435.12925 – volume: 194 start-page: 16 year: 2017 ident: 1509_CR6 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2017.03.016 – volume: 2021 start-page: 1 year: 2021 ident: 1509_CR53 publication-title: Adv Meteor – volume: 196 start-page: 178 year: 2023 ident: 1509_CR56 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2022.12.011 – volume: 19 start-page: 474 year: 1995 ident: 1509_CR16 publication-title: Prog Phys Geog doi: 10.1177/030913339501900403 – volume: 30 start-page: 267 year: 2020 ident: 1509_CR73 publication-title: J Geogr Sci doi: 10.1007/s11442-020-1727-6 – volume: 184 start-page: 335 year: 2015 ident: 1509_CR79 publication-title: Biol Conserv doi: 10.1016/j.biocon.2015.01.031 – volume: 403 start-page: 853 year: 2000 ident: 1509_CR38 publication-title: Nature doi: 10.1038/35002501 – ident: 1509_CR45 – volume: 237 start-page: 111582 year: 2020 ident: 1509_CR21 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2019.111582 – volume: 149 start-page: 118 year: 2014 ident: 1509_CR61 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2014.04.010 – volume-title: Vegetation Ecology year: 2012 ident: 1509_CR62 – volume: 748 start-page: 141344 year: 2020 ident: 1509_CR63 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.141344 – volume: 13 start-page: 429 year: 2021 ident: 1509_CR2 publication-title: Remote Sens doi: 10.3390/rs13030429 – volume: 34 start-page: 2128 year: 2024 ident: 1509_CR71 publication-title: J Geogr Sci doi: 10.1007/s11442-024-2286-z – volume: 104 start-page: 248 year: 2019 ident: 1509_CR75 publication-title: Ecol Indicators doi: 10.1016/j.ecolind.2019.05.008 – volume: 1 start-page: 6 year: 2013 ident: 1509_CR5 publication-title: IEEE Geosci Remote Sens Mag doi: 10.1109/MGRS.2013.2244672 – volume: 43 start-page: 429 year: 2011 ident: 1509_CR39 publication-title: Arctic Antarctic Alpine Res doi: 10.1657/1938-4246-43.3.429 – volume: 178 start-page: 97 year: 2021 ident: 1509_CR48 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2021.06.005 – volume: 82 start-page: 101897 year: 2019 ident: 1509_CR15 publication-title: Int J Appl Earth Obs Geoinf – volume: 240 start-page: 111673 year: 2020 ident: 1509_CR41 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2020.111673 – volume: 158 start-page: 11 year: 2019 ident: 1509_CR25 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2019.09.016 – volume: 66 start-page: 247 year: 2011 ident: 1509_CR37 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2010.11.001 – volume: 39 start-page: 142 year: 2015 ident: 1509_CR47 publication-title: Int J Appl Earth Obs Geoinf – volume: 192 start-page: 236 year: 2018 ident: 1509_CR68 publication-title: Quat Sci Rev doi: 10.1016/j.quascirev.2018.06.007 – volume: 12 start-page: 1952 year: 2020 ident: 1509_CR18 publication-title: Remote Sens doi: 10.3390/rs12121952 – volume: 6 start-page: 316 year: 2020 ident: 1509_CR34 publication-title: Remote Sens Ecol Conserv doi: 10.1002/rse2.139 – volume: 35 start-page: 317 year: 2020 ident: 1509_CR58 publication-title: Geocarto Int doi: 10.1080/10106049.2018.1516245 – volume: 6 start-page: 791 year: 2016 ident: 1509_CR78 publication-title: Nat Clim Change doi: 10.1038/nclimate3004 – volume: 167 start-page: 276 year: 2020 ident: 1509_CR19 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2020.07.013 – volume: 81 start-page: 345 year: 2015 ident: 1509_CR23 publication-title: Photogramm Eng Remote Sens – volume: 5 start-page: 2795 year: 2013 ident: 1509_CR49 publication-title: Remote Sens doi: 10.3390/rs5062795 – volume: 43 start-page: 353 year: 2022 ident: 1509_CR11 publication-title: Rangeland J doi: 10.1071/RJ20096 – volume-title: Yunnan Vegetation year: 1987 ident: 1509_CR70 – volume: 796 start-page: 148918 year: 2021 ident: 1509_CR14 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.148918 – volume: 29 start-page: 228 year: 2014 ident: 1509_CR76 publication-title: Geocarto Int doi: 10.1080/10106049.2012.756940 – volume: 17 start-page: 326 year: 2007 ident: 1509_CR4 publication-title: Glob Environ Change doi: 10.1016/j.gloenvcha.2006.11.010 – volume: 11 start-page: 1505 year: 2019 ident: 1509_CR77 publication-title: Remote Sens doi: 10.3390/rs11121505 – volume: 26 start-page: 169 year: 2012 ident: 1509_CR42 publication-title: Int J Geogr Inf Sci doi: 10.1080/13658816.2011.577745 – volume: 1 start-page: 9 year: 2008 ident: 1509_CR72 publication-title: J Plant Ecol doi: 10.1093/jpe/rtm005 – volume: 5 start-page: 9396 year: 2015 ident: 1509_CR28 publication-title: Sci Rep doi: 10.1038/srep09396 – volume: 58 start-page: 65 year: 2017 ident: 1509_CR36 publication-title: Int J Appl Earth Obs Geoinf – volume: 554 start-page: 519 year: 2018 ident: 1509_CR55 publication-title: Nature doi: 10.1038/nature25508 – volume: 10 start-page: 927 year: 2018 ident: 1509_CR59 publication-title: Remote Sens doi: 10.3390/rs10060927 – volume: 70 start-page: 78 year: 2012 ident: 1509_CR50 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2012.04.001 – start-page: 90 volume-title: Land Classification Based on Vegetation: Applications for Resource Management year: 1989 ident: 1509_CR46 – volume: 57 start-page: 1298 year: 2012 ident: 1509_CR30 publication-title: Chin Sci Bull doi: 10.1007/s11434-011-4870-8 – volume: 216 start-page: 345 year: 2018 ident: 1509_CR12 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2018.07.006 – volume: 30 start-page: 410 year: 2020 ident: 1509_CR33 publication-title: Chin Geogr Sci doi: 10.1007/s11769-020-1120-5 – volume: 2 start-page: 111 year: 2012 ident: 1509_CR20 publication-title: Nat Clim Change doi: 10.1038/nclimate1329 – volume: 16 start-page: 267 year: 2005 ident: 1509_CR66 publication-title: J Veg Sci doi: 10.1111/j.1654-1103.2005.tb02365.x – volume: 122 start-page: 66 year: 2012 ident: 1509_CR22 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2011.08.024 – volume: 12 start-page: 3150 year: 2020 ident: 1509_CR8 publication-title: Remote Sens doi: 10.3390/rs12193150 – volume: 230 start-page: 111207 year: 2019 ident: 1509_CR43 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2019.05.026 – volume: 18 start-page: 281 year: 2010 ident: 1509_CR1 publication-title: Wetlands Ecol Manage doi: 10.1007/s11273-009-9169-z – volume: 42 start-page: 65 year: 1992 ident: 1509_CR57 publication-title: Remote Sens Environ doi: 10.1016/0034-4257(92)90068-U – volume: 247 start-page: 111953 year: 2020 ident: 1509_CR29 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2020.111953 – volume: 85 start-page: 101980 year: 2020 ident: 1509_CR35 publication-title: Int J Appl Earth Obs Geoinf – volume: 216 start-page: 415 year: 2018 ident: 1509_CR13 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2018.07.007 – volume-title: Plant and Vegetation Mapping year: 2012 ident: 1509_CR40 – ident: 1509_CR54 – volume: 108 start-page: 273 year: 2015 ident: 1509_CR64 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2015.05.005 – volume: 232 start-page: 111297 year: 2019 ident: 1509_CR44 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2019.111297 – volume-title: Ecosystems List of Yunnan Province year: 2021 ident: 1509_CR17 – volume: 13 start-page: 249 year: 2021 ident: 1509_CR69 publication-title: Remote Sens doi: 10.3390/rs13020249  | 
    
| SSID | ssj0000389727 | 
    
| Score | 2.4175622 | 
    
| Snippet | Vegetation maps are crucial for ecologists and decision-makers, providing essential information on the spatial distribution of various vegetation types to... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 836 | 
    
| SubjectTerms | Accuracy Biodiversity Biodiversity hot spots Climate Climate and vegetation Climate models Complexity Data integration Decision trees Dominant species Earth and Environmental Science Earth Sciences Ecologists Heterogeneity Hot spots Human impact Landsat Machine learning Mapping Natural vegetation Observational learning Remote sensing Satellite imagery Spatial distribution Sustainability management Vegetation Vegetation distribution Vegetation mapping Vegetation surveys  | 
    
| Title | Vegetation mapping of Yunnan Province by integrating remote sensing, field observations, and models | 
    
| URI | https://link.springer.com/article/10.1007/s11430-024-1509-3 https://www.proquest.com/docview/3171169006  | 
    
| Volume | 68 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1869-1897 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000389727 issn: 1674-7313 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1869-1897 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000389727 issn: 1674-7313 databaseCode: U2A dateStart: 20101201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgFRIL4ikKpfLABLUUx7FjjxUqrUAgBoraKbIduxMpasrQv8d2k0YgGJgyxPJw_LjnPnwuANdapVIrlSBCjHNQCGdI8EggiWMmbKwNDgG3p2c2niQPUzqt3nGXdbV7nZIMN3Xz2M2Z9gg5m4IciRGI7II29WpebhNP4sE2sOIV49LQqtUX2KOUYFJnM3-b5bs9akjmj7xoMDf3h-Cg4olwsFnYI7BjimOwNwp9eNcnQL85b3-TRYfv0msszOHCwpmjo7KALyFOoA1Ua1jrQfgRS-MWxsDSF60X8z4M5WtwobaR2bIPZZHD0B6nPAWT--Hr3RhV_RKQxoKvUKoINbHPvDkeYxPNckxogrngXBibJ9i4izlyX2a9kpzk3AqujJKaGueGUXIGWsWiMOcARrlkkTCMU-rNHFexNUmkLNMYa8fHO-CmRi372MhiZI0Asoc4cxBnHuKMdEC3xjWrTkiZOd6CfYouYh1wW2Pd_P5zsot_jb4E-7Fv2BuKxrqgtVp-mivHIlaqB9qD0exx2Au75wvxvr61 | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFLSgCMGC-BSFAh6YoJbiOHHssUKUAm3F0KIyWbFjdyJFTRn677HdpBEIBqYMsTycE7_zu-d7AFwrmaRKyggRou0BhTCKOAs4SnFIuQmVxj7hNhjS3jh6msST8h53UVW7V5Kk36nry242tAfIxhRkSQxHZBNsOf8qZ5g_DjvrxIpzjEt8q1ZXYI8SgkmlZv42y_d4VJPMH7qoDzfdfbBX8kTYWS3sAdjQ-SHYfvB9eJdHQL3a0_5KRYfvqfNYmMKZgW-WjqY5fPF5AqWhXMLKD8KNmGu7MBoWrmg9n7ahL1-DM7nOzBZtmOYZ9O1ximMw7t6P7nqo7JeAFOZsgRJJYh065c3yGBMpmmESR5hxxrg2WYS13ZgD-6TGOcmljBnOpJapirU9hsXkBDTyWa5PAQyylAZcUxbHLswxGRodBdJQhbGyfLwJbirUxMfKFkPUBsgOYmEhFg5iQZqgVeEqyj-kEJa3YCfRBbQJbius69d_Tnb2r9FXYKc3GvRF_3H4fA52Q9e81xeQtUBjMf_UF5ZRLOSl_4K-AAVowA0 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFLSgCMSC-BSFAh6YoFbjOHHssQJK-ao6UFSmKHbsTqRVE4b-e2wnaQWCgSlDLA9nJ-_83vMdAJdSRIkUIkCEKHNAIYwizjyOEuxTrn2psEu4vQxofxQ8jsNx5XOa193udUmyvNNgVZqyojNLdWd18c2EeQ-Z-IIMoeGIrIONwOokmA098rvLJItVj4ucbatttkcRwaSubP42y_fYtCKcP2qkLvT0dsFOxRlht1zkPbCmsn2wee88eRcHQL6Zk39ZUYcfidVbmMCphu-GmiYZHLqcgVRQLGCtDWFHzJVZJAVz28CeTdrQtbLBqVhmafM2TLIUOquc_BCMenevN31UeScgiTkrUCRIqHxbhTOcRgeSppiEAWacMa50GmBlftKeeVJtVeUSxjRnQolEhsocyUJyBBrZNFPHAHppQj2uKAtDG_KY8LUKPKGpxFgabt4EVzVq8ayUyIhXYsgW4thAHFuIY9IErRrXuPpa8thwGGzLdR5tgusa69XrPyc7-dfoC7A1vO3Fzw-Dp1Ow7VsfX9dL1gKNYv6pzgy5KMS520Bfek3ESQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vegetation+mapping+of+Yunnan+Province+by+integrating+remote+sensing%2C+field+observations%2C+and+models&rft.jtitle=Science+China.+Earth+sciences&rft.au=Xiahou%2C+Mingjian&rft.au=Peng%2C+Mingchun&rft.au=Shen%2C+Zehao&rft.au=Wen%2C+Qingzhong&rft.date=2025-03-01&rft.issn=1674-7313&rft.eissn=1869-1897&rft.volume=68&rft.issue=3&rft.spage=836&rft.epage=849&rft_id=info:doi/10.1007%2Fs11430-024-1509-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11430_024_1509_3 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7313&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7313&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7313&client=summon |