Towards Sustainable IoT: A Digital Signature‐Enhanced Federated Learning Approach
ABSTRACT Federated Learning (FL) is emerging as a premier paradigm for privacy‐preserved Machine Learning (ML), enabling devices to train models without central data pooling collaboratively. In the contemporary Internet of Things (IoT) landscape, characterized by escalating energy consumption and as...
Saved in:
| Published in | Security and privacy Vol. 8; no. 4 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Boston, USA
Wiley Periodicals, Inc
01.07.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2475-6725 2475-6725 |
| DOI | 10.1002/spy2.70066 |
Cover
| Abstract | ABSTRACT
Federated Learning (FL) is emerging as a premier paradigm for privacy‐preserved Machine Learning (ML), enabling devices to train models without central data pooling collaboratively. In the contemporary Internet of Things (IoT) landscape, characterized by escalating energy consumption and associated carbon footprint, FL is recognized not merely for its privacy features. Intrinsic to decentralized architectures such as FL, secure communication is based on digital signatures to guarantee integrity. This is particularly evident in sensitive sectors such as the Internet of Vehicles (IoV), banking, and healthcare. Integrating FL becomes imperative and intricate as these sectors are intertwined with the IoT fabric. Our study unveils “Secure Federated Learning Framework (SecFL),” a pioneering decentralized framework combining FL and sustainable computing. SecFL offers defences against adversarial attacks such as data poisoning and label flipping. Utilizing the Rivest‐Shamir‐Adleman (RSA) asymmetric encryption algorithm for securing digital communications and transactions, combined with ElGamal encryption and a private Ethereum blockchain, ensures enhanced client‐specific security. Our research emphasizes the formal modeling of adversarial dynamics using High‐Level Petri nets (HLPN) within the FL‐IoT ecosystem, balancing system dynamics and energy conservation. Our model consistently outperforms contemporary solutions in accuracy and time efficiency after validation. As IoT burgeons into domains like environmental monitoring, smart cities, and energy grids, the SecFL framework, fostering FL, optimizes energy utilization and bolsters resource efficiency. In our comparative analysis, the Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm demonstrates superior transaction latency and verification time compared to RSA and Elliptic Curve Cryptography (ECC). |
|---|---|
| AbstractList | ABSTRACT
Federated Learning (FL) is emerging as a premier paradigm for privacy‐preserved Machine Learning (ML), enabling devices to train models without central data pooling collaboratively. In the contemporary Internet of Things (IoT) landscape, characterized by escalating energy consumption and associated carbon footprint, FL is recognized not merely for its privacy features. Intrinsic to decentralized architectures such as FL, secure communication is based on digital signatures to guarantee integrity. This is particularly evident in sensitive sectors such as the Internet of Vehicles (IoV), banking, and healthcare. Integrating FL becomes imperative and intricate as these sectors are intertwined with the IoT fabric. Our study unveils “Secure Federated Learning Framework (SecFL),” a pioneering decentralized framework combining FL and sustainable computing. SecFL offers defences against adversarial attacks such as data poisoning and label flipping. Utilizing the Rivest‐Shamir‐Adleman (RSA) asymmetric encryption algorithm for securing digital communications and transactions, combined with ElGamal encryption and a private Ethereum blockchain, ensures enhanced client‐specific security. Our research emphasizes the formal modeling of adversarial dynamics using High‐Level Petri nets (HLPN) within the FL‐IoT ecosystem, balancing system dynamics and energy conservation. Our model consistently outperforms contemporary solutions in accuracy and time efficiency after validation. As IoT burgeons into domains like environmental monitoring, smart cities, and energy grids, the SecFL framework, fostering FL, optimizes energy utilization and bolsters resource efficiency. In our comparative analysis, the Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm demonstrates superior transaction latency and verification time compared to RSA and Elliptic Curve Cryptography (ECC). |
| Author | Bukht, Tanvir Fatima Naik Srivastava, Gautam Qureshi, Shahida Hafeezan Haseeb, Junaid Moqurrab, Syed Atif Malik, Saif Ur Rehman |
| Author_xml | – sequence: 1 givenname: Shahida Hafeezan surname: Qureshi fullname: Qureshi, Shahida Hafeezan organization: COMSATS University Islamabad – sequence: 2 givenname: Saif Ur Rehman surname: Malik fullname: Malik, Saif Ur Rehman organization: The University of Dublin – sequence: 3 givenname: Junaid surname: Haseeb fullname: Haseeb, Junaid organization: University of Waikato – sequence: 4 givenname: Syed Atif surname: Moqurrab fullname: Moqurrab, Syed Atif email: syedatif.moqurrab@beds.ac.uk organization: School of Computer Science and Technology – sequence: 5 givenname: Tanvir Fatima Naik surname: Bukht fullname: Bukht, Tanvir Fatima Naik organization: Air University – sequence: 6 givenname: Gautam orcidid: 0000-0001-9851-4103 surname: Srivastava fullname: Srivastava, Gautam email: srivastavag@brandonu.ca organization: Brandon University |
| BookMark | eNp9kLFOwzAURS1UJErpwhdkRym269gJW1VaqFQJpJSBKXqxX1qj4EROqiobn8A38iWklIGJ6d7hvKerc0kGrnJIyDWjE0Ypv23qjk8UpVKekSEXKgql4tHgT78g46Z5o5SyWE55Eg9JuqkO4E0TpPumBesgLzFYVZu7YBbc261toQxSu3XQ7j1-fXwu3A6cRhMs0aCHtm9rBO-s2wazuvYV6N0VOS-gbHD8myPyslxs5o_h-ulhNZ-tQ82SWIZJbjTSolBS5QJVwSMjIFFC56BYpEUipxiB6mejRK7jJBbUSB2ZmGoBVE1H5Ob0d-9q6A5Qllnt7Tv4LmM0OyrJjkqyHyU9zU70wZbY_UNm6fMrP918A_jJZls |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2025 The Author(s). published by John Wiley & Sons Ltd. |
| DBID | 24P ADTOC UNPAY |
| DOI | 10.1002/spy2.70066 |
| DatabaseName | Wiley Online Library Open Access Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2475-6725 |
| EndPage | n/a |
| ExternalDocumentID | 10.1002/spy2.70066 SPY270066 |
| Genre | researchArticle |
| GroupedDBID | 0R~ 1OC 24P 33P AAHQN AAMMB AAMNL AANLZ AAYCA AAZKR ABDBF ABJNI ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADMLS ADXAS ADZMN AEFGJ AEIGN AEUYR AEYWJ AFFPM AFWVQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB BFHJK DCZOG EBS EJD HGLYW LATKE LEEKS LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW ADTOC UNPAY |
| ID | FETCH-LOGICAL-c1986-9bdce0ff767b4e7f25d4a974cba715c4963e5a7725e6e2c89840d6c5d80c4a073 |
| IEDL.DBID | UNPAY |
| ISSN | 2475-6725 |
| IngestDate | Tue Aug 19 08:57:24 EDT 2025 Wed Jul 16 09:37:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1986-9bdce0ff767b4e7f25d4a974cba715c4963e5a7725e6e2c89840d6c5d80c4a073 |
| ORCID | 0000-0001-9851-4103 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/spy2.70066 |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_1002_spy2_70066 wiley_primary_10_1002_spy2_70066_SPY270066 |
| PublicationCentury | 2000 |
| PublicationDate | July/August 2025 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: July/August 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Boston, USA |
| PublicationPlace_xml | – name: Boston, USA |
| PublicationTitle | Security and privacy |
| PublicationYear | 2025 |
| Publisher | Wiley Periodicals, Inc |
| Publisher_xml | – name: Wiley Periodicals, Inc |
| References | 2021; 9 2020; 8 2023; 11 2013; 1 2023; 55 2023; 142 2023 2022 2021 2019; 1 2020 2022; 9 2023; 213 2017 2022; 22 2022; 11 2024 2013 2022; 207 2022; 124 2022; 19 |
| References_xml | – start-page: 154 year: 2022 end-page: 165 – volume: 8 start-page: 6178 year: 2020 end-page: 6186 article-title: Privacy‐Preserving Federated Learning Framework Based on Chained Secure Multiparty Computing publication-title: IEEE Internet of Things Journal – start-page: 256 year: 2021 end-page: 262 – start-page: 27 year: 2020 end-page: 31 – year: 2023 article-title: Advancing Privacy and Accuracy With Federated Learning and Homomorphic Encryption publication-title: Authorea Preprints – volume: 22 start-page: 5918 year: 2022 end-page: 5932 article-title: In‐Network Computation for Large‐Scale Federated Learning Over Wireless Edge Networks publication-title: IEEE Transactions on Mobile Computing – start-page: 1 year: 2021 end-page: 6 – volume: 213 year: 2023 article-title: Privacy‐Preserving and Traceable Federated Learning for Data Sharing in Industrial IoT Applications publication-title: Expert Systems With Applications – volume: 19 year: 2022 article-title: A Survey of Blockchain‐Based IoT eHealthcare: Applications, Research Issues, and Challenges publication-title: Internet of Things – volume: 11 start-page: 39 year: 2022 end-page: 40 article-title: Security, Trust, and Privacy Solutions for Intelligent Internet of Vehicular Things–Part I publication-title: IEEE Consumer Electronics Magazine – start-page: 1 year: 2022 end-page: 4 – start-page: 548 year: 2022 end-page: 553 – volume: 55 start-page: 1 year: 2023 end-page: 31 article-title: Blockchain‐Empowered Federated Learning: Challenges, Solutions, and Future Directions publication-title: ACM Computing Surveys – volume: 1 start-page: 1795 year: 2019 end-page: 1800 – start-page: 3085 year: 2020 end-page: 3092 – start-page: 1 year: 2022 end-page: 6 – start-page: 778 year: 2024 end-page: 793 – volume: 9 start-page: 20149 year: 2022 end-page: 20159 article-title: Privacy‐Preserving and Low‐Latency Federated Learning in Edge Computing publication-title: IEEE Internet of Things Journal – volume: 207 start-page: 1144 year: 2022 end-page: 1153 article-title: Challenges and Trends in Federated Learning for Well‐Being and Healthcare publication-title: Procedia Computer Science – volume: 124 start-page: 655 year: 2022 end-page: 670 article-title: Data Privacy Preservation and Trade‐Off Balance Between Privacy and Utility Using Deep Adaptive Clustering and Elliptic Curve Digital Signature Algorithm publication-title: Wireless Personal Communications – start-page: 43 year: 2017 end-page: 46 – volume: 11 year: 2023 article-title: Reinforcement Learning Based Traffic Signal Controller With State Reduction publication-title: Journal of Engineering Research – volume: 1 start-page: 1 year: 2013 article-title: Modeling and Analysis of State‐Of‐The‐Art Vm‐Based Cloud Management Platforms publication-title: IEEE Transactions on Cloud Computing – start-page: 182 year: 2022 end-page: 188 – volume: 9 start-page: 31309 year: 2021 end-page: 31321 article-title: A Comprehensive Review of Authentication Schemes in Vehicular Ad‐Hoc Network publication-title: IEEE Access – start-page: 261 year: 2021 end-page: 266 – volume: 142 start-page: 364 year: 2023 end-page: 375 article-title: SecurePrivChain: A Decentralized Framework for Securing the Global Model Using Cryptography publication-title: Future Generation Computer Systems – year: 2024 article-title: Partially Homomorphic Framework for Secure Privacy‐Preserving Id Creation publication-title: Integrated Computer‐Aided Engineering – year: 2013 |
| SSID | ssj0001863298 |
| Score | 2.2982757 |
| Snippet | ABSTRACT
Federated Learning (FL) is emerging as a premier paradigm for privacy‐preserved Machine Learning (ML), enabling devices to train models without... |
| SourceID | unpaywall wiley |
| SourceType | Open Access Repository Publisher |
| SubjectTerms | cryptography ECC ECDSA federated learning global model security IoV RSA |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGH6DeFAPfhvxKz1wMplspV0344UoBE00JIMET0u7tUhCBhGI4eZP8Df6S2y7AfFi4m2H9vJ2T_u8b98-D0DVky4njHuOCrB0iFDK4fWA65wHS5a4Ikytzuzzi9_ukac-7ZfgbvkWJteHWBXcDDLsfm0AzsW0thYNnU4W-IaZI3MDNj1NZMz_jUlnXWEJ_Dq2ZriYMNNhj-lKnxTX1tN3YGueTfjig49GvymqPWNa-7BbkEPUyFfzAEoyO4S9pfECKnB4BFHXNrtOUbR-_oQex91b1EAPw4HxAUHRcJCLdn5_fjWzN3vRj1pGOkKzyxQVuqoD1ChExY-h12p279tO4Y7gJF4Y-E4o0kS6SjGfCSKZwjQlXGcHieDMownRyJKUa_JMpS9xEoQ6lUv9hKaBmxCukX0C5WycyVNAnJpZpiIqFGEBNaRREFcqKRWhhFSguopQPMlVMOJc7xjHJpCxDWQFrm3w_hgSR51XbL_O_jP4HLax8d21bbIXUJ69z-WlJgMzcWXX_AceDbBw priority: 102 providerName: Wiley-Blackwell |
| Title | Towards Sustainable IoT: A Digital Signature‐Enhanced Federated Learning Approach |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fspy2.70066 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/spy2.70066 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMdfBA7Gg_gzYpT0wMlkOGq7Dm9EIWgiIQESOC1t1yKRDCIQgyf_BP9G_xLbbSB6MCbedlibput7_b7u9fMAShXlcsJ4xdE-Vg4RWjv8yucm5sGKSVdUw5gz-9Dymj1y36f9jVv8CR9ifeBmLSP219bAp6FO_Hz6dx9fzqZLXGZ228xAzqNGjWch12u1awNbU44wm1eP6ZpKutlgB7YX0ZQvX_h4_F2YxjtLIw98NaYkoeSpvJiLsnz9gWv8z6D3YDeVnaiWrJN92FLRAeRXJR1QauGH0OnGabQz1Pm6WIXuJt1rVEO3o6GtMII6o2GCA_14e69Hj3EKAWpYKIXRrSFKia1DVEtx5UfQa9S7N00nrbvgyErV95yqCKVytWYeE0QxjWlIuIk7pOCsQiUxNqsoN7KcKk9h6VdNkBh6koa-Kwk3PuMYstEkUieAOLWt7Fmr0IT51MpRQVylldKEElKA0vorBNOErxEkJGUc2IkK4okqwEU8q7-8EnTaAxw_nf6tzzPIzp8X6txoirkoQgaTdjFdPJ99-dE0 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG4UD-jBbyN-9sDJZLqVdt28EYWAAiHZSPC0tF2LJGQQgRhu_gR_o7_EtZssXky89dBe3uZpn_ft2-cBoOpIm2HKHEt5SFqYK2WxmsfSnAdJKmzux0ZntttzWwP8NCTDvDdH_4XJ9CHWBTeNDHNea4DrgvRdoRo6n63QLdV35ibYwq7j6twL4X5RYvHcGjJuuAhT3WKPyFqgFN0Vy3dAeZnM2OqdTSa_Oaq5ZJr7YDdnh7CebecB2JDJIdj7cV6AORCPQBCabtc5DIr_T7A9De9hHT6OR9oIBAbjUaba-fXx2UhezUs_bGrtiJRexjAXVh3Beq4qfgwGzUb40LJyewRLOL7nWj6PhbSVoi7lWFKFSIxZmh4IzqhDBE6hJQlL2TORrkTC89NcLnYFiT1bYJZC-wSUkmkiTwFkRK_SJVGuMPWIZo0c21JJqTDBuAKq6whFs0wGI8oEj1GkAxmZQFbAjQneH1OioP-CzOjsP5OvQbkVdjtRp917PgfbSJvwmp7ZC1BavC3lZcoMFvzK7P83uIWz3A |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07b8IwEMetlkp9DH1XpU8PTJVSEmPHSTdUQNAHQgpIdIocx6ZIKEQFVLH1I_Qz9pPUdlKiLpW6ZbCXsy73v_P5dwBUHGEzTJljSQ8JC0dSWqzmMZXzIEG5Hfmx4cw-d932AD8MyTDvzdFvYTI-xKrgpj3D_K-1g4s0ltWCGjpLl-iW6pi5DjYwUaFQg51xryixeG4NmWm4CFPdYo_IClCKqsX2HbC1SFK2fGeTyW-NaoJMax_s5uoQ1rPjPABrIjkEez-TF2DuiEcg6Jtu1xkMivdPsDPt38E6bIxHehAIDMajjNr59fHZTF7NTT9saXaEkpcxzMGqI1jPqeLHYNBq9u_bVj4eweKO77mWH8Vc2FJSl0ZYUIlIjJlKD3jEqEM4Vq4lCFPqmQhXIO75KpeLXU5iz-aYKdc-AaVkmohTABnRu3RJNJKYekSrxgjbQgohMcG4DCorC4VphsEIM-AxCrUhQ2PIMrgxxvtjSRj0XpD5OvvP4muw2Wu0wqdO9_EcbCM9g9e0zF6A0vxtIS6VMJhHV-b4vwHSKrNr |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDbgfx4PyJE5UcdhI625g0rbeiG1NwDLrBdipJmszh6IrbkHnyT_Bv9C8xabs5PYjgrYcmhDTv5fvSl88DoOZIm2HKHEt5SFqYK2WxK4_pmAdJKmzuxxln9qHttnr4vk_6a7f4cz7E6sDNWEbmr42Bp7HK_Xzxdx9dTtMFqlOzbW6Csku0Gi-Bcq_dCQamphymJq8ekRWVdL3BNtiaJylbvLDx-LswzXaWZgWw5ZjyhJKn-nzG6-L1B67xP4PeBTuF7IRBvk72wIZM9kFlWdIBFhZ-AMJulkY7heHXxSp4N-lewwDejoamwggMR8McB_rx9t5IHrMUAtg0UAqtW2NYEFuHMChw5Yeg12x0b1pWUXfBEo7vuZbPYyFtpahLOZZUIRJjpuMOwRl1iMDaZiVhWpYT6UokPF8HibErSOzZAjPtM45AKZkk8hhARkwrc9bKFaYeMXKUY1sqKRUmGFdBbfUVojTna0Q5SRlFZqKibKKq4CKb1V9eicLOAGVPJ3_r8xSUZs9zeaY1xYyfF8vmE5za0F0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Sustainable+IoT%3A+A+Digital+Signature%E2%80%90Enhanced+Federated+Learning+Approach&rft.jtitle=Security+and+privacy&rft.au=Qureshi%2C+Shahida+Hafeezan&rft.au=Malik%2C+Saif+Ur+Rehman&rft.au=Haseeb%2C+Junaid&rft.au=Moqurrab%2C+Syed+Atif&rft.date=2025-07-01&rft.pub=Wiley+Periodicals%2C+Inc&rft.issn=2475-6725&rft.eissn=2475-6725&rft.volume=8&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fspy2.70066&rft.externalDBID=10.1002%252Fspy2.70066&rft.externalDocID=SPY270066 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-6725&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-6725&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-6725&client=summon |