Towards Sustainable IoT: A Digital Signature‐Enhanced Federated Learning Approach

ABSTRACT Federated Learning (FL) is emerging as a premier paradigm for privacy‐preserved Machine Learning (ML), enabling devices to train models without central data pooling collaboratively. In the contemporary Internet of Things (IoT) landscape, characterized by escalating energy consumption and as...

Full description

Saved in:
Bibliographic Details
Published inSecurity and privacy Vol. 8; no. 4
Main Authors Qureshi, Shahida Hafeezan, Malik, Saif Ur Rehman, Haseeb, Junaid, Moqurrab, Syed Atif, Bukht, Tanvir Fatima Naik, Srivastava, Gautam
Format Journal Article
LanguageEnglish
Published Boston, USA Wiley Periodicals, Inc 01.07.2025
Subjects
Online AccessGet full text
ISSN2475-6725
2475-6725
DOI10.1002/spy2.70066

Cover

Abstract ABSTRACT Federated Learning (FL) is emerging as a premier paradigm for privacy‐preserved Machine Learning (ML), enabling devices to train models without central data pooling collaboratively. In the contemporary Internet of Things (IoT) landscape, characterized by escalating energy consumption and associated carbon footprint, FL is recognized not merely for its privacy features. Intrinsic to decentralized architectures such as FL, secure communication is based on digital signatures to guarantee integrity. This is particularly evident in sensitive sectors such as the Internet of Vehicles (IoV), banking, and healthcare. Integrating FL becomes imperative and intricate as these sectors are intertwined with the IoT fabric. Our study unveils “Secure Federated Learning Framework (SecFL),” a pioneering decentralized framework combining FL and sustainable computing. SecFL offers defences against adversarial attacks such as data poisoning and label flipping. Utilizing the Rivest‐Shamir‐Adleman (RSA) asymmetric encryption algorithm for securing digital communications and transactions, combined with ElGamal encryption and a private Ethereum blockchain, ensures enhanced client‐specific security. Our research emphasizes the formal modeling of adversarial dynamics using High‐Level Petri nets (HLPN) within the FL‐IoT ecosystem, balancing system dynamics and energy conservation. Our model consistently outperforms contemporary solutions in accuracy and time efficiency after validation. As IoT burgeons into domains like environmental monitoring, smart cities, and energy grids, the SecFL framework, fostering FL, optimizes energy utilization and bolsters resource efficiency. In our comparative analysis, the Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm demonstrates superior transaction latency and verification time compared to RSA and Elliptic Curve Cryptography (ECC).
AbstractList ABSTRACT Federated Learning (FL) is emerging as a premier paradigm for privacy‐preserved Machine Learning (ML), enabling devices to train models without central data pooling collaboratively. In the contemporary Internet of Things (IoT) landscape, characterized by escalating energy consumption and associated carbon footprint, FL is recognized not merely for its privacy features. Intrinsic to decentralized architectures such as FL, secure communication is based on digital signatures to guarantee integrity. This is particularly evident in sensitive sectors such as the Internet of Vehicles (IoV), banking, and healthcare. Integrating FL becomes imperative and intricate as these sectors are intertwined with the IoT fabric. Our study unveils “Secure Federated Learning Framework (SecFL),” a pioneering decentralized framework combining FL and sustainable computing. SecFL offers defences against adversarial attacks such as data poisoning and label flipping. Utilizing the Rivest‐Shamir‐Adleman (RSA) asymmetric encryption algorithm for securing digital communications and transactions, combined with ElGamal encryption and a private Ethereum blockchain, ensures enhanced client‐specific security. Our research emphasizes the formal modeling of adversarial dynamics using High‐Level Petri nets (HLPN) within the FL‐IoT ecosystem, balancing system dynamics and energy conservation. Our model consistently outperforms contemporary solutions in accuracy and time efficiency after validation. As IoT burgeons into domains like environmental monitoring, smart cities, and energy grids, the SecFL framework, fostering FL, optimizes energy utilization and bolsters resource efficiency. In our comparative analysis, the Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm demonstrates superior transaction latency and verification time compared to RSA and Elliptic Curve Cryptography (ECC).
Author Bukht, Tanvir Fatima Naik
Srivastava, Gautam
Qureshi, Shahida Hafeezan
Haseeb, Junaid
Moqurrab, Syed Atif
Malik, Saif Ur Rehman
Author_xml – sequence: 1
  givenname: Shahida Hafeezan
  surname: Qureshi
  fullname: Qureshi, Shahida Hafeezan
  organization: COMSATS University Islamabad
– sequence: 2
  givenname: Saif Ur Rehman
  surname: Malik
  fullname: Malik, Saif Ur Rehman
  organization: The University of Dublin
– sequence: 3
  givenname: Junaid
  surname: Haseeb
  fullname: Haseeb, Junaid
  organization: University of Waikato
– sequence: 4
  givenname: Syed Atif
  surname: Moqurrab
  fullname: Moqurrab, Syed Atif
  email: syedatif.moqurrab@beds.ac.uk
  organization: School of Computer Science and Technology
– sequence: 5
  givenname: Tanvir Fatima Naik
  surname: Bukht
  fullname: Bukht, Tanvir Fatima Naik
  organization: Air University
– sequence: 6
  givenname: Gautam
  orcidid: 0000-0001-9851-4103
  surname: Srivastava
  fullname: Srivastava, Gautam
  email: srivastavag@brandonu.ca
  organization: Brandon University
BookMark eNp9kLFOwzAURS1UJErpwhdkRym269gJW1VaqFQJpJSBKXqxX1qj4EROqiobn8A38iWklIGJ6d7hvKerc0kGrnJIyDWjE0Ypv23qjk8UpVKekSEXKgql4tHgT78g46Z5o5SyWE55Eg9JuqkO4E0TpPumBesgLzFYVZu7YBbc261toQxSu3XQ7j1-fXwu3A6cRhMs0aCHtm9rBO-s2wazuvYV6N0VOS-gbHD8myPyslxs5o_h-ulhNZ-tQ82SWIZJbjTSolBS5QJVwSMjIFFC56BYpEUipxiB6mejRK7jJBbUSB2ZmGoBVE1H5Ob0d-9q6A5Qllnt7Tv4LmM0OyrJjkqyHyU9zU70wZbY_UNm6fMrP918A_jJZls
ContentType Journal Article
Copyright 2025 The Author(s). published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 The Author(s). published by John Wiley & Sons Ltd.
DBID 24P
ADTOC
UNPAY
DOI 10.1002/spy2.70066
DatabaseName Wiley Online Library Open Access
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2475-6725
EndPage n/a
ExternalDocumentID 10.1002/spy2.70066
SPY270066
Genre researchArticle
GroupedDBID 0R~
1OC
24P
33P
AAHQN
AAMMB
AAMNL
AANLZ
AAYCA
AAZKR
ABDBF
ABJNI
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADMLS
ADXAS
ADZMN
AEFGJ
AEIGN
AEUYR
AEYWJ
AFFPM
AFWVQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
BFHJK
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
ADTOC
UNPAY
ID FETCH-LOGICAL-c1986-9bdce0ff767b4e7f25d4a974cba715c4963e5a7725e6e2c89840d6c5d80c4a073
IEDL.DBID UNPAY
ISSN 2475-6725
IngestDate Tue Aug 19 08:57:24 EDT 2025
Wed Jul 16 09:37:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution-NonCommercial-NoDerivs
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1986-9bdce0ff767b4e7f25d4a974cba715c4963e5a7725e6e2c89840d6c5d80c4a073
ORCID 0000-0001-9851-4103
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/spy2.70066
PageCount 18
ParticipantIDs unpaywall_primary_10_1002_spy2_70066
wiley_primary_10_1002_spy2_70066_SPY270066
PublicationCentury 2000
PublicationDate July/August 2025
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July/August 2025
PublicationDecade 2020
PublicationPlace Boston, USA
PublicationPlace_xml – name: Boston, USA
PublicationTitle Security and privacy
PublicationYear 2025
Publisher Wiley Periodicals, Inc
Publisher_xml – name: Wiley Periodicals, Inc
References 2021; 9
2020; 8
2023; 11
2013; 1
2023; 55
2023; 142
2023
2022
2021
2019; 1
2020
2022; 9
2023; 213
2017
2022; 22
2022; 11
2024
2013
2022; 207
2022; 124
2022; 19
References_xml – start-page: 154
  year: 2022
  end-page: 165
– volume: 8
  start-page: 6178
  year: 2020
  end-page: 6186
  article-title: Privacy‐Preserving Federated Learning Framework Based on Chained Secure Multiparty Computing
  publication-title: IEEE Internet of Things Journal
– start-page: 256
  year: 2021
  end-page: 262
– start-page: 27
  year: 2020
  end-page: 31
– year: 2023
  article-title: Advancing Privacy and Accuracy With Federated Learning and Homomorphic Encryption
  publication-title: Authorea Preprints
– volume: 22
  start-page: 5918
  year: 2022
  end-page: 5932
  article-title: In‐Network Computation for Large‐Scale Federated Learning Over Wireless Edge Networks
  publication-title: IEEE Transactions on Mobile Computing
– start-page: 1
  year: 2021
  end-page: 6
– volume: 213
  year: 2023
  article-title: Privacy‐Preserving and Traceable Federated Learning for Data Sharing in Industrial IoT Applications
  publication-title: Expert Systems With Applications
– volume: 19
  year: 2022
  article-title: A Survey of Blockchain‐Based IoT eHealthcare: Applications, Research Issues, and Challenges
  publication-title: Internet of Things
– volume: 11
  start-page: 39
  year: 2022
  end-page: 40
  article-title: Security, Trust, and Privacy Solutions for Intelligent Internet of Vehicular Things–Part I
  publication-title: IEEE Consumer Electronics Magazine
– start-page: 1
  year: 2022
  end-page: 4
– start-page: 548
  year: 2022
  end-page: 553
– volume: 55
  start-page: 1
  year: 2023
  end-page: 31
  article-title: Blockchain‐Empowered Federated Learning: Challenges, Solutions, and Future Directions
  publication-title: ACM Computing Surveys
– volume: 1
  start-page: 1795
  year: 2019
  end-page: 1800
– start-page: 3085
  year: 2020
  end-page: 3092
– start-page: 1
  year: 2022
  end-page: 6
– start-page: 778
  year: 2024
  end-page: 793
– volume: 9
  start-page: 20149
  year: 2022
  end-page: 20159
  article-title: Privacy‐Preserving and Low‐Latency Federated Learning in Edge Computing
  publication-title: IEEE Internet of Things Journal
– volume: 207
  start-page: 1144
  year: 2022
  end-page: 1153
  article-title: Challenges and Trends in Federated Learning for Well‐Being and Healthcare
  publication-title: Procedia Computer Science
– volume: 124
  start-page: 655
  year: 2022
  end-page: 670
  article-title: Data Privacy Preservation and Trade‐Off Balance Between Privacy and Utility Using Deep Adaptive Clustering and Elliptic Curve Digital Signature Algorithm
  publication-title: Wireless Personal Communications
– start-page: 43
  year: 2017
  end-page: 46
– volume: 11
  year: 2023
  article-title: Reinforcement Learning Based Traffic Signal Controller With State Reduction
  publication-title: Journal of Engineering Research
– volume: 1
  start-page: 1
  year: 2013
  article-title: Modeling and Analysis of State‐Of‐The‐Art Vm‐Based Cloud Management Platforms
  publication-title: IEEE Transactions on Cloud Computing
– start-page: 182
  year: 2022
  end-page: 188
– volume: 9
  start-page: 31309
  year: 2021
  end-page: 31321
  article-title: A Comprehensive Review of Authentication Schemes in Vehicular Ad‐Hoc Network
  publication-title: IEEE Access
– start-page: 261
  year: 2021
  end-page: 266
– volume: 142
  start-page: 364
  year: 2023
  end-page: 375
  article-title: SecurePrivChain: A Decentralized Framework for Securing the Global Model Using Cryptography
  publication-title: Future Generation Computer Systems
– year: 2024
  article-title: Partially Homomorphic Framework for Secure Privacy‐Preserving Id Creation
  publication-title: Integrated Computer‐Aided Engineering
– year: 2013
SSID ssj0001863298
Score 2.2982757
Snippet ABSTRACT Federated Learning (FL) is emerging as a premier paradigm for privacy‐preserved Machine Learning (ML), enabling devices to train models without...
SourceID unpaywall
wiley
SourceType Open Access Repository
Publisher
SubjectTerms cryptography
ECC
ECDSA
federated learning
global model security
IoV
RSA
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGH6DeFAPfhvxKz1wMplspV0344UoBE00JIMET0u7tUhCBhGI4eZP8Df6S2y7AfFi4m2H9vJ2T_u8b98-D0DVky4njHuOCrB0iFDK4fWA65wHS5a4Ikytzuzzi9_ukac-7ZfgbvkWJteHWBXcDDLsfm0AzsW0thYNnU4W-IaZI3MDNj1NZMz_jUlnXWEJ_Dq2ZriYMNNhj-lKnxTX1tN3YGueTfjig49GvymqPWNa-7BbkEPUyFfzAEoyO4S9pfECKnB4BFHXNrtOUbR-_oQex91b1EAPw4HxAUHRcJCLdn5_fjWzN3vRj1pGOkKzyxQVuqoD1ChExY-h12p279tO4Y7gJF4Y-E4o0kS6SjGfCSKZwjQlXGcHieDMownRyJKUa_JMpS9xEoQ6lUv9hKaBmxCukX0C5WycyVNAnJpZpiIqFGEBNaRREFcqKRWhhFSguopQPMlVMOJc7xjHJpCxDWQFrm3w_hgSR51XbL_O_jP4HLax8d21bbIXUJ69z-WlJgMzcWXX_AceDbBw
  priority: 102
  providerName: Wiley-Blackwell
Title Towards Sustainable IoT: A Digital Signature‐Enhanced Federated Learning Approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fspy2.70066
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/spy2.70066
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMdfBA7Gg_gzYpT0wMlkOGq7Dm9EIWgiIQESOC1t1yKRDCIQgyf_BP9G_xLbbSB6MCbedlibput7_b7u9fMAShXlcsJ4xdE-Vg4RWjv8yucm5sGKSVdUw5gz-9Dymj1y36f9jVv8CR9ifeBmLSP219bAp6FO_Hz6dx9fzqZLXGZ228xAzqNGjWch12u1awNbU44wm1eP6ZpKutlgB7YX0ZQvX_h4_F2YxjtLIw98NaYkoeSpvJiLsnz9gWv8z6D3YDeVnaiWrJN92FLRAeRXJR1QauGH0OnGabQz1Pm6WIXuJt1rVEO3o6GtMII6o2GCA_14e69Hj3EKAWpYKIXRrSFKia1DVEtx5UfQa9S7N00nrbvgyErV95yqCKVytWYeE0QxjWlIuIk7pOCsQiUxNqsoN7KcKk9h6VdNkBh6koa-Kwk3PuMYstEkUieAOLWt7Fmr0IT51MpRQVylldKEElKA0vorBNOErxEkJGUc2IkK4okqwEU8q7-8EnTaAxw_nf6tzzPIzp8X6txoirkoQgaTdjFdPJ99-dE0
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG4UD-jBbyN-9sDJZLqVdt28EYWAAiHZSPC0tF2LJGQQgRhu_gR_o7_EtZssXky89dBe3uZpn_ft2-cBoOpIm2HKHEt5SFqYK2WxmsfSnAdJKmzux0ZntttzWwP8NCTDvDdH_4XJ9CHWBTeNDHNea4DrgvRdoRo6n63QLdV35ibYwq7j6twL4X5RYvHcGjJuuAhT3WKPyFqgFN0Vy3dAeZnM2OqdTSa_Oaq5ZJr7YDdnh7CebecB2JDJIdj7cV6AORCPQBCabtc5DIr_T7A9De9hHT6OR9oIBAbjUaba-fXx2UhezUs_bGrtiJRexjAXVh3Beq4qfgwGzUb40LJyewRLOL7nWj6PhbSVoi7lWFKFSIxZmh4IzqhDBE6hJQlL2TORrkTC89NcLnYFiT1bYJZC-wSUkmkiTwFkRK_SJVGuMPWIZo0c21JJqTDBuAKq6whFs0wGI8oEj1GkAxmZQFbAjQneH1OioP-CzOjsP5OvQbkVdjtRp917PgfbSJvwmp7ZC1BavC3lZcoMFvzK7P83uIWz3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07b8IwEMetlkp9DH1XpU8PTJVSEmPHSTdUQNAHQgpIdIocx6ZIKEQFVLH1I_Qz9pPUdlKiLpW6ZbCXsy73v_P5dwBUHGEzTJljSQ8JC0dSWqzmMZXzIEG5Hfmx4cw-d932AD8MyTDvzdFvYTI-xKrgpj3D_K-1g4s0ltWCGjpLl-iW6pi5DjYwUaFQg51xryixeG4NmWm4CFPdYo_IClCKqsX2HbC1SFK2fGeTyW-NaoJMax_s5uoQ1rPjPABrIjkEez-TF2DuiEcg6Jtu1xkMivdPsDPt38E6bIxHehAIDMajjNr59fHZTF7NTT9saXaEkpcxzMGqI1jPqeLHYNBq9u_bVj4eweKO77mWH8Vc2FJSl0ZYUIlIjJlKD3jEqEM4Vq4lCFPqmQhXIO75KpeLXU5iz-aYKdc-AaVkmohTABnRu3RJNJKYekSrxgjbQgohMcG4DCorC4VphsEIM-AxCrUhQ2PIMrgxxvtjSRj0XpD5OvvP4muw2Wu0wqdO9_EcbCM9g9e0zF6A0vxtIS6VMJhHV-b4vwHSKrNr
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDbgfx4PyJE5UcdhI625g0rbeiG1NwDLrBdipJmszh6IrbkHnyT_Bv9C8xabs5PYjgrYcmhDTv5fvSl88DoOZIm2HKHEt5SFqYK2WxK4_pmAdJKmzuxxln9qHttnr4vk_6a7f4cz7E6sDNWEbmr42Bp7HK_Xzxdx9dTtMFqlOzbW6Csku0Gi-Bcq_dCQamphymJq8ekRWVdL3BNtiaJylbvLDx-LswzXaWZgWw5ZjyhJKn-nzG6-L1B67xP4PeBTuF7IRBvk72wIZM9kFlWdIBFhZ-AMJulkY7heHXxSp4N-lewwDejoamwggMR8McB_rx9t5IHrMUAtg0UAqtW2NYEFuHMChw5Yeg12x0b1pWUXfBEo7vuZbPYyFtpahLOZZUIRJjpuMOwRl1iMDaZiVhWpYT6UokPF8HibErSOzZAjPtM45AKZkk8hhARkwrc9bKFaYeMXKUY1sqKRUmGFdBbfUVojTna0Q5SRlFZqKibKKq4CKb1V9eicLOAGVPJ3_r8xSUZs9zeaY1xYyfF8vmE5za0F0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Sustainable+IoT%3A+A+Digital+Signature%E2%80%90Enhanced+Federated+Learning+Approach&rft.jtitle=Security+and+privacy&rft.au=Qureshi%2C+Shahida+Hafeezan&rft.au=Malik%2C+Saif+Ur+Rehman&rft.au=Haseeb%2C+Junaid&rft.au=Moqurrab%2C+Syed+Atif&rft.date=2025-07-01&rft.pub=Wiley+Periodicals%2C+Inc&rft.issn=2475-6725&rft.eissn=2475-6725&rft.volume=8&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fspy2.70066&rft.externalDBID=10.1002%252Fspy2.70066&rft.externalDocID=SPY270066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-6725&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-6725&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-6725&client=summon