Stereographic projections path integral for inertia ellipsoids: Applications to Arn–HF clusters
The DeWitt formula for inertia ellipsoids mapped by stereographic projection coordinates is developed. We discover that by remapping the quaternion parameter space with stereographic projections, considerable simplification of the differential geometry for the inertia ellipsoid with spherical symmet...
Saved in:
| Published in | The Journal of chemical physics Vol. 120; no. 5; pp. 2110 - 2121 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
01.02.2004
|
| Online Access | Get full text |
| ISSN | 0021-9606 1089-7690 |
| DOI | 10.1063/1.1636694 |
Cover
| Abstract | The DeWitt formula for inertia ellipsoids mapped by stereographic projection coordinates is developed. We discover that by remapping the quaternion parameter space with stereographic projections, considerable simplification of the differential geometry for the inertia ellipsoid with spherical symmetry takes place. The metric tensor is diagonal and contains only one independent element in that case. We find no difficulties testing and implementing the DeWitt formula for the inertia ellipsoids of asymmetric tops mapped by stereographic projections. The path integral algorithm for the treatment of Rm⊗S2 manifolds based on a mixture of Cartesian and stereographic projection coordinates is tested for small Arn–HF clusters in the n=2 to n=5 range. In particular, we determine the quantum effects of the red shift and the isomerization patterns at finite temperatures. Our findings are consistent with previously reported computations and experimental data for small Arn–HF clusters. |
|---|---|
| AbstractList | The DeWitt formula for inertia ellipsoids mapped by stereographic projection coordinates is developed. We discover that by remapping the quaternion parameter space with stereographic projections, considerable simplification of the differential geometry for the inertia ellipsoid with spherical symmetry takes place. The metric tensor is diagonal and contains only one independent element in that case. We find no difficulties testing and implementing the DeWitt formula for the inertia ellipsoids of asymmetric tops mapped by stereographic projections. The path integral algorithm for the treatment of Rm x S2 manifolds based on a mixture of Cartesian and stereographic projection coordinates is tested for small Arn-HF clusters in the n = 2 to n = 5 range. In particular, we determine the quantum effects of the red shift and the isomerization patterns at finite temperatures. Our findings are consistent with previously reported computations and experimental data for small Arn-HF clusters.The DeWitt formula for inertia ellipsoids mapped by stereographic projection coordinates is developed. We discover that by remapping the quaternion parameter space with stereographic projections, considerable simplification of the differential geometry for the inertia ellipsoid with spherical symmetry takes place. The metric tensor is diagonal and contains only one independent element in that case. We find no difficulties testing and implementing the DeWitt formula for the inertia ellipsoids of asymmetric tops mapped by stereographic projections. The path integral algorithm for the treatment of Rm x S2 manifolds based on a mixture of Cartesian and stereographic projection coordinates is tested for small Arn-HF clusters in the n = 2 to n = 5 range. In particular, we determine the quantum effects of the red shift and the isomerization patterns at finite temperatures. Our findings are consistent with previously reported computations and experimental data for small Arn-HF clusters. The DeWitt formula for inertia ellipsoids mapped by stereographic projection coordinates is developed. We discover that by remapping the quaternion parameter space with stereographic projections, considerable simplification of the differential geometry for the inertia ellipsoid with spherical symmetry takes place. The metric tensor is diagonal and contains only one independent element in that case. We find no difficulties testing and implementing the DeWitt formula for the inertia ellipsoids of asymmetric tops mapped by stereographic projections. The path integral algorithm for the treatment of Rm x S2 manifolds based on a mixture of Cartesian and stereographic projection coordinates is tested for small Arn-HF clusters in the n = 2 to n = 5 range. In particular, we determine the quantum effects of the red shift and the isomerization patterns at finite temperatures. Our findings are consistent with previously reported computations and experimental data for small Arn-HF clusters. The DeWitt formula for inertia ellipsoids mapped by stereographic projection coordinates is developed. We discover that by remapping the quaternion parameter space with stereographic projections, considerable simplification of the differential geometry for the inertia ellipsoid with spherical symmetry takes place. The metric tensor is diagonal and contains only one independent element in that case. We find no difficulties testing and implementing the DeWitt formula for the inertia ellipsoids of asymmetric tops mapped by stereographic projections. The path integral algorithm for the treatment of Rm⊗S2 manifolds based on a mixture of Cartesian and stereographic projection coordinates is tested for small Arn–HF clusters in the n=2 to n=5 range. In particular, we determine the quantum effects of the red shift and the isomerization patterns at finite temperatures. Our findings are consistent with previously reported computations and experimental data for small Arn–HF clusters. |
| Author | Curotto, E. Russo, M. F. |
| Author_xml | – sequence: 1 givenname: M. F. surname: Russo fullname: Russo, M. F. – sequence: 2 givenname: E. surname: Curotto fullname: Curotto, E. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15268349$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkM9KAzEQh4NU7B89-AKSk-Bh22STJhtvpVgrFDzY-5JNE5uy3axJ9uDNd_ANfRKjrQjiaRjm-w0z3xD0GtdoAC4xGmPEyASPMSOMCXoCBhgVIuNMoB4YIJTjTDDE-mAYwg4hhHlOz0AfT3NWECoGQD5F7bV79rLdWgVb73ZaReuaAFsZt9A2UadhDY3zqdE-Wgl1Xds2OLsJt3DWtrVV8hCJDs588_H2vlxAVXch7Q7n4NTIOuiLYx2B9eJuPV9mq8f7h_lslSksWMwExxqT6UYiSbk0Uha8MhWhCucVJ9jQAhujhCo4U0TlTE1RVYiCGqE01ZSMwPVhbXrhpdMhlnsbVLpUNtp1oWSMk5wgnsCrI9hVe70pW2_30r-WP04ScHMAlHcheG1-EVR--S5xefSd2MkfVtn4LSN6aet_Ep8-dIM4 |
| CitedBy_id | crossref_primary_10_1002_qua_24647 crossref_primary_10_1063_1_3159398 crossref_primary_10_1063_1_2925681 crossref_primary_10_1063_1_2192773 crossref_primary_10_1063_1_2898539 crossref_primary_10_1063_1_4887460 crossref_primary_10_1063_1_2036970 crossref_primary_10_1063_1_4732055 crossref_primary_10_1063_1_1786916 crossref_primary_10_1063_1_2837802 crossref_primary_10_1063_1_3506027 crossref_primary_10_1021_jp066827i crossref_primary_10_1063_1_2484229 crossref_primary_10_1063_1_4936587 crossref_primary_10_1063_1_2049279 crossref_primary_10_1039_D2CP03658D crossref_primary_10_1080_01442350701437926 crossref_primary_10_1063_1_3259047 crossref_primary_10_1063_1_1884109 crossref_primary_10_1002_qua_25915 |
| Cites_doi | 10.1063/1.478573 10.1063/1.475802 10.1146/annurev.pc.37.100186.002153 10.1063/1.480999 10.1063/1.468390 10.1063/1.1723778 10.1103/PhysRevE.62.7445 10.1002/9780470141274.ch2 10.1063/1.441370 10.1063/1.473231 10.1103/RevModPhys.29.377 10.1080/00268977700101761 10.1063/1.463411 10.1063/1.464185 10.1063/1.451376 10.1063/1.451248 10.1063/1.1493184 10.1063/1.434827 10.1063/1.474458 10.1063/1.481671 10.1063/1.1503305 10.1103/RevModPhys.20.367 10.1063/1.466915 10.1016/S0009-2614(91)85082-8 10.1063/1.467892 10.1063/1.451778 10.1063/1.477812 10.1063/1.1568727 10.1063/1.1392378 10.1063/1.1425823 10.1103/PhysRevB.44.6011 10.1063/1.522468 10.1103/PhysRevE.53.6504 10.1063/1.481672 10.1080/00268979400100391 10.1080/00268977700101751 10.1103/PhysRevA.45.8968 10.1016/0370-1573(95)00074-7 10.1063/1.1750363 10.1007/BF02427376 10.1063/1.470828 10.1063/1.1681508 10.1063/1.475790 10.1063/1.448641 10.1016/0009-2614(89)85090-0 10.1063/1.471790 10.1103/RevModPhys.67.279 10.1103/PhysRevB.41.2380 10.1063/1.1560936 10.1063/1.1679638 10.1016/0009-2614(91)90415-6 10.1063/1.469757 10.1063/1.463424 10.1063/1.465039 |
| ContentType | Journal Article |
| Copyright | Copyright 2004 American Institute of Physics |
| Copyright_xml | – notice: Copyright 2004 American Institute of Physics |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1063/1.1636694 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1089-7690 |
| EndPage | 2121 |
| ExternalDocumentID | 15268349 10_1063_1_1636694 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -ET -~X 123 186 1UP 2-P 29K 4.4 53G 5VS 6TJ 85S AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS ADXHL AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 MVM N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT UQL VOH WH7 YQT YZZ ZCG ~02 AAEUA ESX NPM VXZ 7X8 |
| ID | FETCH-LOGICAL-c196t-971e135da0a47afaa87bfb34c12b731f481ffc9c876c3c26c50b8984f9ce4e43 |
| ISSN | 0021-9606 |
| IngestDate | Thu Oct 02 07:46:09 EDT 2025 Wed Feb 19 01:54:03 EST 2025 Tue Jul 01 01:54:55 EDT 2025 Thu Apr 24 23:08:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Copyright 2004 American Institute of Physics |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c196t-971e135da0a47afaa87bfb34c12b731f481ffc9c876c3c26c50b8984f9ce4e43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 15268349 |
| PQID | 66732307 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_66732307 pubmed_primary_15268349 crossref_primary_10_1063_1_1636694 crossref_citationtrail_10_1063_1_1636694 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2004-02-01 2004-Feb-01 20040201 |
| PublicationDateYYYYMMDD | 2004-02-01 |
| PublicationDate_xml | – month: 02 year: 2004 text: 2004-02-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of chemical physics |
| PublicationTitleAlternate | J Chem Phys |
| PublicationYear | 2004 |
| References | (2024021109104603100_r50) 1994; 81 (2024021109104603100_r16) 1996; 53 (2024021109104603100_r34) 1977; 34 (2024021109104603100_r28) 1992; 45 (2024021109104603100_r45) 1974; 60 (2024021109104603100_r13) 1991; 44 (2024021109104603100_r19) 1998; 108 (2024021109104603100_r38) 2002; 117 (2024021109104603100_r21) 2000; 112 (2024021109104603100_r53) 1991; 187 (2024021109104603100_r22) 2002; 117 (2024021109104603100_r30) 2003; 118 (2024021109104603100_r9) 1986; 85 (2024021109104603100_r14) 1992; 97 (2024021109104603100_r27) 1999; 11 2024021109104603100_r36 (2024021109104603100_r33) 1977; 34 (2024021109104603100_r59) 1973; 58 (2024021109104603100_r6) 1995; 67 (2024021109104603100_r20) 1998; 108 (2024021109104603100_r56) 1986; 85 (2024021109104603100_r39) 1996; 104 (2024021109104603100_r42) 1996; 104 2024021109104603100_r31 (2024021109104603100_r4) 1998; 70B (2024021109104603100_r11) 1990; 41 2024021109104603100_r35 (2024021109104603100_r15) 1994; 101 (2024021109104603100_r60) 1999; 110 2024021109104603100_r2 2024021109104603100_r3 (2024021109104603100_r55) 1991; 185 (2024021109104603100_r7) 1986; 37 (2024021109104603100_r32) 1975; 16 (2024021109104603100_r40) 1995; 103 (2024021109104603100_r51) 1993; 98 2024021109104603100_r25 (2024021109104603100_r57) 1992; 96 (2024021109104603100_r64) 2002; 116 (2024021109104603100_r10) 1986; 85 2024021109104603100_r23 (2024021109104603100_r43) 1994; 101 (2024021109104603100_r37) 1943; 11 (2024021109104603100_r54) 1992; 97 (2024021109104603100_r44) 2001; 115 (2024021109104603100_r18) 1997; 106 (2024021109104603100_r65) 1939; 7 (2024021109104603100_r24) 1957; 29 (2024021109104603100_r5) 1990; 78 (2024021109104603100_r52) 1993; 98 (2024021109104603100_r26) 1985; 82 (2024021109104603100_r47) 1986; 27 (2024021109104603100_r8) 1999; 110 (2024021109104603100_r29) 2003; 119 (2024021109104603100_r48) 1981; 74 (2024021109104603100_r1) 1948; 20 (2024021109104603100_r46) 1989; 161 (2024021109104603100_r62) 2000; 112 (2024021109104603100_r61) 2000; 112 (2024021109104603100_r63) 2000; 62 (2024021109104603100_r41) 1994; 100 (2024021109104603100_r49) 1997; 107 (2024021109104603100_r58) 1977; 67 (2024021109104603100_r12) 1990; 18 (2024021109104603100_r17) 1996; 269 |
| References_xml | – volume: 110 start-page: 6657 year: 1999 ident: 2024021109104603100_r8 publication-title: J. Chem. Phys. doi: 10.1063/1.478573 – volume: 108 start-page: 4031 year: 1998 ident: 2024021109104603100_r20 publication-title: J. Chem. Phys. doi: 10.1063/1.475802 – volume: 70B start-page: 139 year: 1998 ident: 2024021109104603100_r4 publication-title: Adv. Chem. Phys. – volume: 37 start-page: 401 year: 1986 ident: 2024021109104603100_r7 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.37.100186.002153 – ident: 2024021109104603100_r31 – volume: 112 start-page: 3990 year: 2000 ident: 2024021109104603100_r21 publication-title: J. Chem. Phys. doi: 10.1063/1.480999 – volume: 101 start-page: 6359 year: 1994 ident: 2024021109104603100_r43 publication-title: J. Chem. Phys. doi: 10.1063/1.468390 – ident: 2024021109104603100_r25 – volume: 11 start-page: 27 year: 1943 ident: 2024021109104603100_r37 publication-title: J. Chem. Phys. doi: 10.1063/1.1723778 – volume: 62 start-page: 7445 year: 2000 ident: 2024021109104603100_r63 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.62.7445 – volume: 78 start-page: 61 year: 1990 ident: 2024021109104603100_r5 publication-title: Adv. Chem. Phys. doi: 10.1002/9780470141274.ch2 – volume: 74 start-page: 2133 year: 1981 ident: 2024021109104603100_r48 publication-title: J. Chem. Phys. doi: 10.1063/1.441370 – volume: 106 start-page: 1641 year: 1997 ident: 2024021109104603100_r18 publication-title: J. Chem. Phys. doi: 10.1063/1.473231 – volume: 29 start-page: 377 year: 1957 ident: 2024021109104603100_r24 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.29.377 – volume: 34 start-page: 327 year: 1977 ident: 2024021109104603100_r34 publication-title: Mol. Phys. doi: 10.1080/00268977700101761 – volume: 97 start-page: 8415 year: 1992 ident: 2024021109104603100_r14 publication-title: J. Chem. Phys. doi: 10.1063/1.463411 – volume: 98 start-page: 2497 year: 1993 ident: 2024021109104603100_r51 publication-title: J. Chem. Phys. doi: 10.1063/1.464185 – volume: 85 start-page: 6905 year: 1986 ident: 2024021109104603100_r56 publication-title: J. Chem. Phys. doi: 10.1063/1.451376 – volume: 85 start-page: 926 year: 1986 ident: 2024021109104603100_r9 publication-title: J. Chem. Phys. doi: 10.1063/1.451248 – volume: 117 start-page: 3020 year: 2002 ident: 2024021109104603100_r22 publication-title: J. Chem. Phys. doi: 10.1063/1.1493184 – volume: 67 start-page: 5719 year: 1977 ident: 2024021109104603100_r58 publication-title: J. Chem. Phys. doi: 10.1063/1.434827 – volume: 107 start-page: 1115 year: 1997 ident: 2024021109104603100_r49 publication-title: J. Chem. Phys. doi: 10.1063/1.474458 – volume: 112 start-page: 10340 year: 2000 ident: 2024021109104603100_r61 publication-title: J. Chem. Phys. doi: 10.1063/1.481671 – volume: 117 start-page: 7137 year: 2002 ident: 2024021109104603100_r38 publication-title: J. Chem. Phys. doi: 10.1063/1.1503305 – volume: 20 start-page: 367 year: 1948 ident: 2024021109104603100_r1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.20.367 – volume: 96 start-page: 6752 year: 1992 ident: 2024021109104603100_r57 publication-title: J. Chem. Phys. – volume: 100 start-page: 7166 year: 1994 ident: 2024021109104603100_r41 publication-title: J. Chem. Phys. doi: 10.1063/1.466915 – volume: 185 start-page: 399 year: 1991 ident: 2024021109104603100_r55 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(91)85082-8 – volume: 101 start-page: 9909 year: 1994 ident: 2024021109104603100_r15 publication-title: J. Chem. Phys. doi: 10.1063/1.467892 – volume: 85 start-page: 4567 year: 1986 ident: 2024021109104603100_r10 publication-title: J. Chem. Phys. doi: 10.1063/1.451778 – volume: 110 start-page: 1754 year: 1999 ident: 2024021109104603100_r60 publication-title: J. Chem. Phys. doi: 10.1063/1.477812 – volume: 119 start-page: 68 year: 2003 ident: 2024021109104603100_r29 publication-title: J. Chem. Phys. doi: 10.1063/1.1568727 – volume: 115 start-page: 10138 year: 2001 ident: 2024021109104603100_r44 publication-title: J. Chem. Phys. doi: 10.1063/1.1392378 – volume: 116 start-page: 1825 year: 2002 ident: 2024021109104603100_r64 publication-title: J. Chem. Phys. doi: 10.1063/1.1425823 – volume: 44 start-page: 6011 year: 1991 ident: 2024021109104603100_r13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.44.6011 – volume: 16 start-page: 2201 year: 1975 ident: 2024021109104603100_r32 publication-title: J. Math. Phys. doi: 10.1063/1.522468 – volume: 53 start-page: 6504 year: 1996 ident: 2024021109104603100_r16 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.53.6504 – volume: 112 start-page: 10350 year: 2000 ident: 2024021109104603100_r62 publication-title: J. Chem. Phys. doi: 10.1063/1.481672 – volume: 81 start-page: 579 year: 1994 ident: 2024021109104603100_r50 publication-title: Mol. Phys. doi: 10.1080/00268979400100391 – volume: 34 start-page: 317 year: 1977 ident: 2024021109104603100_r33 publication-title: Mol. Phys. doi: 10.1080/00268977700101751 – volume: 45 start-page: 8968 year: 1992 ident: 2024021109104603100_r28 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.45.8968 – ident: 2024021109104603100_r23 – volume: 269 start-page: 133 year: 1996 ident: 2024021109104603100_r17 publication-title: Phys. Rep. doi: 10.1016/0370-1573(95)00074-7 – volume: 7 start-page: 1047 year: 1939 ident: 2024021109104603100_r65 publication-title: J. Chem. Phys. doi: 10.1063/1.1750363 – volume: 18 start-page: 165 year: 1990 ident: 2024021109104603100_r12 publication-title: Eur. Biophys. J. doi: 10.1007/BF02427376 – volume: 104 start-page: 1028 year: 1996 ident: 2024021109104603100_r39 publication-title: J. Chem. Phys. doi: 10.1063/1.470828 – volume: 60 start-page: 3208 year: 1974 ident: 2024021109104603100_r45 publication-title: J. Chem. Phys. doi: 10.1063/1.1681508 – ident: 2024021109104603100_r3 – volume: 108 start-page: 3871 year: 1998 ident: 2024021109104603100_r19 publication-title: J. Chem. Phys. doi: 10.1063/1.475790 – volume: 82 start-page: 5164 year: 1985 ident: 2024021109104603100_r26 publication-title: J. Chem. Phys. doi: 10.1063/1.448641 – volume: 161 start-page: 308 year: 1989 ident: 2024021109104603100_r46 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(89)85090-0 – ident: 2024021109104603100_r36 – volume: 104 start-page: 5510 year: 1996 ident: 2024021109104603100_r42 publication-title: J. Chem. Phys. doi: 10.1063/1.471790 – ident: 2024021109104603100_r2 – volume: 67 start-page: 279 year: 1995 ident: 2024021109104603100_r6 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.67.279 – volume: 41 start-page: 2380 year: 1990 ident: 2024021109104603100_r11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.2380 – volume: 118 start-page: 6806 year: 2003 ident: 2024021109104603100_r30 publication-title: J. Chem. Phys. doi: 10.1063/1.1560936 – volume: 58 start-page: 3166 year: 1973 ident: 2024021109104603100_r59 publication-title: J. Chem. Phys. doi: 10.1063/1.1679638 – volume: 11 start-page: R117 year: 1999 ident: 2024021109104603100_r27 publication-title: J. Phys.: Condens. Matter – volume: 187 start-page: 215 year: 1991 ident: 2024021109104603100_r53 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(91)90415-6 – volume: 103 start-page: 1829 year: 1995 ident: 2024021109104603100_r40 publication-title: J. Chem. Phys. doi: 10.1063/1.469757 – volume: 97 start-page: 8009 year: 1992 ident: 2024021109104603100_r54 publication-title: J. Chem. Phys. doi: 10.1063/1.463424 – volume: 27 start-page: 374 year: 1986 ident: 2024021109104603100_r47 publication-title: Chem. Phys. Lett. – ident: 2024021109104603100_r35 – volume: 98 start-page: 4307 year: 1993 ident: 2024021109104603100_r52 publication-title: J. Chem. Phys. doi: 10.1063/1.465039 |
| SSID | ssj0001724 |
| Score | 1.848191 |
| Snippet | The DeWitt formula for inertia ellipsoids mapped by stereographic projection coordinates is developed. We discover that by remapping the quaternion parameter... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 2110 |
| Title | Stereographic projections path integral for inertia ellipsoids: Applications to Arn–HF clusters |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/15268349 https://www.proquest.com/docview/66732307 |
| Volume | 120 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0001724 issn: 0021-9606 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZdytheRtfdsnarGH0YBHeyJct230LWEsYyCs2gb0ZSZFbo7JI6L_v1O7rFTi-w9cUYW8j2-T4dHx-fC0KHqSa8KgSNiFYiYomkUQ4jI5LAWkoyoV004ewHn_5k3y7Si9DD3WeXtPJI_bk3r-QxqMIxwNVkyf4HsutJ4QDsA76wBYRh-08Yn4NQXBPzX5dq5J0qNrLNNBoOpSBshuLIJPnBah5p6_xvLhc2Fq7__9qYoeNlHU1PR-pqZQoo3PRN1y6JzJqvKlQacL6RXsg8PLTlhuXCrAsdnqyWTWu7Nvn0h-BsYCE-uVOgJqKDE76hQBPSY0q6oQ5dzOodPQ2GkXEZHIE1yLnrctzD6_q3BSw2pWioq2h6qyh2OPUEbSegzskAbY-_zr6fr1_CYJf5AtzufkNRKU6_rK_qWjLZeTatkgc-NazJMd9BL7yw8dgB_xJt6XoXPZuEFn276OmZk_0rVG5QAfeogA0VcKACBipgTwXcUeEY94mA2wY7IuBAhNdofnoyn0wj3zsjUqBT26jIYh3TdCGIYJmohMgzWUnKVJzIjMYVy-OqUoWCl6GiKuEqJTIvclYVSjPN6Bs0qJtav0OYGb-FVAuWac1gaQuyYKlUnEvBFJg3Q_Q5iK5Uvq68aW9yVdr4Bk7LuPQCH6JP66HXrpjKfYMOgvxLEKf5fyVq3axuStOh1uQtDNFbB0s3iYfx_YNn9tDzjs_7aNAuV_oDmJOt_Oip8xe2H3TM |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stereographic+projections+path+integral+for+inertia+ellipsoids%3A+applications+to+Arn-HF+clusters&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Russo%2C+Jr%2C+M+F&rft.au=Curotto%2C+E&rft.date=2004-02-01&rft.issn=0021-9606&rft.volume=120&rft.issue=5&rft.spage=2110&rft_id=info:doi/10.1063%2F1.1636694&rft_id=info%3Apmid%2F15268349&rft.externalDocID=15268349 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |