Stereographic projections path integral for inertia ellipsoids: Applications to Arn–HF clusters

The DeWitt formula for inertia ellipsoids mapped by stereographic projection coordinates is developed. We discover that by remapping the quaternion parameter space with stereographic projections, considerable simplification of the differential geometry for the inertia ellipsoid with spherical symmet...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 120; no. 5; pp. 2110 - 2121
Main Authors Russo, M. F., Curotto, E.
Format Journal Article
LanguageEnglish
Published United States 01.02.2004
Online AccessGet full text
ISSN0021-9606
1089-7690
DOI10.1063/1.1636694

Cover

Abstract The DeWitt formula for inertia ellipsoids mapped by stereographic projection coordinates is developed. We discover that by remapping the quaternion parameter space with stereographic projections, considerable simplification of the differential geometry for the inertia ellipsoid with spherical symmetry takes place. The metric tensor is diagonal and contains only one independent element in that case. We find no difficulties testing and implementing the DeWitt formula for the inertia ellipsoids of asymmetric tops mapped by stereographic projections. The path integral algorithm for the treatment of Rm⊗S2 manifolds based on a mixture of Cartesian and stereographic projection coordinates is tested for small Arn–HF clusters in the n=2 to n=5 range. In particular, we determine the quantum effects of the red shift and the isomerization patterns at finite temperatures. Our findings are consistent with previously reported computations and experimental data for small Arn–HF clusters.
AbstractList The DeWitt formula for inertia ellipsoids mapped by stereographic projection coordinates is developed. We discover that by remapping the quaternion parameter space with stereographic projections, considerable simplification of the differential geometry for the inertia ellipsoid with spherical symmetry takes place. The metric tensor is diagonal and contains only one independent element in that case. We find no difficulties testing and implementing the DeWitt formula for the inertia ellipsoids of asymmetric tops mapped by stereographic projections. The path integral algorithm for the treatment of Rm x S2 manifolds based on a mixture of Cartesian and stereographic projection coordinates is tested for small Arn-HF clusters in the n = 2 to n = 5 range. In particular, we determine the quantum effects of the red shift and the isomerization patterns at finite temperatures. Our findings are consistent with previously reported computations and experimental data for small Arn-HF clusters.The DeWitt formula for inertia ellipsoids mapped by stereographic projection coordinates is developed. We discover that by remapping the quaternion parameter space with stereographic projections, considerable simplification of the differential geometry for the inertia ellipsoid with spherical symmetry takes place. The metric tensor is diagonal and contains only one independent element in that case. We find no difficulties testing and implementing the DeWitt formula for the inertia ellipsoids of asymmetric tops mapped by stereographic projections. The path integral algorithm for the treatment of Rm x S2 manifolds based on a mixture of Cartesian and stereographic projection coordinates is tested for small Arn-HF clusters in the n = 2 to n = 5 range. In particular, we determine the quantum effects of the red shift and the isomerization patterns at finite temperatures. Our findings are consistent with previously reported computations and experimental data for small Arn-HF clusters.
The DeWitt formula for inertia ellipsoids mapped by stereographic projection coordinates is developed. We discover that by remapping the quaternion parameter space with stereographic projections, considerable simplification of the differential geometry for the inertia ellipsoid with spherical symmetry takes place. The metric tensor is diagonal and contains only one independent element in that case. We find no difficulties testing and implementing the DeWitt formula for the inertia ellipsoids of asymmetric tops mapped by stereographic projections. The path integral algorithm for the treatment of Rm x S2 manifolds based on a mixture of Cartesian and stereographic projection coordinates is tested for small Arn-HF clusters in the n = 2 to n = 5 range. In particular, we determine the quantum effects of the red shift and the isomerization patterns at finite temperatures. Our findings are consistent with previously reported computations and experimental data for small Arn-HF clusters.
The DeWitt formula for inertia ellipsoids mapped by stereographic projection coordinates is developed. We discover that by remapping the quaternion parameter space with stereographic projections, considerable simplification of the differential geometry for the inertia ellipsoid with spherical symmetry takes place. The metric tensor is diagonal and contains only one independent element in that case. We find no difficulties testing and implementing the DeWitt formula for the inertia ellipsoids of asymmetric tops mapped by stereographic projections. The path integral algorithm for the treatment of Rm⊗S2 manifolds based on a mixture of Cartesian and stereographic projection coordinates is tested for small Arn–HF clusters in the n=2 to n=5 range. In particular, we determine the quantum effects of the red shift and the isomerization patterns at finite temperatures. Our findings are consistent with previously reported computations and experimental data for small Arn–HF clusters.
Author Curotto, E.
Russo, M. F.
Author_xml – sequence: 1
  givenname: M. F.
  surname: Russo
  fullname: Russo, M. F.
– sequence: 2
  givenname: E.
  surname: Curotto
  fullname: Curotto, E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15268349$$D View this record in MEDLINE/PubMed
BookMark eNptkM9KAzEQh4NU7B89-AKSk-Bh22STJhtvpVgrFDzY-5JNE5uy3axJ9uDNd_ANfRKjrQjiaRjm-w0z3xD0GtdoAC4xGmPEyASPMSOMCXoCBhgVIuNMoB4YIJTjTDDE-mAYwg4hhHlOz0AfT3NWECoGQD5F7bV79rLdWgVb73ZaReuaAFsZt9A2UadhDY3zqdE-Wgl1Xds2OLsJt3DWtrVV8hCJDs588_H2vlxAVXch7Q7n4NTIOuiLYx2B9eJuPV9mq8f7h_lslSksWMwExxqT6UYiSbk0Uha8MhWhCucVJ9jQAhujhCo4U0TlTE1RVYiCGqE01ZSMwPVhbXrhpdMhlnsbVLpUNtp1oWSMk5wgnsCrI9hVe70pW2_30r-WP04ScHMAlHcheG1-EVR--S5xefSd2MkfVtn4LSN6aet_Ep8-dIM4
CitedBy_id crossref_primary_10_1002_qua_24647
crossref_primary_10_1063_1_3159398
crossref_primary_10_1063_1_2925681
crossref_primary_10_1063_1_2192773
crossref_primary_10_1063_1_2898539
crossref_primary_10_1063_1_4887460
crossref_primary_10_1063_1_2036970
crossref_primary_10_1063_1_4732055
crossref_primary_10_1063_1_1786916
crossref_primary_10_1063_1_2837802
crossref_primary_10_1063_1_3506027
crossref_primary_10_1021_jp066827i
crossref_primary_10_1063_1_2484229
crossref_primary_10_1063_1_4936587
crossref_primary_10_1063_1_2049279
crossref_primary_10_1039_D2CP03658D
crossref_primary_10_1080_01442350701437926
crossref_primary_10_1063_1_3259047
crossref_primary_10_1063_1_1884109
crossref_primary_10_1002_qua_25915
Cites_doi 10.1063/1.478573
10.1063/1.475802
10.1146/annurev.pc.37.100186.002153
10.1063/1.480999
10.1063/1.468390
10.1063/1.1723778
10.1103/PhysRevE.62.7445
10.1002/9780470141274.ch2
10.1063/1.441370
10.1063/1.473231
10.1103/RevModPhys.29.377
10.1080/00268977700101761
10.1063/1.463411
10.1063/1.464185
10.1063/1.451376
10.1063/1.451248
10.1063/1.1493184
10.1063/1.434827
10.1063/1.474458
10.1063/1.481671
10.1063/1.1503305
10.1103/RevModPhys.20.367
10.1063/1.466915
10.1016/S0009-2614(91)85082-8
10.1063/1.467892
10.1063/1.451778
10.1063/1.477812
10.1063/1.1568727
10.1063/1.1392378
10.1063/1.1425823
10.1103/PhysRevB.44.6011
10.1063/1.522468
10.1103/PhysRevE.53.6504
10.1063/1.481672
10.1080/00268979400100391
10.1080/00268977700101751
10.1103/PhysRevA.45.8968
10.1016/0370-1573(95)00074-7
10.1063/1.1750363
10.1007/BF02427376
10.1063/1.470828
10.1063/1.1681508
10.1063/1.475790
10.1063/1.448641
10.1016/0009-2614(89)85090-0
10.1063/1.471790
10.1103/RevModPhys.67.279
10.1103/PhysRevB.41.2380
10.1063/1.1560936
10.1063/1.1679638
10.1016/0009-2614(91)90415-6
10.1063/1.469757
10.1063/1.463424
10.1063/1.465039
ContentType Journal Article
Copyright Copyright 2004 American Institute of Physics
Copyright_xml – notice: Copyright 2004 American Institute of Physics
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1063/1.1636694
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
EndPage 2121
ExternalDocumentID 15268349
10_1063_1_1636694
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
186
1UP
2-P
29K
4.4
53G
5VS
6TJ
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
ADXHL
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D-I
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
MVM
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
UQL
VOH
WH7
YQT
YZZ
ZCG
~02
AAEUA
ESX
NPM
VXZ
7X8
ID FETCH-LOGICAL-c196t-971e135da0a47afaa87bfb34c12b731f481ffc9c876c3c26c50b8984f9ce4e43
ISSN 0021-9606
IngestDate Thu Oct 02 07:46:09 EDT 2025
Wed Feb 19 01:54:03 EST 2025
Tue Jul 01 01:54:55 EDT 2025
Thu Apr 24 23:08:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright 2004 American Institute of Physics
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c196t-971e135da0a47afaa87bfb34c12b731f481ffc9c876c3c26c50b8984f9ce4e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15268349
PQID 66732307
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_66732307
pubmed_primary_15268349
crossref_primary_10_1063_1_1636694
crossref_citationtrail_10_1063_1_1636694
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-02-01
2004-Feb-01
20040201
PublicationDateYYYYMMDD 2004-02-01
PublicationDate_xml – month: 02
  year: 2004
  text: 2004-02-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2004
References (2024021109104603100_r50) 1994; 81
(2024021109104603100_r16) 1996; 53
(2024021109104603100_r34) 1977; 34
(2024021109104603100_r28) 1992; 45
(2024021109104603100_r45) 1974; 60
(2024021109104603100_r13) 1991; 44
(2024021109104603100_r19) 1998; 108
(2024021109104603100_r38) 2002; 117
(2024021109104603100_r21) 2000; 112
(2024021109104603100_r53) 1991; 187
(2024021109104603100_r22) 2002; 117
(2024021109104603100_r30) 2003; 118
(2024021109104603100_r9) 1986; 85
(2024021109104603100_r14) 1992; 97
(2024021109104603100_r27) 1999; 11
2024021109104603100_r36
(2024021109104603100_r33) 1977; 34
(2024021109104603100_r59) 1973; 58
(2024021109104603100_r6) 1995; 67
(2024021109104603100_r20) 1998; 108
(2024021109104603100_r56) 1986; 85
(2024021109104603100_r39) 1996; 104
(2024021109104603100_r42) 1996; 104
2024021109104603100_r31
(2024021109104603100_r4) 1998; 70B
(2024021109104603100_r11) 1990; 41
2024021109104603100_r35
(2024021109104603100_r15) 1994; 101
(2024021109104603100_r60) 1999; 110
2024021109104603100_r2
2024021109104603100_r3
(2024021109104603100_r55) 1991; 185
(2024021109104603100_r7) 1986; 37
(2024021109104603100_r32) 1975; 16
(2024021109104603100_r40) 1995; 103
(2024021109104603100_r51) 1993; 98
2024021109104603100_r25
(2024021109104603100_r57) 1992; 96
(2024021109104603100_r64) 2002; 116
(2024021109104603100_r10) 1986; 85
2024021109104603100_r23
(2024021109104603100_r43) 1994; 101
(2024021109104603100_r37) 1943; 11
(2024021109104603100_r54) 1992; 97
(2024021109104603100_r44) 2001; 115
(2024021109104603100_r18) 1997; 106
(2024021109104603100_r65) 1939; 7
(2024021109104603100_r24) 1957; 29
(2024021109104603100_r5) 1990; 78
(2024021109104603100_r52) 1993; 98
(2024021109104603100_r26) 1985; 82
(2024021109104603100_r47) 1986; 27
(2024021109104603100_r8) 1999; 110
(2024021109104603100_r29) 2003; 119
(2024021109104603100_r48) 1981; 74
(2024021109104603100_r1) 1948; 20
(2024021109104603100_r46) 1989; 161
(2024021109104603100_r62) 2000; 112
(2024021109104603100_r61) 2000; 112
(2024021109104603100_r63) 2000; 62
(2024021109104603100_r41) 1994; 100
(2024021109104603100_r49) 1997; 107
(2024021109104603100_r58) 1977; 67
(2024021109104603100_r12) 1990; 18
(2024021109104603100_r17) 1996; 269
References_xml – volume: 110
  start-page: 6657
  year: 1999
  ident: 2024021109104603100_r8
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478573
– volume: 108
  start-page: 4031
  year: 1998
  ident: 2024021109104603100_r20
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.475802
– volume: 70B
  start-page: 139
  year: 1998
  ident: 2024021109104603100_r4
  publication-title: Adv. Chem. Phys.
– volume: 37
  start-page: 401
  year: 1986
  ident: 2024021109104603100_r7
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.37.100186.002153
– ident: 2024021109104603100_r31
– volume: 112
  start-page: 3990
  year: 2000
  ident: 2024021109104603100_r21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480999
– volume: 101
  start-page: 6359
  year: 1994
  ident: 2024021109104603100_r43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.468390
– ident: 2024021109104603100_r25
– volume: 11
  start-page: 27
  year: 1943
  ident: 2024021109104603100_r37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1723778
– volume: 62
  start-page: 7445
  year: 2000
  ident: 2024021109104603100_r63
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.7445
– volume: 78
  start-page: 61
  year: 1990
  ident: 2024021109104603100_r5
  publication-title: Adv. Chem. Phys.
  doi: 10.1002/9780470141274.ch2
– volume: 74
  start-page: 2133
  year: 1981
  ident: 2024021109104603100_r48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.441370
– volume: 106
  start-page: 1641
  year: 1997
  ident: 2024021109104603100_r18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473231
– volume: 29
  start-page: 377
  year: 1957
  ident: 2024021109104603100_r24
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.29.377
– volume: 34
  start-page: 327
  year: 1977
  ident: 2024021109104603100_r34
  publication-title: Mol. Phys.
  doi: 10.1080/00268977700101761
– volume: 97
  start-page: 8415
  year: 1992
  ident: 2024021109104603100_r14
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463411
– volume: 98
  start-page: 2497
  year: 1993
  ident: 2024021109104603100_r51
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464185
– volume: 85
  start-page: 6905
  year: 1986
  ident: 2024021109104603100_r56
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.451376
– volume: 85
  start-page: 926
  year: 1986
  ident: 2024021109104603100_r9
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.451248
– volume: 117
  start-page: 3020
  year: 2002
  ident: 2024021109104603100_r22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1493184
– volume: 67
  start-page: 5719
  year: 1977
  ident: 2024021109104603100_r58
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.434827
– volume: 107
  start-page: 1115
  year: 1997
  ident: 2024021109104603100_r49
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474458
– volume: 112
  start-page: 10340
  year: 2000
  ident: 2024021109104603100_r61
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481671
– volume: 117
  start-page: 7137
  year: 2002
  ident: 2024021109104603100_r38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1503305
– volume: 20
  start-page: 367
  year: 1948
  ident: 2024021109104603100_r1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.20.367
– volume: 96
  start-page: 6752
  year: 1992
  ident: 2024021109104603100_r57
  publication-title: J. Chem. Phys.
– volume: 100
  start-page: 7166
  year: 1994
  ident: 2024021109104603100_r41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466915
– volume: 185
  start-page: 399
  year: 1991
  ident: 2024021109104603100_r55
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(91)85082-8
– volume: 101
  start-page: 9909
  year: 1994
  ident: 2024021109104603100_r15
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467892
– volume: 85
  start-page: 4567
  year: 1986
  ident: 2024021109104603100_r10
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.451778
– volume: 110
  start-page: 1754
  year: 1999
  ident: 2024021109104603100_r60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477812
– volume: 119
  start-page: 68
  year: 2003
  ident: 2024021109104603100_r29
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1568727
– volume: 115
  start-page: 10138
  year: 2001
  ident: 2024021109104603100_r44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1392378
– volume: 116
  start-page: 1825
  year: 2002
  ident: 2024021109104603100_r64
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1425823
– volume: 44
  start-page: 6011
  year: 1991
  ident: 2024021109104603100_r13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.44.6011
– volume: 16
  start-page: 2201
  year: 1975
  ident: 2024021109104603100_r32
  publication-title: J. Math. Phys.
  doi: 10.1063/1.522468
– volume: 53
  start-page: 6504
  year: 1996
  ident: 2024021109104603100_r16
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.53.6504
– volume: 112
  start-page: 10350
  year: 2000
  ident: 2024021109104603100_r62
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481672
– volume: 81
  start-page: 579
  year: 1994
  ident: 2024021109104603100_r50
  publication-title: Mol. Phys.
  doi: 10.1080/00268979400100391
– volume: 34
  start-page: 317
  year: 1977
  ident: 2024021109104603100_r33
  publication-title: Mol. Phys.
  doi: 10.1080/00268977700101751
– volume: 45
  start-page: 8968
  year: 1992
  ident: 2024021109104603100_r28
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.8968
– ident: 2024021109104603100_r23
– volume: 269
  start-page: 133
  year: 1996
  ident: 2024021109104603100_r17
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(95)00074-7
– volume: 7
  start-page: 1047
  year: 1939
  ident: 2024021109104603100_r65
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1750363
– volume: 18
  start-page: 165
  year: 1990
  ident: 2024021109104603100_r12
  publication-title: Eur. Biophys. J.
  doi: 10.1007/BF02427376
– volume: 104
  start-page: 1028
  year: 1996
  ident: 2024021109104603100_r39
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470828
– volume: 60
  start-page: 3208
  year: 1974
  ident: 2024021109104603100_r45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1681508
– ident: 2024021109104603100_r3
– volume: 108
  start-page: 3871
  year: 1998
  ident: 2024021109104603100_r19
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.475790
– volume: 82
  start-page: 5164
  year: 1985
  ident: 2024021109104603100_r26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448641
– volume: 161
  start-page: 308
  year: 1989
  ident: 2024021109104603100_r46
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(89)85090-0
– ident: 2024021109104603100_r36
– volume: 104
  start-page: 5510
  year: 1996
  ident: 2024021109104603100_r42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.471790
– ident: 2024021109104603100_r2
– volume: 67
  start-page: 279
  year: 1995
  ident: 2024021109104603100_r6
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.67.279
– volume: 41
  start-page: 2380
  year: 1990
  ident: 2024021109104603100_r11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.2380
– volume: 118
  start-page: 6806
  year: 2003
  ident: 2024021109104603100_r30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1560936
– volume: 58
  start-page: 3166
  year: 1973
  ident: 2024021109104603100_r59
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1679638
– volume: 11
  start-page: R117
  year: 1999
  ident: 2024021109104603100_r27
  publication-title: J. Phys.: Condens. Matter
– volume: 187
  start-page: 215
  year: 1991
  ident: 2024021109104603100_r53
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(91)90415-6
– volume: 103
  start-page: 1829
  year: 1995
  ident: 2024021109104603100_r40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469757
– volume: 97
  start-page: 8009
  year: 1992
  ident: 2024021109104603100_r54
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463424
– volume: 27
  start-page: 374
  year: 1986
  ident: 2024021109104603100_r47
  publication-title: Chem. Phys. Lett.
– ident: 2024021109104603100_r35
– volume: 98
  start-page: 4307
  year: 1993
  ident: 2024021109104603100_r52
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465039
SSID ssj0001724
Score 1.848191
Snippet The DeWitt formula for inertia ellipsoids mapped by stereographic projection coordinates is developed. We discover that by remapping the quaternion parameter...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 2110
Title Stereographic projections path integral for inertia ellipsoids: Applications to Arn–HF clusters
URI https://www.ncbi.nlm.nih.gov/pubmed/15268349
https://www.proquest.com/docview/66732307
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7690
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0001724
  issn: 0021-9606
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZdytheRtfdsnarGH0YBHeyJct230LWEsYyCs2gb0ZSZFbo7JI6L_v1O7rFTi-w9cUYW8j2-T4dHx-fC0KHqSa8KgSNiFYiYomkUQ4jI5LAWkoyoV004ewHn_5k3y7Si9DD3WeXtPJI_bk3r-QxqMIxwNVkyf4HsutJ4QDsA76wBYRh-08Yn4NQXBPzX5dq5J0qNrLNNBoOpSBshuLIJPnBah5p6_xvLhc2Fq7__9qYoeNlHU1PR-pqZQoo3PRN1y6JzJqvKlQacL6RXsg8PLTlhuXCrAsdnqyWTWu7Nvn0h-BsYCE-uVOgJqKDE76hQBPSY0q6oQ5dzOodPQ2GkXEZHIE1yLnrctzD6_q3BSw2pWioq2h6qyh2OPUEbSegzskAbY-_zr6fr1_CYJf5AtzufkNRKU6_rK_qWjLZeTatkgc-NazJMd9BL7yw8dgB_xJt6XoXPZuEFn276OmZk_0rVG5QAfeogA0VcKACBipgTwXcUeEY94mA2wY7IuBAhNdofnoyn0wj3zsjUqBT26jIYh3TdCGIYJmohMgzWUnKVJzIjMYVy-OqUoWCl6GiKuEqJTIvclYVSjPN6Bs0qJtav0OYGb-FVAuWac1gaQuyYKlUnEvBFJg3Q_Q5iK5Uvq68aW9yVdr4Bk7LuPQCH6JP66HXrpjKfYMOgvxLEKf5fyVq3axuStOh1uQtDNFbB0s3iYfx_YNn9tDzjs_7aNAuV_oDmJOt_Oip8xe2H3TM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stereographic+projections+path+integral+for+inertia+ellipsoids%3A+applications+to+Arn-HF+clusters&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Russo%2C+Jr%2C+M+F&rft.au=Curotto%2C+E&rft.date=2004-02-01&rft.issn=0021-9606&rft.volume=120&rft.issue=5&rft.spage=2110&rft_id=info:doi/10.1063%2F1.1636694&rft_id=info%3Apmid%2F15268349&rft.externalDocID=15268349
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon