Constructing Unrooted Phylogenetic Trees with Reinforcement Learning

With the development of sequencing technologies, more and more amounts of sequence data are available. This poses additional challenges, such as processing them is usually a complex and time-consuming computational task. During the construction of phylogenetic trees, the relationship between the seq...

Full description

Saved in:
Bibliographic Details
Published inStudia Universitatis Babes-Bolyai: Series Informatica Vol. 66; no. 1; p. 37
Main Authors Liptak, P., Kiss, A.
Format Journal Article
LanguageEnglish
Published Babes-Bolyai University, Cluj-Napoca 01.07.2021
Subjects
Online AccessGet full text
ISSN1224-869X
2065-9601
DOI10.24193/subbi.2021.1.03

Cover

Abstract With the development of sequencing technologies, more and more amounts of sequence data are available. This poses additional challenges, such as processing them is usually a complex and time-consuming computational task. During the construction of phylogenetic trees, the relationship between the sequences is examined, and an attempt is made to represent the evolutionary relationship. There are several algorithms for this problem, but with the development of computer science, the question arises as to whether new technologies can be exploited in these areas of computational biology. In the following publication, we investigate whether the reinforced learning model of machine learning can generate accurate phylogenetic trees based on the distance matrix.
AbstractList With the development of sequencing technologies, more and more amounts of sequence data are available. This poses additional challenges, such as processing them is usually a complex and time-consuming computational task. During the construction of phylogenetic trees, the relationship between the sequences is examined, and an attempt is made to represent the evolutionary relationship. There are several algorithms for this problem, but with the development of computer science, the question arises as to whether new technologies can be exploited in these areas of computational biology. In the following publication, we investigate whether the reinforced learning model of machine learning can generate accurate phylogenetic trees based on the distance matrix. Received by the editors: 24 April 2021. 2010 Mathematics Subject Classification. 68T05. 1998 CR Categories and Descriptors. code [Artificial Intelligence]: Applications and Expert Systems - Medicine and science.
With the development of sequencing technologies, more and more amounts of sequence data are available. This poses additional challenges, such as processing them is usually a complex and time-consuming computational task. During the construction of phylogenetic trees, the relationship between the sequences is examined, and an attempt is made to represent the evolutionary relationship. There are several algorithms for this problem, but with the development of computer science, the question arises as to whether new technologies can be exploited in these areas of computational biology. In the following publication, we investigate whether the reinforced learning model of machine learning can generate accurate phylogenetic trees based on the distance matrix.
Author Liptak, P.
Kiss, A.
Author_xml – sequence: 1
  givenname: P.
  surname: Liptak
  fullname: Liptak, P.
– sequence: 2
  givenname: A.
  surname: Kiss
  fullname: Kiss, A.
BookMark eNp1kEtLAzEURoMoWB97l_MHpt6bZDKTpdRXoaCIgruQSe60KTWRTET899aqG8HVhQvn8HGO2H5MkRg7Q5hyiVqcj299H6YcOE5xCmKPTTioptYKcJ9NkHNZd0o_H7KjcVwDKKFBTtjlLMWx5DdXQlxWTzGnVMhX96uPTVpSpBJc9ZiJxuo9lFX1QCEOKTt6oViqBdkct9wJOxjsZqTTn3vMnq6vHme39eLuZj67WNQOtRK1bWTfkpakFGqSLfdeOukFOussEHAQHlvVk1cDWIHUcNUNre-xGXivrDhm82-vT3ZtXnN4sfnDJBvM7pHy0ti8Xbwh4_pOEzQkoSNpCTvec2i9bJxGbDu-dalvl8tpHDMNxoViS0ixZBs2BsHsuppdV_PV1aABsQXhD_g75F_kE6BDfzc
CitedBy_id crossref_primary_10_1093_molbev_msae105
crossref_primary_10_3390_info15110696
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.24193/subbi.2021.1.03
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2065-9601
ExternalDocumentID oai_doaj_org_article_cb89e05e408e4ae182b207d45c911782
10_24193_subbi_2021_1_03
GroupedDBID 29Q
2WC
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
E3Z
EN8
GROUPED_DOAJ
KQ8
OK1
OVT
RNS
5VS
ID FETCH-LOGICAL-c1963-a54b7e94e6619e472dd4c4d31caca0e0203d176bed6f0a31e5268f7db15f2b6a3
IEDL.DBID DOA
ISSN 1224-869X
IngestDate Wed Aug 27 01:04:51 EDT 2025
Wed Oct 01 00:49:12 EDT 2025
Thu Apr 24 23:13:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1963-a54b7e94e6619e472dd4c4d31caca0e0203d176bed6f0a31e5268f7db15f2b6a3
OpenAccessLink https://doaj.org/article/cb89e05e408e4ae182b207d45c911782
ParticipantIDs doaj_primary_oai_doaj_org_article_cb89e05e408e4ae182b207d45c911782
crossref_citationtrail_10_24193_subbi_2021_1_03
crossref_primary_10_24193_subbi_2021_1_03
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Studia Universitatis Babes-Bolyai: Series Informatica
PublicationYear 2021
Publisher Babes-Bolyai University, Cluj-Napoca
Publisher_xml – name: Babes-Bolyai University, Cluj-Napoca
SSID ssj0063904
ssib026972067
Score 2.153144
Snippet With the development of sequencing technologies, more and more amounts of sequence data are available. This poses additional challenges, such as processing...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 37
SubjectTerms Bioinformatics, Reinforcement Learning, Machine Learning Algorithms
Title Constructing Unrooted Phylogenetic Trees with Reinforcement Learning
URI https://doaj.org/article/cb89e05e408e4ae182b207d45c911782
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2065-9601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063904
  issn: 1224-869X
  databaseCode: KQ8
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2065-9601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063904
  issn: 1224-869X
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxdRVKwv9uDFw7abzas5-ipFUERa6C3kMa2CrKL-f5zJbktPevG6ZEN2vmS_mWTyDWMXKYu26FDWSF-lNItUBil8aaUR2qqghKb7zg-PejKT93M13yj1RTlhrTxwa7hhDCMLlQJZjUB6QHc41JVJUkVcpkhv9PdFGtsIpnAm1doa0iVvzyWRpKxAYEN4xYCw5gM-WNXI6nhoQ64_88p4l-10DmFx1Q5kj21Bs89uqY5mq-zaLItZg-4teobF0wuG14g4XTwspp8AXwXtoxbPkPVPY97qKzrJ1OUBm43vpjeTsqt3UEZaB6VXMhiwEpAzLUhTpySjTIJHH30FdGaYuNEBkl5UXnAgqZaFSYGrRR20F4es17w3cMQK7ZG2K-AegpTGjnzSlpJcQpTE0KrPhquvd7ETA6eaFG8Og4JsL5ft5chejrtK9Nnl-o2PVgjjl7bXZNB1O5Kwzg8QWNcB6_4C9vg_Ojlh2zSqNr_2lPUQOThDL-I7nOcJ8wOZHcQM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+Unrooted+Phylogenetic+Trees+with+Reinforcement+Learning&rft.jtitle=Studia+Universitatis+Babes%CC%A6-Bolyai.+Informatica&rft.au=Liptak%2C+P.&rft.au=Kiss%2C+A.&rft.date=2021-07-01&rft.issn=1224-869X&rft.eissn=2065-9601&rft.volume=66&rft.issue=1&rft.spage=37&rft_id=info:doi/10.24193%2Fsubbi.2021.1.03&rft.externalDBID=n%2Fa&rft.externalDocID=10_24193_subbi_2021_1_03
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1224-869X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1224-869X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1224-869X&client=summon