Algebraic Study of Sette's Maximal Paraconsistent Logic
The aim of this paper is to study the paraconsistent deductive system Pⁱ within the context of Algebraic Logic. It is well known due to Lewin, Mikenberg and Schwarse that Pⁱ is algebraizable in the sense of Blok and Pigozzi, the quasivariety generated by Sette's three-element algebra S being th...
Saved in:
| Published in | Studia logica Vol. 54; no. 1; pp. 89 - 128 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Wroclaw, Poland
Kluwer Academic Publishers
01.01.1995
Ossolineum |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0039-3215 1572-8730 |
| DOI | 10.1007/BF01058534 |
Cover
| Abstract | The aim of this paper is to study the paraconsistent deductive system Pⁱ within the context of Algebraic Logic. It is well known due to Lewin, Mikenberg and Schwarse that Pⁱ is algebraizable in the sense of Blok and Pigozzi, the quasivariety generated by Sette's three-element algebra S being the unique quasivariety semantics for Pⁱ. In the present paper we prove that the mentioned quasivariety is not a variety by showing that the variety generated by S is not equivalent to any algebraizable deductive system. We also show that Pⁱ has no algebraic semantics in the sense of Czelakowski. Among other results, we study the variety generated by the algebra S. This enables us to prove in a purely algebraic way that the only proper non-trivial axiomatic extension of Pⁱ is the classical deductive system PC. Throughout the paper we also study those abstract logics which are in a way similar to Pⁱ, and are called here abstract Sette logics. We obtain for them results similar to those obtained for distributive abstract logics by Font, Verdú and the author. |
|---|---|
| AbstractList | The aim of this paper is to study the paraconsistent deductive system Pⁱ within the context of Algebraic Logic. It is well known due to Lewin, Mikenberg and Schwarse that Pⁱ is algebraizable in the sense of Blok and Pigozzi, the quasivariety generated by Sette's three-element algebra S being the unique quasivariety semantics for Pⁱ. In the present paper we prove that the mentioned quasivariety is not a variety by showing that the variety generated by S is not equivalent to any algebraizable deductive system. We also show that Pⁱ has no algebraic semantics in the sense of Czelakowski. Among other results, we study the variety generated by the algebra S. This enables us to prove in a purely algebraic way that the only proper non-trivial axiomatic extension of Pⁱ is the classical deductive system PC. Throughout the paper we also study those abstract logics which are in a way similar to Pⁱ, and are called here abstract Sette logics. We obtain for them results similar to those obtained for distributive abstract logics by Font, Verdú and the author. |
| Author | Pynko, Alexej P. |
| Author_xml | – sequence: 1 givenname: Alexej P. surname: Pynko fullname: Pynko, Alexej P. |
| BookMark | eNptkE1LAzEURYNUsK1u3AsDLgRh9L18TbKsxapQUaiuh0yaKVPGSU1SsP_ekYqCuHqbc-99nBEZdL5zhJwiXCFAcX0zAwShBOMHZIiioLkqGAzIEIDpnFEUR2QU4xoAqNR6SIpJu3JVMI3NFmm73GW-zhYuJXcRs0fz0byZNns2wVjfxSYm16Vs7leNPSaHtWmjO_m-Y_I6u32Z3ufzp7uH6WSeW9Q85YxbVAi1tJIKafVSVaisEQU4q1Ajr5RiFa3c0gJUtpCc1VJRY5irGVeSjcn5vncT_PvWxVSu_TZ0_WSJVGvNBGfYU5d7ygYfY3B1uQn962FXIpRfYspfMT0Mf2DbJJMa36XeQ_t_5GwfWcfkw085BegdS8E-AZMYbgs |
| CitedBy_id | crossref_primary_10_1080_11663081_1999_10510958 crossref_primary_10_1002_malq_200710021 crossref_primary_10_1007_s11225_024_10135_z crossref_primary_10_2307_2586567 crossref_primary_10_1093_logcom_exaa030 crossref_primary_10_1002_malq_200510044 crossref_primary_10_1016_S0168_0072_98_00058_X crossref_primary_10_3166_jancl_19_183_209 |
| Cites_doi | 10.1007/BF00370680 10.1007/BF02584057 10.2307/2964550 10.1007/978-1-4613-8130-3 10.1090/memo/0396 10.1007/978-94-009-8399-1 10.2307/2274764 10.1109/ISMVL.1988.5200 10.1007/978-0-387-77487-9 10.1007/BF02123806 10.1007/BF00370428 |
| ContentType | Journal Article |
| Copyright | Copyright 1995 Kluwer Academic Publishers |
| Copyright_xml | – notice: Copyright 1995 Kluwer Academic Publishers |
| DBID | AAYXX CITATION HFIND IOIBA K30 PAAUG PAWHS PAWZZ PAXOH PBHAV PBQSW PBYQZ PCIWU PCMID PCZJX PDGRG PDWWI PETMR PFVGT PGXDX PIHIL PISVA PJCTQ PJTMS PLCHJ PMHAD PNQDJ POUND PPLAD PQAPC PQCAN PQCMW PQEME PQHKH PQMID PQNCT PQNET PQSCT PQSET PSVJG PVMQY PZGFC |
| DOI | 10.1007/BF01058534 |
| DatabaseName | CrossRef Periodicals Index Online Segment 16 Periodicals Index Online Segment 29 Periodicals Index Online Primary Sources Access—Foundation Edition (Plan E) - West Primary Sources Access (Plan D) - International Primary Sources Access & Build (Plan A) - MEA Primary Sources Access—Foundation Edition (Plan E) - Midwest Primary Sources Access—Foundation Edition (Plan E) - Northeast Primary Sources Access (Plan D) - Southeast Primary Sources Access (Plan D) - North Central Primary Sources Access—Foundation Edition (Plan E) - Southeast Primary Sources Access (Plan D) - South Central Primary Sources Access & Build (Plan A) - UK / I Primary Sources Access (Plan D) - Canada Primary Sources Access (Plan D) - EMEALA Primary Sources Access—Foundation Edition (Plan E) - North Central Primary Sources Access—Foundation Edition (Plan E) - South Central Primary Sources Access & Build (Plan A) - International Primary Sources Access—Foundation Edition (Plan E) - International Primary Sources Access (Plan D) - West Periodicals Index Online Segments 1-50 Primary Sources Access (Plan D) - APAC Primary Sources Access (Plan D) - Midwest Primary Sources Access (Plan D) - MEA Primary Sources Access—Foundation Edition (Plan E) - Canada Primary Sources Access—Foundation Edition (Plan E) - UK / I Primary Sources Access—Foundation Edition (Plan E) - EMEALA Primary Sources Access & Build (Plan A) - APAC Primary Sources Access & Build (Plan A) - Canada Primary Sources Access & Build (Plan A) - West Primary Sources Access & Build (Plan A) - EMEALA Primary Sources Access (Plan D) - Northeast Primary Sources Access & Build (Plan A) - Midwest Primary Sources Access & Build (Plan A) - North Central Primary Sources Access & Build (Plan A) - Northeast Primary Sources Access & Build (Plan A) - South Central Primary Sources Access & Build (Plan A) - Southeast Primary Sources Access (Plan D) - UK / I Primary Sources Access—Foundation Edition (Plan E) - APAC Primary Sources Access—Foundation Edition (Plan E) - MEA |
| DatabaseTitle | CrossRef Periodicals Index Online Segments 1-50 Periodicals Index Online Segment 16 Periodicals Index Online Periodicals Index Online Segment 29 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Philosophy |
| EISSN | 1572-8730 |
| EndPage | 128 |
| ExternalDocumentID | 10_1007_BF01058534 20015765 |
| GroupedDBID | -~C .86 .VR 06D 0R~ 123 1N0 1SB 2.D 203 28- 29Q 2JN 2JY 2KM 2VQ 30V 4.4 40D 5QI 5VS 67Z 6NX 8UJ 95. 95~ 96X AAAVM AACJB AAHNG AAIAL AAJBT AANTL AAWIL AAYZH ABAWQ ABBBX ABBHK ABECU ABFAN ABJNI ABJOX ABKTR ABMNI ABMQK ABNWP ABQDR ABQSL ABSXP ABXSQ ABYWD ACBXY ACDIW ACGFS ACHJO ACHXU ACMTB ACTMH ADHKG ADIMF ADMHG ADODI ADULT AEFIE AEJRE AEKMD AELLO AENEX AEUPB AFBBN AFEXP AFLOW AFVYC AGGDS AGLNM AGQPQ AIHAF AITGF AJZVZ AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG ALWAN AMKLP AMVHM ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN B-. BBWZM BDATZ CS3 DL5 DQDLB DSRWC DU5 EBS ECEWR EJD EN8 ESBYG FEDTE FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GIFXF GJIRD GQ7 GQ8 GXS HG5 HG6 HMJXF HQ6 HRMNR HVGLF HZ~ I09 IPSME ITM IXC IZIGR I~X I~Z J-C J0Z JAA JAAYA JBMMH JBSCW JBZCM JCJTX JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST KOV KOW LAK M4Y MA- N2Q N9A NB0 NDZJH NU0 O9- O93 O9G O9I P19 P2P P9Q PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S26 S27 S28 S3B SA0 SAP SCLPG SDA SDH SDM SHS SISQX SNPRN SOHCF SOJ SRMVM STPWE SZN T13 T16 TN5 TSG TSK TSV U2A VC2 W23 W48 WH7 Y2W Z45 ZWUKE ZY4 ~EX -Y2 0VY 2J2 2KG 2LR 2P1 2~H 406 408 409 40E 8TC 95- AABHQ AACDK AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAYXX ABAKF ABBRH ABDBE ABDZT ABFSG ABFTV ABHLI ABHQN ABKCH ABQBU ABRTQ ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFDZB AFFNX AFGCZ AFHIU AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AIXLP AJBLW AJRNO AMXSW AMYLF AMYQR AOCGG ATHPR AYFIA BA0 BGNMA BSONS CAG CITATION COF CSCUP DDRTE DNIVK DPUIP EBLON EIOEI FERAY GNWQR H13 HF~ HQYDN H~9 IHE IJ- IKXTQ IWAJR IZQ JZLTJ KDC LLZTM NPVJJ NQJWS OAM OVD RZC RZD S16 S1Z SHX SJYHP SNE SNX SPISZ SSLCW TEORI TUC UG4 UOJIU UTJUX UZXMN VFIZW WK8 YLTOR ZMTXR HFIND IOIBA K30 PAAUG PAWHS PAWZZ PAXOH PBHAV PBQSW PBYQZ PCIWU PCMID PCZJX PDGRG PDWWI PETMR PFVGT PGXDX PIHIL PISVA PJCTQ PJTMS PLCHJ PMHAD PNQDJ POUND PPLAD PQAPC PQCAN PQCMW PQEME PQHKH PQMID PQNCT PQNET PQSCT PQSET PSVJG PVMQY PZGFC |
| ID | FETCH-LOGICAL-c194t-34c1810f6c6256c9d8b18ca570ec81914b883b2bedc00bc7643f682aa3ef34863 |
| ISSN | 0039-3215 |
| IngestDate | Fri Jul 25 03:23:01 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Wed Oct 01 04:56:40 EDT 2025 Thu May 29 08:43:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c194t-34c1810f6c6256c9d8b18ca570ec81914b883b2bedc00bc7643f682aa3ef34863 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| PQID | 1299935431 |
| PQPubID | 1818735 |
| PageCount | 40 |
| ParticipantIDs | proquest_journals_1299935431 crossref_primary_10_1007_BF01058534 crossref_citationtrail_10_1007_BF01058534 jstor_primary_20015765 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 1900 |
| PublicationDate | 19950101 |
| PublicationDateYYYYMMDD | 1995-01-01 |
| PublicationDate_xml | – month: 01 year: 1995 text: 19950101 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | Wroclaw, Poland |
| PublicationPlace_xml | – name: Wroclaw, Poland |
| PublicationTitle | Studia logica |
| PublicationYear | 1995 |
| Publisher | Kluwer Academic Publishers Ossolineum |
| Publisher_xml | – name: Kluwer Academic Publishers – name: Ossolineum |
| References | G. Birkhoff (CR3) 1967 R. W jcicki (CR30) 1988 R. Balbes (CR2) 1974 H. Rasiowa (CR25) 1963 CR13 G. Gr tzer (CR16) 1871 R. A. Lewin (CR19) 1990; 7 I. M. L. D'Ottaviano (CR12) 1990; 7 P. M. Cohn (CR8) 1981 A. I. Arruda (CR1) 1980 S. L. Bloom (CR5) 1973; 102 S. Burris (CR7) 1981 R. Harrop (CR18) 1968 H. Rasiowa (CR24) 1974 D. J. Brown (CR6) 1973; 102 J. Czelakowski (CR10) 1985; 44 CR4 R. W jcicki (CR29) 1984 J. M. Font (CR15) 1991; 50 CR27 CR23 J. M. Font (CR14) 1989; 54 G. Gr tzer (CR17) 1979 (CR22) 1989 J. Lo? (CR20) 1958; 20 R. W jcicki (CR28) 1973; 32 J. Czelakowski (CR9) 1981; 40 A. M. Sette (CR26) 1973; 18 E. Mendelson (CR21) 1979 N. C. A. Costa da (CR11) 1989; 6 |
| References_xml | – start-page: 1 volume-title: Mathematical Logic in Latin America year: 1980 ident: CR1 – volume: 50 start-page: 391 year: 1991 ident: CR15 publication-title: Studia Logica doi: 10.1007/BF00370680 – volume: 40 start-page: 227 year: 1981 ident: CR9 publication-title: Studia Logica doi: 10.1007/BF02584057 – volume-title: Lattice Theory. First concepts and distributive lattices year: 1871 ident: CR16 – ident: CR27 doi: 10.2307/2964550 – volume-title: A Course in Universal Algebra year: 1981 ident: CR7 doi: 10.1007/978-1-4613-8130-3 – volume-title: Theory of Logical Calculi. Basic Theory of Consequence Operations, Synthese Library, Vol.199 year: 1988 ident: CR30 – volume-title: Lattice Theory year: 1967 ident: CR3 – volume: 102 start-page: 9 year: 1973 ident: CR6 publication-title: Rozprawy Matematyczne (Dissertations Mathematicae) – ident: CR4 doi: 10.1090/memo/0396 – volume-title: Universal Algebra year: 1981 ident: CR8 doi: 10.1007/978-94-009-8399-1 – volume: 102 start-page: 43 year: 1973 ident: CR5 publication-title: Rozprawy Matematyczne (Dissertations Mathematicae) – volume-title: Lectures on Propositional Calculi year: 1984 ident: CR29 – volume-title: Distributive lattices year: 1974 ident: CR2 – volume: 6 start-page: 5 year: 1989 ident: CR11 publication-title: The Journal of Non-Classical Logic – volume: 7 start-page: 89 year: 1990 ident: CR12 publication-title: The Journal of Non-Classical Logic – volume: 20 start-page: 177 year: 1958 ident: CR20 publication-title: Indagationes Mathematicae – ident: CR23 – volume-title: Paraconsistent Logic. Essays on the Inconsistent year: 1989 ident: CR22 – volume: 54 start-page: 1042 year: 1989 ident: CR14 publication-title: The Journal of Symbolic Logic doi: 10.2307/2274764 – ident: CR13 doi: 10.1109/ISMVL.1988.5200 – volume-title: An Algebraic Approach to Non-Classical Logics year: 1974 ident: CR24 – volume: 18 start-page: 173 year: 1973 ident: CR26 publication-title: Mathematica Japonica – volume-title: Universal Algebra year: 1979 ident: CR17 doi: 10.1007/978-0-387-77487-9 – volume: 32 start-page: 7 year: 1973 ident: CR28 publication-title: Studia Logica doi: 10.1007/BF02123806 – volume-title: Introduction to Mathematical logic year: 1979 ident: CR21 – start-page: 163 volume-title: Contributions to Mathematical Logic year: 1968 ident: CR18 – volume: 44 start-page: 369 year: 1985 ident: CR10 publication-title: Studia Logica doi: 10.1007/BF00370428 – volume-title: The Mathematics of Metamathematics year: 1963 ident: CR25 – volume: 7 start-page: 79 year: 1990 ident: CR19 publication-title: The Journal of Non-Classical Logic |
| SSID | ssj0002699 |
| Score | 1.4238057 |
| Snippet | The aim of this paper is to study the paraconsistent deductive system Pⁱ within the context of Algebraic Logic. It is well known due to Lewin, Mikenberg and... |
| SourceID | proquest crossref jstor |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 89 |
| SubjectTerms | Abstract algebraic logic Abstract logic Abstract model theory Algebra Axioms Boolean algebras Logical theorems Mathematical theorems Morphisms Universal algebra |
| Title | Algebraic Study of Sette's Maximal Paraconsistent Logic |
| URI | https://www.jstor.org/stable/20015765 https://www.proquest.com/docview/1299935431 |
| Volume | 54 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-8730 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002699 issn: 0039-3215 databaseCode: AFBBN dateStart: 19531201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEB4S5yV5CM1FnQtBC6GELbK0WkmPTnDIUVuGJuA-id3VqhhS57ACbX99Zg_JcRJKkxdh5EWS95Nnvtmd-QbgMxMddOxBSBSPFaEFT4nwZUTSlGoGixGJyarsD9jpFT0fRaNZj1FTXVKJr_Lvq3Ul70EVzyGuukr2Dcg2F8UT-BnxxSMijMf_wrh7_VPv-46lSQc0e-XfdeqOWYTv89_jXwjAUCsy6zRYxHNS6R69Y_mUkppMQn5obWBjKX8MLjJjN771Rr1zVwVWuHK56NnqQKZ_J9JVJ-vgjGCYkjCwVZS1EbRKznNgW4tmG_y8MLR-nT6O_Aw9Pp25k3oLfdjN8uFZlmcDJOW3d0Q3-tIb4q7rySIsBWiI_RYsdU-OjgaN-wxYamMW95TzmrLudnMswiaSvnCmhiFcfoBVR-29rsVpDRbUZB1W-o0u7nQdlod154g_GxA38HkGPu-m9Ax8B1PPgefNg-cZ8Dbh6qR3eXxKXB8LIjsprUhIJfIov2QSg00m0yIRnUTyKPaV1PEyFUkSikCoQvq-kDGSxJIlAeehKkOasHALWpObifoIXkEjyZCyF7FE6pUUCYtVQYNSlGnE_Q5vw5d6XnLpRN51r5HrvJanns1hGz41Y2-ttMmro7bM9DZDdBIeBqlRG3br-c7df2KaI3tEwqv1Fbb__fUOLM9e111oVfcPag_pXSX23QvxCKP8TXQ |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algebraic+Study+of+Sette%27s+Maximal+Paraconsistent+Logic&rft.jtitle=Studia+logica&rft.au=PYNKO%2C+ALEXEJ+P&rft.date=1995-01-01&rft.pub=Ossolineum&rft.issn=0039-3215&rft.volume=54&rft.issue=1&rft.spage=89&rft_id=info:doi/10.1007%2FBF01058534&rft.externalDBID=PAO_PIO_ONLY |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-3215&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-3215&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-3215&client=summon |