Algebraic Study of Sette's Maximal Paraconsistent Logic

The aim of this paper is to study the paraconsistent deductive system Pⁱ within the context of Algebraic Logic. It is well known due to Lewin, Mikenberg and Schwarse that Pⁱ is algebraizable in the sense of Blok and Pigozzi, the quasivariety generated by Sette's three-element algebra S being th...

Full description

Saved in:
Bibliographic Details
Published inStudia logica Vol. 54; no. 1; pp. 89 - 128
Main Author Pynko, Alexej P.
Format Journal Article
LanguageEnglish
Published Wroclaw, Poland Kluwer Academic Publishers 01.01.1995
Ossolineum
Subjects
Online AccessGet full text
ISSN0039-3215
1572-8730
DOI10.1007/BF01058534

Cover

Abstract The aim of this paper is to study the paraconsistent deductive system Pⁱ within the context of Algebraic Logic. It is well known due to Lewin, Mikenberg and Schwarse that Pⁱ is algebraizable in the sense of Blok and Pigozzi, the quasivariety generated by Sette's three-element algebra S being the unique quasivariety semantics for Pⁱ. In the present paper we prove that the mentioned quasivariety is not a variety by showing that the variety generated by S is not equivalent to any algebraizable deductive system. We also show that Pⁱ has no algebraic semantics in the sense of Czelakowski. Among other results, we study the variety generated by the algebra S. This enables us to prove in a purely algebraic way that the only proper non-trivial axiomatic extension of Pⁱ is the classical deductive system PC. Throughout the paper we also study those abstract logics which are in a way similar to Pⁱ, and are called here abstract Sette logics. We obtain for them results similar to those obtained for distributive abstract logics by Font, Verdú and the author.
AbstractList The aim of this paper is to study the paraconsistent deductive system Pⁱ within the context of Algebraic Logic. It is well known due to Lewin, Mikenberg and Schwarse that Pⁱ is algebraizable in the sense of Blok and Pigozzi, the quasivariety generated by Sette's three-element algebra S being the unique quasivariety semantics for Pⁱ. In the present paper we prove that the mentioned quasivariety is not a variety by showing that the variety generated by S is not equivalent to any algebraizable deductive system. We also show that Pⁱ has no algebraic semantics in the sense of Czelakowski. Among other results, we study the variety generated by the algebra S. This enables us to prove in a purely algebraic way that the only proper non-trivial axiomatic extension of Pⁱ is the classical deductive system PC. Throughout the paper we also study those abstract logics which are in a way similar to Pⁱ, and are called here abstract Sette logics. We obtain for them results similar to those obtained for distributive abstract logics by Font, Verdú and the author.
Author Pynko, Alexej P.
Author_xml – sequence: 1
  givenname: Alexej P.
  surname: Pynko
  fullname: Pynko, Alexej P.
BookMark eNptkE1LAzEURYNUsK1u3AsDLgRh9L18TbKsxapQUaiuh0yaKVPGSU1SsP_ekYqCuHqbc-99nBEZdL5zhJwiXCFAcX0zAwShBOMHZIiioLkqGAzIEIDpnFEUR2QU4xoAqNR6SIpJu3JVMI3NFmm73GW-zhYuJXcRs0fz0byZNns2wVjfxSYm16Vs7leNPSaHtWmjO_m-Y_I6u32Z3ufzp7uH6WSeW9Q85YxbVAi1tJIKafVSVaisEQU4q1Ajr5RiFa3c0gJUtpCc1VJRY5irGVeSjcn5vncT_PvWxVSu_TZ0_WSJVGvNBGfYU5d7ygYfY3B1uQn962FXIpRfYspfMT0Mf2DbJJMa36XeQ_t_5GwfWcfkw085BegdS8E-AZMYbgs
CitedBy_id crossref_primary_10_1080_11663081_1999_10510958
crossref_primary_10_1002_malq_200710021
crossref_primary_10_1007_s11225_024_10135_z
crossref_primary_10_2307_2586567
crossref_primary_10_1093_logcom_exaa030
crossref_primary_10_1002_malq_200510044
crossref_primary_10_1016_S0168_0072_98_00058_X
crossref_primary_10_3166_jancl_19_183_209
Cites_doi 10.1007/BF00370680
10.1007/BF02584057
10.2307/2964550
10.1007/978-1-4613-8130-3
10.1090/memo/0396
10.1007/978-94-009-8399-1
10.2307/2274764
10.1109/ISMVL.1988.5200
10.1007/978-0-387-77487-9
10.1007/BF02123806
10.1007/BF00370428
ContentType Journal Article
Copyright Copyright 1995 Kluwer Academic Publishers
Copyright_xml – notice: Copyright 1995 Kluwer Academic Publishers
DBID AAYXX
CITATION
HFIND
IOIBA
K30
PAAUG
PAWHS
PAWZZ
PAXOH
PBHAV
PBQSW
PBYQZ
PCIWU
PCMID
PCZJX
PDGRG
PDWWI
PETMR
PFVGT
PGXDX
PIHIL
PISVA
PJCTQ
PJTMS
PLCHJ
PMHAD
PNQDJ
POUND
PPLAD
PQAPC
PQCAN
PQCMW
PQEME
PQHKH
PQMID
PQNCT
PQNET
PQSCT
PQSET
PSVJG
PVMQY
PZGFC
DOI 10.1007/BF01058534
DatabaseName CrossRef
Periodicals Index Online Segment 16
Periodicals Index Online Segment 29
Periodicals Index Online
Primary Sources Access—Foundation Edition (Plan E) - West
Primary Sources Access (Plan D) - International
Primary Sources Access & Build (Plan A) - MEA
Primary Sources Access—Foundation Edition (Plan E) - Midwest
Primary Sources Access—Foundation Edition (Plan E) - Northeast
Primary Sources Access (Plan D) - Southeast
Primary Sources Access (Plan D) - North Central
Primary Sources Access—Foundation Edition (Plan E) - Southeast
Primary Sources Access (Plan D) - South Central
Primary Sources Access & Build (Plan A) - UK / I
Primary Sources Access (Plan D) - Canada
Primary Sources Access (Plan D) - EMEALA
Primary Sources Access—Foundation Edition (Plan E) - North Central
Primary Sources Access—Foundation Edition (Plan E) - South Central
Primary Sources Access & Build (Plan A) - International
Primary Sources Access—Foundation Edition (Plan E) - International
Primary Sources Access (Plan D) - West
Periodicals Index Online Segments 1-50
Primary Sources Access (Plan D) - APAC
Primary Sources Access (Plan D) - Midwest
Primary Sources Access (Plan D) - MEA
Primary Sources Access—Foundation Edition (Plan E) - Canada
Primary Sources Access—Foundation Edition (Plan E) - UK / I
Primary Sources Access—Foundation Edition (Plan E) - EMEALA
Primary Sources Access & Build (Plan A) - APAC
Primary Sources Access & Build (Plan A) - Canada
Primary Sources Access & Build (Plan A) - West
Primary Sources Access & Build (Plan A) - EMEALA
Primary Sources Access (Plan D) - Northeast
Primary Sources Access & Build (Plan A) - Midwest
Primary Sources Access & Build (Plan A) - North Central
Primary Sources Access & Build (Plan A) - Northeast
Primary Sources Access & Build (Plan A) - South Central
Primary Sources Access & Build (Plan A) - Southeast
Primary Sources Access (Plan D) - UK / I
Primary Sources Access—Foundation Edition (Plan E) - APAC
Primary Sources Access—Foundation Edition (Plan E) - MEA
DatabaseTitle CrossRef
Periodicals Index Online Segments 1-50
Periodicals Index Online Segment 16
Periodicals Index Online
Periodicals Index Online Segment 29
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Philosophy
EISSN 1572-8730
EndPage 128
ExternalDocumentID 10_1007_BF01058534
20015765
GroupedDBID -~C
.86
.VR
06D
0R~
123
1N0
1SB
2.D
203
28-
29Q
2JN
2JY
2KM
2VQ
30V
4.4
40D
5QI
5VS
67Z
6NX
8UJ
95.
95~
96X
AAAVM
AACJB
AAHNG
AAIAL
AAJBT
AANTL
AAWIL
AAYZH
ABAWQ
ABBBX
ABBHK
ABECU
ABFAN
ABJNI
ABJOX
ABKTR
ABMNI
ABMQK
ABNWP
ABQDR
ABQSL
ABSXP
ABXSQ
ABYWD
ACBXY
ACDIW
ACGFS
ACHJO
ACHXU
ACMTB
ACTMH
ADHKG
ADIMF
ADMHG
ADODI
ADULT
AEFIE
AEJRE
AEKMD
AELLO
AENEX
AEUPB
AFBBN
AFEXP
AFLOW
AFVYC
AGGDS
AGLNM
AGQPQ
AIHAF
AITGF
AJZVZ
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALWAN
AMKLP
AMVHM
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
B-.
BBWZM
BDATZ
CS3
DL5
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
EN8
ESBYG
FEDTE
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GIFXF
GJIRD
GQ7
GQ8
GXS
HG5
HG6
HMJXF
HQ6
HRMNR
HVGLF
HZ~
I09
IPSME
ITM
IXC
IZIGR
I~X
I~Z
J-C
J0Z
JAA
JAAYA
JBMMH
JBSCW
JBZCM
JCJTX
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
KOV
KOW
LAK
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NU0
O9-
O93
O9G
O9I
P19
P2P
P9Q
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S26
S27
S28
S3B
SA0
SAP
SCLPG
SDA
SDH
SDM
SHS
SISQX
SNPRN
SOHCF
SOJ
SRMVM
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
U2A
VC2
W23
W48
WH7
Y2W
Z45
ZWUKE
ZY4
~EX
-Y2
0VY
2J2
2KG
2LR
2P1
2~H
406
408
409
40E
8TC
95-
AABHQ
AACDK
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBRH
ABDBE
ABDZT
ABFSG
ABFTV
ABHLI
ABHQN
ABKCH
ABQBU
ABRTQ
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFDZB
AFFNX
AFGCZ
AFHIU
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AIXLP
AJBLW
AJRNO
AMXSW
AMYLF
AMYQR
AOCGG
ATHPR
AYFIA
BA0
BGNMA
BSONS
CAG
CITATION
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EIOEI
FERAY
GNWQR
H13
HF~
HQYDN
H~9
IHE
IJ-
IKXTQ
IWAJR
IZQ
JZLTJ
KDC
LLZTM
NPVJJ
NQJWS
OAM
OVD
RZC
RZD
S16
S1Z
SHX
SJYHP
SNE
SNX
SPISZ
SSLCW
TEORI
TUC
UG4
UOJIU
UTJUX
UZXMN
VFIZW
WK8
YLTOR
ZMTXR
HFIND
IOIBA
K30
PAAUG
PAWHS
PAWZZ
PAXOH
PBHAV
PBQSW
PBYQZ
PCIWU
PCMID
PCZJX
PDGRG
PDWWI
PETMR
PFVGT
PGXDX
PIHIL
PISVA
PJCTQ
PJTMS
PLCHJ
PMHAD
PNQDJ
POUND
PPLAD
PQAPC
PQCAN
PQCMW
PQEME
PQHKH
PQMID
PQNCT
PQNET
PQSCT
PQSET
PSVJG
PVMQY
PZGFC
ID FETCH-LOGICAL-c194t-34c1810f6c6256c9d8b18ca570ec81914b883b2bedc00bc7643f682aa3ef34863
ISSN 0039-3215
IngestDate Fri Jul 25 03:23:01 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
Wed Oct 01 04:56:40 EDT 2025
Thu May 29 08:43:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://www.springer.com/tdm
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c194t-34c1810f6c6256c9d8b18ca570ec81914b883b2bedc00bc7643f682aa3ef34863
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1299935431
PQPubID 1818735
PageCount 40
ParticipantIDs proquest_journals_1299935431
crossref_primary_10_1007_BF01058534
crossref_citationtrail_10_1007_BF01058534
jstor_primary_20015765
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 19950101
PublicationDateYYYYMMDD 1995-01-01
PublicationDate_xml – month: 01
  year: 1995
  text: 19950101
  day: 01
PublicationDecade 1990
PublicationPlace Wroclaw, Poland
PublicationPlace_xml – name: Wroclaw, Poland
PublicationTitle Studia logica
PublicationYear 1995
Publisher Kluwer Academic Publishers
Ossolineum
Publisher_xml – name: Kluwer Academic Publishers
– name: Ossolineum
References G. Birkhoff (CR3) 1967
R. W jcicki (CR30) 1988
R. Balbes (CR2) 1974
H. Rasiowa (CR25) 1963
CR13
G. Gr tzer (CR16) 1871
R. A. Lewin (CR19) 1990; 7
I. M. L. D'Ottaviano (CR12) 1990; 7
P. M. Cohn (CR8) 1981
A. I. Arruda (CR1) 1980
S. L. Bloom (CR5) 1973; 102
S. Burris (CR7) 1981
R. Harrop (CR18) 1968
H. Rasiowa (CR24) 1974
D. J. Brown (CR6) 1973; 102
J. Czelakowski (CR10) 1985; 44
CR4
R. W jcicki (CR29) 1984
J. M. Font (CR15) 1991; 50
CR27
CR23
J. M. Font (CR14) 1989; 54
G. Gr tzer (CR17) 1979
(CR22) 1989
J. Lo? (CR20) 1958; 20
R. W jcicki (CR28) 1973; 32
J. Czelakowski (CR9) 1981; 40
A. M. Sette (CR26) 1973; 18
E. Mendelson (CR21) 1979
N. C. A. Costa da (CR11) 1989; 6
References_xml – start-page: 1
  volume-title: Mathematical Logic in Latin America
  year: 1980
  ident: CR1
– volume: 50
  start-page: 391
  year: 1991
  ident: CR15
  publication-title: Studia Logica
  doi: 10.1007/BF00370680
– volume: 40
  start-page: 227
  year: 1981
  ident: CR9
  publication-title: Studia Logica
  doi: 10.1007/BF02584057
– volume-title: Lattice Theory. First concepts and distributive lattices
  year: 1871
  ident: CR16
– ident: CR27
  doi: 10.2307/2964550
– volume-title: A Course in Universal Algebra
  year: 1981
  ident: CR7
  doi: 10.1007/978-1-4613-8130-3
– volume-title: Theory of Logical Calculi. Basic Theory of Consequence Operations, Synthese Library, Vol.199
  year: 1988
  ident: CR30
– volume-title: Lattice Theory
  year: 1967
  ident: CR3
– volume: 102
  start-page: 9
  year: 1973
  ident: CR6
  publication-title: Rozprawy Matematyczne (Dissertations Mathematicae)
– ident: CR4
  doi: 10.1090/memo/0396
– volume-title: Universal Algebra
  year: 1981
  ident: CR8
  doi: 10.1007/978-94-009-8399-1
– volume: 102
  start-page: 43
  year: 1973
  ident: CR5
  publication-title: Rozprawy Matematyczne (Dissertations Mathematicae)
– volume-title: Lectures on Propositional Calculi
  year: 1984
  ident: CR29
– volume-title: Distributive lattices
  year: 1974
  ident: CR2
– volume: 6
  start-page: 5
  year: 1989
  ident: CR11
  publication-title: The Journal of Non-Classical Logic
– volume: 7
  start-page: 89
  year: 1990
  ident: CR12
  publication-title: The Journal of Non-Classical Logic
– volume: 20
  start-page: 177
  year: 1958
  ident: CR20
  publication-title: Indagationes Mathematicae
– ident: CR23
– volume-title: Paraconsistent Logic. Essays on the Inconsistent
  year: 1989
  ident: CR22
– volume: 54
  start-page: 1042
  year: 1989
  ident: CR14
  publication-title: The Journal of Symbolic Logic
  doi: 10.2307/2274764
– ident: CR13
  doi: 10.1109/ISMVL.1988.5200
– volume-title: An Algebraic Approach to Non-Classical Logics
  year: 1974
  ident: CR24
– volume: 18
  start-page: 173
  year: 1973
  ident: CR26
  publication-title: Mathematica Japonica
– volume-title: Universal Algebra
  year: 1979
  ident: CR17
  doi: 10.1007/978-0-387-77487-9
– volume: 32
  start-page: 7
  year: 1973
  ident: CR28
  publication-title: Studia Logica
  doi: 10.1007/BF02123806
– volume-title: Introduction to Mathematical logic
  year: 1979
  ident: CR21
– start-page: 163
  volume-title: Contributions to Mathematical Logic
  year: 1968
  ident: CR18
– volume: 44
  start-page: 369
  year: 1985
  ident: CR10
  publication-title: Studia Logica
  doi: 10.1007/BF00370428
– volume-title: The Mathematics of Metamathematics
  year: 1963
  ident: CR25
– volume: 7
  start-page: 79
  year: 1990
  ident: CR19
  publication-title: The Journal of Non-Classical Logic
SSID ssj0002699
Score 1.4238057
Snippet The aim of this paper is to study the paraconsistent deductive system Pⁱ within the context of Algebraic Logic. It is well known due to Lewin, Mikenberg and...
SourceID proquest
crossref
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 89
SubjectTerms Abstract algebraic logic
Abstract logic
Abstract model theory
Algebra
Axioms
Boolean algebras
Logical theorems
Mathematical theorems
Morphisms
Universal algebra
Title Algebraic Study of Sette's Maximal Paraconsistent Logic
URI https://www.jstor.org/stable/20015765
https://www.proquest.com/docview/1299935431
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-8730
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002699
  issn: 0039-3215
  databaseCode: AFBBN
  dateStart: 19531201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEB4S5yV5CM1FnQtBC6GELbK0WkmPTnDIUVuGJuA-id3VqhhS57ACbX99Zg_JcRJKkxdh5EWS95Nnvtmd-QbgMxMddOxBSBSPFaEFT4nwZUTSlGoGixGJyarsD9jpFT0fRaNZj1FTXVKJr_Lvq3Ul70EVzyGuukr2Dcg2F8UT-BnxxSMijMf_wrh7_VPv-46lSQc0e-XfdeqOWYTv89_jXwjAUCsy6zRYxHNS6R69Y_mUkppMQn5obWBjKX8MLjJjN771Rr1zVwVWuHK56NnqQKZ_J9JVJ-vgjGCYkjCwVZS1EbRKznNgW4tmG_y8MLR-nT6O_Aw9Pp25k3oLfdjN8uFZlmcDJOW3d0Q3-tIb4q7rySIsBWiI_RYsdU-OjgaN-wxYamMW95TzmrLudnMswiaSvnCmhiFcfoBVR-29rsVpDRbUZB1W-o0u7nQdlod154g_GxA38HkGPu-m9Ax8B1PPgefNg-cZ8Dbh6qR3eXxKXB8LIjsprUhIJfIov2QSg00m0yIRnUTyKPaV1PEyFUkSikCoQvq-kDGSxJIlAeehKkOasHALWpObifoIXkEjyZCyF7FE6pUUCYtVQYNSlGnE_Q5vw5d6XnLpRN51r5HrvJanns1hGz41Y2-ttMmro7bM9DZDdBIeBqlRG3br-c7df2KaI3tEwqv1Fbb__fUOLM9e111oVfcPag_pXSX23QvxCKP8TXQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algebraic+Study+of+Sette%27s+Maximal+Paraconsistent+Logic&rft.jtitle=Studia+logica&rft.au=PYNKO%2C+ALEXEJ+P&rft.date=1995-01-01&rft.pub=Ossolineum&rft.issn=0039-3215&rft.volume=54&rft.issue=1&rft.spage=89&rft_id=info:doi/10.1007%2FBF01058534&rft.externalDBID=PAO_PIO_ONLY
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-3215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-3215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-3215&client=summon