APRENDIZADO DE MÁQUINA APLICADO A QSAR
MACHINE LEARNING APLLIED TO QSAR. Over the years the study of the quantitative structure-activity relationship (QSAR) has transformed from a simple regression analysis to the implementation of machine learning (ML) with multiple statistics. Today ML-based QSAR models are quite important and play a n...
        Saved in:
      
    
          | Published in | Química Nova Vol. 47; no. 7 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Sociedade Brasileira de Química
    
        2024
     | 
| Online Access | Get full text | 
| ISSN | 0100-4042 1678-7064 1678-7064  | 
| DOI | 10.21577/0100-4042.20240024 | 
Cover
| Abstract | MACHINE LEARNING APLLIED TO QSAR. Over the years the study of the quantitative structure-activity relationship (QSAR) has transformed from a simple regression analysis to the implementation of machine learning (ML) with multiple statistics. Today ML-based QSAR models are quite important and play a notable role in drug design and screening, property prediction, biological activity, etc. ML methods applied to QSAR build classification or regression models to describe/predict the complex relationships between the chemical structure of molecules and biological activity. Even with the increase in scientific publications addressing this topic written in Portuguese, there is still a shortage of scientific articles explaining ML techniques applied to QSAR, how to build models, the types of models, algorithms, for the Brazilian scientific community. And to fill this need, we intend to approach the subject in a simple and didactic way for students and researchers who are starting in this very promising and important area. We will describe the fully explained theory of machine learning by applying QSAR, abstracting the complexity, and well-illustrated. | 
    
|---|---|
| AbstractList | MACHINE LEARNING APLLIED TO QSAR. Over the years the study of the quantitative structure-activity relationship (QSAR) has transformed from a simple regression analysis to the implementation of machine learning (ML) with multiple statistics. Today ML-based QSAR models are quite important and play a notable role in drug design and screening, property prediction, biological activity, etc. ML methods applied to QSAR build classification or regression models to describe/predict the complex relationships between the chemical structure of molecules and biological activity. Even with the increase in scientific publications addressing this topic written in Portuguese, there is still a shortage of scientific articles explaining ML techniques applied to QSAR, how to build models, the types of models, algorithms, for the Brazilian scientific community. And to fill this need, we intend to approach the subject in a simple and didactic way for students and researchers who are starting in this very promising and important area. We will describe the fully explained theory of machine learning by applying QSAR, abstracting the complexity, and well-illustrated. Over the years the study of the quantitative structure-activity relationship (QSAR) has transformed from a simple regression analysis to the implementation of machine learning (ML) with multiple statistics. Today ML-based QSAR models are quite important and play a notable role in drug design and screening, property prediction, biological activity, etc. ML methods applied to QSAR build classification or regression models to describe/predict the complex relationships between the chemical structure of molecules and biological activity. Even with the increase in scientific publications addressing this topic written in Portuguese, there is still a shortage of scientific articles explaining ML techniques applied to QSAR, how to build models, the types of models, algorithms, for the Brazilian scientific community. And to fill this need, we intend to approach the subject in a simple and didactic way for students and researchers who are starting in this very promising and important area. We will describe the fully explained theory of machine learning by applying QSAR, abstracting the complexity, and well-illustrated.  | 
    
| Author | Scotti, Marcus Scotti, Luciana de Menezes, Renata  | 
    
| Author_xml | – sequence: 1 givenname: Renata orcidid: 0000-0003-2718-4914 surname: de Menezes fullname: de Menezes, Renata – sequence: 2 givenname: Luciana surname: Scotti fullname: Scotti, Luciana – sequence: 3 givenname: Marcus orcidid: 0000-0003-4863-8057 surname: Scotti fullname: Scotti, Marcus  | 
    
| BookMark | eNqNkL1OwzAUhS1UJNrCE7BkY0q5_klsj1FbIFLoH3RhsW5tB7UKTZWAUEeejRcjaaEzg3Wlo-98sk6PdLbl1hNyTWHAaCTlLVCAUIBgAwZMQPPOSJfGUoUSYtEh3RNwQXp1vWkIyWXUJTfJbDGejNKXZDQNRuPg8ftrvkwnSZDMsnTYhkkwf0oWl-Q8x6L2V7-3T5Z34-fhQ5hN7xsuCy3VQoQsBuCKSw3IVoCOOaq98LHybqW4dbH0TWQ5csbiSHgOWkQtr2KfNx_nfZIeva7EjdlV6zes9qbEtTkEZfVqsHpf28IbqRGZdaCtVQKVVlwj5E5LatGuHG9c4uj62O5w_4lFcRJSMIfhTLuLaXcxf8M1NX6s2aqs68rn_2r9AD0da3Q | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.21577/0100-4042.20240024 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1678-7064 | 
    
| ExternalDocumentID | oai_doaj_org_article_79aa2cd09cc84a89839a0fd971cacbd3 10.21577/0100-4042.20240024 10_21577_0100_4042_20240024  | 
    
| GroupedDBID | 123 29P 2WC 53G AAFWJ AAYXX ACGFO ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS APOWU AZFZN BCNDV C1A CITATION DU5 E3Z F5P GROUPED_DOAJ HH5 IPNFZ KQ8 OK1 OVT P2P RIG RNS XSB ADTOC UNPAY 5VS  | 
    
| ID | FETCH-LOGICAL-c1944-2600383790a2b0ad2d19e4e68edb83cd67e2d1c3a322654e30945837986ef2403 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 0100-4042 1678-7064  | 
    
| IngestDate | Fri Oct 03 12:36:27 EDT 2025 Mon Sep 15 10:16:19 EDT 2025 Tue Jul 01 01:18:56 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Language | English | 
    
| License | cc-by-nc | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c1944-2600383790a2b0ad2d19e4e68edb83cd67e2d1c3a322654e30945837986ef2403 | 
    
| ORCID | 0000-0003-2718-4914 0000-0003-4863-8057  | 
    
| OpenAccessLink | https://doaj.org/article/79aa2cd09cc84a89839a0fd971cacbd3 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_79aa2cd09cc84a89839a0fd971cacbd3 unpaywall_primary_10_21577_0100_4042_20240024 crossref_primary_10_21577_0100_4042_20240024  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240001 | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – year: 2024 text: 20240001 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Química Nova | 
    
| PublicationYear | 2024 | 
    
| Publisher | Sociedade Brasileira de Química | 
    
| Publisher_xml | – name: Sociedade Brasileira de Química | 
    
| SSID | ssj0027375 ssib000530858 ssib009051137  | 
    
| Score | 2.3590276 | 
    
| Snippet | MACHINE LEARNING APLLIED TO QSAR. Over the years the study of the quantitative structure-activity relationship (QSAR) has transformed from a simple regression... Over the years the study of the quantitative structure-activity relationship (QSAR) has transformed from a simple regression analysis to the implementation of...  | 
    
| SourceID | doaj unpaywall crossref  | 
    
| SourceType | Open Website Open Access Repository Index Database  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8RADA66HtSDb3F90YPgxUof02nnWHdXVHB9LqiXks5ML8oquovozd_mHzNpu6KCoLcSQttkZpov0-QbgK0oRozz0LrGSnSFRetiSEAuMVpqpU0QaN6HPO7Kg544uoquap5t7oX58v-eghEzI_meR0mO4KYprncMxDhMyIiAdwMmet3T9LosUqyVOL2iz68bU6StOIZ-u8u3OFTS9U_D5LD_gC_PeHf3Jcbsz1bN208lNSGXltzuDgf5rn79Qdz4x9efg5kaazppNTnmYcz2F2CyNTribRG2UxqAbvvwJm2fOO2Oc_z-dtY77KZOesodxiRMnbOL9HwJevudy9aBW5-c4GpfCeEy6zynnsrDIPfQBMZXVliZWJMnoTYytiTSIdJylpGwISV5Eesn0hbM0LcMjf59366Ao2ODhPmKGGUhElUkSvoysAXBROUFxjZhZ-TH7KEiyMgosSitz9j6jK3PRtY3YY99_anK7NalgLyW1YslixVioI2ntE4EJopAHHqFUbGvUecmbIL7OVJ_eejqP_XXYIovq52WdWgMHod2g7DHIN-s59wH4tzERg priority: 102 providerName: Unpaywall  | 
    
| Title | APRENDIZADO DE MÁQUINA APLICADO A QSAR | 
    
| URI | https://doi.org/10.21577/0100-4042.20240024 https://doaj.org/article/79aa2cd09cc84a89839a0fd971cacbd3  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 47 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1678-7064 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027375 issn: 0100-4042 databaseCode: HH5 dateStart: 19780101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1678-7064 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027375 issn: 0100-4042 databaseCode: KQ8 dateStart: 19970201 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1678-7064 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027375 issn: 0100-4042 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1678-7064 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027375 issn: 0100-4042 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1PS8MwGMaDzIN6EEXF-Wf0IHixmKZpmhyj29iU1U0dTC_lbZKeRh2yIR79bH4xk3aOetKDlx5eQtM-aXmfNyS_IHQWxQBxFhpfGwY-NWB8CK2R41oxJZQmRLl5yEHCemN6M4kmtaO-3JqwCg9cCXcZCwCiNBZKcQpc2IQOONciDhSoTJecT8xFrZiqjEiI65QWR6EKwrjCDtks55BLAca2eqJuN5ZbSEnoj9RUEvy30MaimMH7G0yntbTT3UHbS7_oyeo5d9GaKfbQubTCJe3-s2zfee2ON_j8GI37ifTk0O0MtkHpjR7k_T4adzuP1z1_eeKBrwJBqe9o8a5kFBhIhkETHQhDDeNGZzxUmsXGhlQI9jdkETWhLc4i154zkzuy3gFqFC-FOUSeijVYr5bHwHLKRc4FCxgxubV3AhNtmuji-2XTWQW2SG1BUGqTOm1Sp036rU0TXTlBVk0dlboM2LFKl2OV_jZWTeSv5PxLp0f_0ekx2nT3q6ZNTlBj_rowp9ZIzLNW-c3Y6-2It9D6OBnKpy97fL6v | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8RADA66HtSDb3F90YPgxUof02nnWHdXVHB9LqiXks5ML8oquovozd_mHzNpu6KCoLcSQttkZpov0-QbgK0oRozz0LrGSnSFRetiSEAuMVpqpU0QaN6HPO7Kg544uoquap5t7oX58v-eghEzI_meR0mO4KYprncMxDhMyIiAdwMmet3T9LosUqyVOL2iz68bU6StOIZ-u8u3OFTS9U_D5LD_gC_PeHf3Jcbsz1bN208lNSGXltzuDgf5rn79Qdz4x9efg5kaazppNTnmYcz2F2CyNTribRG2UxqAbvvwJm2fOO2Oc_z-dtY77KZOesodxiRMnbOL9HwJevudy9aBW5-c4GpfCeEy6zynnsrDIPfQBMZXVliZWJMnoTYytiTSIdJylpGwISV5Eesn0hbM0LcMjf59366Ao2ODhPmKGGUhElUkSvoysAXBROUFxjZhZ-TH7KEiyMgosSitz9j6jK3PRtY3YY99_anK7NalgLyW1YslixVioI2ntE4EJopAHHqFUbGvUecmbIL7OVJ_eejqP_XXYIovq52WdWgMHod2g7DHIN-s59wH4tzERg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=APRENDIZADO+DE+M%C3%81QUINA+APLICADO+A+QSAR&rft.jtitle=Qu%C3%ADmica+Nova&rft.au=Renata+P.+B.+de+Menezes&rft.au=Luciana+Scotti&rft.au=Marcus+T.+Scotti&rft.date=2024-01-01&rft.pub=Sociedade+Brasileira+de+Qu%C3%ADmica&rft.eissn=1678-7064&rft.volume=47&rft.issue=7&rft_id=info:doi/10.21577%2F0100-4042.20240024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_79aa2cd09cc84a89839a0fd971cacbd3 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0100-4042&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0100-4042&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0100-4042&client=summon |