APRENDIZADO DE MÁQUINA APLICADO A QSAR

MACHINE LEARNING APLLIED TO QSAR. Over the years the study of the quantitative structure-activity relationship (QSAR) has transformed from a simple regression analysis to the implementation of machine learning (ML) with multiple statistics. Today ML-based QSAR models are quite important and play a n...

Full description

Saved in:
Bibliographic Details
Published inQuímica Nova Vol. 47; no. 7
Main Authors de Menezes, Renata, Scotti, Luciana, Scotti, Marcus
Format Journal Article
LanguageEnglish
Published Sociedade Brasileira de Química 2024
Online AccessGet full text
ISSN0100-4042
1678-7064
1678-7064
DOI10.21577/0100-4042.20240024

Cover

Abstract MACHINE LEARNING APLLIED TO QSAR. Over the years the study of the quantitative structure-activity relationship (QSAR) has transformed from a simple regression analysis to the implementation of machine learning (ML) with multiple statistics. Today ML-based QSAR models are quite important and play a notable role in drug design and screening, property prediction, biological activity, etc. ML methods applied to QSAR build classification or regression models to describe/predict the complex relationships between the chemical structure of molecules and biological activity. Even with the increase in scientific publications addressing this topic written in Portuguese, there is still a shortage of scientific articles explaining ML techniques applied to QSAR, how to build models, the types of models, algorithms, for the Brazilian scientific community. And to fill this need, we intend to approach the subject in a simple and didactic way for students and researchers who are starting in this very promising and important area. We will describe the fully explained theory of machine learning by applying QSAR, abstracting the complexity, and well-illustrated.
AbstractList MACHINE LEARNING APLLIED TO QSAR. Over the years the study of the quantitative structure-activity relationship (QSAR) has transformed from a simple regression analysis to the implementation of machine learning (ML) with multiple statistics. Today ML-based QSAR models are quite important and play a notable role in drug design and screening, property prediction, biological activity, etc. ML methods applied to QSAR build classification or regression models to describe/predict the complex relationships between the chemical structure of molecules and biological activity. Even with the increase in scientific publications addressing this topic written in Portuguese, there is still a shortage of scientific articles explaining ML techniques applied to QSAR, how to build models, the types of models, algorithms, for the Brazilian scientific community. And to fill this need, we intend to approach the subject in a simple and didactic way for students and researchers who are starting in this very promising and important area. We will describe the fully explained theory of machine learning by applying QSAR, abstracting the complexity, and well-illustrated.
Over the years the study of the quantitative structure-activity relationship (QSAR) has transformed from a simple regression analysis to the implementation of machine learning (ML) with multiple statistics. Today ML-based QSAR models are quite important and play a notable role in drug design and screening, property prediction, biological activity, etc. ML methods applied to QSAR build classification or regression models to describe/predict the complex relationships between the chemical structure of molecules and biological activity. Even with the increase in scientific publications addressing this topic written in Portuguese, there is still a shortage of scientific articles explaining ML techniques applied to QSAR, how to build models, the types of models, algorithms, for the Brazilian scientific community. And to fill this need, we intend to approach the subject in a simple and didactic way for students and researchers who are starting in this very promising and important area. We will describe the fully explained theory of machine learning by applying QSAR, abstracting the complexity, and well-illustrated.
Author Scotti, Marcus
Scotti, Luciana
de Menezes, Renata
Author_xml – sequence: 1
  givenname: Renata
  orcidid: 0000-0003-2718-4914
  surname: de Menezes
  fullname: de Menezes, Renata
– sequence: 2
  givenname: Luciana
  surname: Scotti
  fullname: Scotti, Luciana
– sequence: 3
  givenname: Marcus
  orcidid: 0000-0003-4863-8057
  surname: Scotti
  fullname: Scotti, Marcus
BookMark eNqNkL1OwzAUhS1UJNrCE7BkY0q5_klsj1FbIFLoH3RhsW5tB7UKTZWAUEeejRcjaaEzg3Wlo-98sk6PdLbl1hNyTWHAaCTlLVCAUIBgAwZMQPPOSJfGUoUSYtEh3RNwQXp1vWkIyWXUJTfJbDGejNKXZDQNRuPg8ftrvkwnSZDMsnTYhkkwf0oWl-Q8x6L2V7-3T5Z34-fhQ5hN7xsuCy3VQoQsBuCKSw3IVoCOOaq98LHybqW4dbH0TWQ5csbiSHgOWkQtr2KfNx_nfZIeva7EjdlV6zes9qbEtTkEZfVqsHpf28IbqRGZdaCtVQKVVlwj5E5LatGuHG9c4uj62O5w_4lFcRJSMIfhTLuLaXcxf8M1NX6s2aqs68rn_2r9AD0da3Q
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.21577/0100-4042.20240024
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1678-7064
ExternalDocumentID oai_doaj_org_article_79aa2cd09cc84a89839a0fd971cacbd3
10.21577/0100-4042.20240024
10_21577_0100_4042_20240024
GroupedDBID 123
29P
2WC
53G
AAFWJ
AAYXX
ACGFO
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
APOWU
AZFZN
BCNDV
C1A
CITATION
DU5
E3Z
F5P
GROUPED_DOAJ
HH5
IPNFZ
KQ8
OK1
OVT
P2P
RIG
RNS
XSB
ADTOC
UNPAY
5VS
ID FETCH-LOGICAL-c1944-2600383790a2b0ad2d19e4e68edb83cd67e2d1c3a322654e30945837986ef2403
IEDL.DBID DOA
ISSN 0100-4042
1678-7064
IngestDate Fri Oct 03 12:36:27 EDT 2025
Mon Sep 15 10:16:19 EDT 2025
Tue Jul 01 01:18:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1944-2600383790a2b0ad2d19e4e68edb83cd67e2d1c3a322654e30945837986ef2403
ORCID 0000-0003-2718-4914
0000-0003-4863-8057
OpenAccessLink https://doaj.org/article/79aa2cd09cc84a89839a0fd971cacbd3
ParticipantIDs doaj_primary_oai_doaj_org_article_79aa2cd09cc84a89839a0fd971cacbd3
unpaywall_primary_10_21577_0100_4042_20240024
crossref_primary_10_21577_0100_4042_20240024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240001
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240001
  day: 01
PublicationDecade 2020
PublicationTitle Química Nova
PublicationYear 2024
Publisher Sociedade Brasileira de Química
Publisher_xml – name: Sociedade Brasileira de Química
SSID ssj0027375
ssib000530858
ssib009051137
Score 2.3590276
Snippet MACHINE LEARNING APLLIED TO QSAR. Over the years the study of the quantitative structure-activity relationship (QSAR) has transformed from a simple regression...
Over the years the study of the quantitative structure-activity relationship (QSAR) has transformed from a simple regression analysis to the implementation of...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8RADA66HtSDb3F90YPgxUof02nnWHdXVHB9LqiXks5ML8oquovozd_mHzNpu6KCoLcSQttkZpov0-QbgK0oRozz0LrGSnSFRetiSEAuMVpqpU0QaN6HPO7Kg544uoquap5t7oX58v-eghEzI_meR0mO4KYprncMxDhMyIiAdwMmet3T9LosUqyVOL2iz68bU6StOIZ-u8u3OFTS9U_D5LD_gC_PeHf3Jcbsz1bN208lNSGXltzuDgf5rn79Qdz4x9efg5kaazppNTnmYcz2F2CyNTribRG2UxqAbvvwJm2fOO2Oc_z-dtY77KZOesodxiRMnbOL9HwJevudy9aBW5-c4GpfCeEy6zynnsrDIPfQBMZXVliZWJMnoTYytiTSIdJylpGwISV5Eesn0hbM0LcMjf59366Ao2ODhPmKGGUhElUkSvoysAXBROUFxjZhZ-TH7KEiyMgosSitz9j6jK3PRtY3YY99_anK7NalgLyW1YslixVioI2ntE4EJopAHHqFUbGvUecmbIL7OVJ_eejqP_XXYIovq52WdWgMHod2g7DHIN-s59wH4tzERg
  priority: 102
  providerName: Unpaywall
Title APRENDIZADO DE MÁQUINA APLICADO A QSAR
URI https://doi.org/10.21577/0100-4042.20240024
https://doaj.org/article/79aa2cd09cc84a89839a0fd971cacbd3
UnpaywallVersion publishedVersion
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1678-7064
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027375
  issn: 0100-4042
  databaseCode: HH5
  dateStart: 19780101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1678-7064
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027375
  issn: 0100-4042
  databaseCode: KQ8
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1678-7064
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027375
  issn: 0100-4042
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1678-7064
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027375
  issn: 0100-4042
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1PS8MwGMaDzIN6EEXF-Wf0IHixmKZpmhyj29iU1U0dTC_lbZKeRh2yIR79bH4xk3aOetKDlx5eQtM-aXmfNyS_IHQWxQBxFhpfGwY-NWB8CK2R41oxJZQmRLl5yEHCemN6M4kmtaO-3JqwCg9cCXcZCwCiNBZKcQpc2IQOONciDhSoTJecT8xFrZiqjEiI65QWR6EKwrjCDtks55BLAca2eqJuN5ZbSEnoj9RUEvy30MaimMH7G0yntbTT3UHbS7_oyeo5d9GaKfbQubTCJe3-s2zfee2ON_j8GI37ifTk0O0MtkHpjR7k_T4adzuP1z1_eeKBrwJBqe9o8a5kFBhIhkETHQhDDeNGZzxUmsXGhlQI9jdkETWhLc4i154zkzuy3gFqFC-FOUSeijVYr5bHwHLKRc4FCxgxubV3AhNtmuji-2XTWQW2SG1BUGqTOm1Sp036rU0TXTlBVk0dlboM2LFKl2OV_jZWTeSv5PxLp0f_0ekx2nT3q6ZNTlBj_rowp9ZIzLNW-c3Y6-2It9D6OBnKpy97fL6v
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8RADA66HtSDb3F90YPgxUof02nnWHdXVHB9LqiXks5ML8oquovozd_mHzNpu6KCoLcSQttkZpov0-QbgK0oRozz0LrGSnSFRetiSEAuMVpqpU0QaN6HPO7Kg544uoquap5t7oX58v-eghEzI_meR0mO4KYprncMxDhMyIiAdwMmet3T9LosUqyVOL2iz68bU6StOIZ-u8u3OFTS9U_D5LD_gC_PeHf3Jcbsz1bN208lNSGXltzuDgf5rn79Qdz4x9efg5kaazppNTnmYcz2F2CyNTribRG2UxqAbvvwJm2fOO2Oc_z-dtY77KZOesodxiRMnbOL9HwJevudy9aBW5-c4GpfCeEy6zynnsrDIPfQBMZXVliZWJMnoTYytiTSIdJylpGwISV5Eesn0hbM0LcMjf59366Ao2ODhPmKGGUhElUkSvoysAXBROUFxjZhZ-TH7KEiyMgosSitz9j6jK3PRtY3YY99_anK7NalgLyW1YslixVioI2ntE4EJopAHHqFUbGvUecmbIL7OVJ_eejqP_XXYIovq52WdWgMHod2g7DHIN-s59wH4tzERg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=APRENDIZADO+DE+M%C3%81QUINA+APLICADO+A+QSAR&rft.jtitle=Qu%C3%ADmica+Nova&rft.au=Renata+P.+B.+de+Menezes&rft.au=Luciana+Scotti&rft.au=Marcus+T.+Scotti&rft.date=2024-01-01&rft.pub=Sociedade+Brasileira+de+Qu%C3%ADmica&rft.eissn=1678-7064&rft.volume=47&rft.issue=7&rft_id=info:doi/10.21577%2F0100-4042.20240024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_79aa2cd09cc84a89839a0fd971cacbd3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0100-4042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0100-4042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0100-4042&client=summon