Monitoring and controlling real-time bus services: a reinforcement learning procedure for eliminating bus bunching

Bus bunching is one of the main issues encountered in bus service operations. The headway (i.e., time between two successive buses) of high-frequency services operating on congested routes can be subject to significant variability with two or more buses arriving at the same bus stop and at the same...

Full description

Saved in:
Bibliographic Details
Published inTransportation research procedia (Online) Vol. 62; pp. 302 - 309
Main Authors Comi, Antonio, Sassano, Mario, Valentini, Alessio
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2022
Subjects
Online AccessGet full text
ISSN2352-1465
2352-1457
2352-1465
DOI10.1016/j.trpro.2022.02.038

Cover

Abstract Bus bunching is one of the main issues encountered in bus service operations. The headway (i.e., time between two successive buses) of high-frequency services operating on congested routes can be subject to significant variability with two or more buses arriving at the same bus stop and at the same time (bus bunching). This affects the reliability of bus services and causes user frustration with the travel experience. Although public transport is encouraged as the most environment-friendly mass transit solution, bus bunching is undesirable given that it creates inefficiencies and can push passengers to use private transport. The advances in information communication technologies (ICTs) offer new opportunities for transit operators to limit this effect, ensuring a more reliable service. The paper, taking advantage of the innovations in ICTs, proposes a machine learning-based procedure addressing the issues causing bus bunching. The procedure is applied to a real test case with encouraging results. It opens the possibility that it may be incorporated in a decision support system to assist operators (drivers) in taking corrective actions throughout the day, improving bus service operations.
AbstractList Bus bunching is one of the main issues encountered in bus service operations. The headway (i.e., time between two successive buses) of high-frequency services operating on congested routes can be subject to significant variability with two or more buses arriving at the same bus stop and at the same time (bus bunching). This affects the reliability of bus services and causes user frustration with the travel experience. Although public transport is encouraged as the most environment-friendly mass transit solution, bus bunching is undesirable given that it creates inefficiencies and can push passengers to use private transport. The advances in information communication technologies (ICTs) offer new opportunities for transit operators to limit this effect, ensuring a more reliable service. The paper, taking advantage of the innovations in ICTs, proposes a machine learning-based procedure addressing the issues causing bus bunching. The procedure is applied to a real test case with encouraging results. It opens the possibility that it may be incorporated in a decision support system to assist operators (drivers) in taking corrective actions throughout the day, improving bus service operations.
Author Sassano, Mario
Valentini, Alessio
Comi, Antonio
Author_xml – sequence: 1
  givenname: Antonio
  surname: Comi
  fullname: Comi, Antonio
  organization: Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy
– sequence: 2
  givenname: Mario
  surname: Sassano
  fullname: Sassano, Mario
  organization: Dipartimento di Ingegneria Civile ed Ingegneria Informatica, University of Rome Tor Vergata, Rome, Italy
– sequence: 3
  givenname: Alessio
  surname: Valentini
  fullname: Valentini, Alessio
  email: alessio0valentini@gmail.com
  organization: Dipartimento di Ingegneria Civile ed Ingegneria Informatica, University of Rome Tor Vergata, Rome, Italy
BookMark eNqNkMtKAzEUhoNUsNY-gZt5gRlzmavgQoo3qLjRdchkTjQlk5RkptK3N2NdiAsVTkgOP9_h5DtFM-ssIHROcEYwKS822eC33mUUU5rhWKw-QnPKCpqSvCxm394naBnCBmNMm4IwRubIPzqrB-e1fU2E7RLp7OCdMVPvQZh00D0k7RiSAH6nJYTLRMREW-W8hB7skBgQ3k5A3EJCN3pIYpiA0b22YpiSaUA7WvkWmzN0rIQJsPy6F-jl9uZ5dZ-un-4eVtfrVJKG1WmN21o1OG9p1Yq8a0sqqWKYFLkiUOK6AtViWhWNAEKrshNtWcQDGFSeqwqzBcoPc0e7Fft3YQzfet0Lv-cE80kd3_BPdXxSx3EsVkeMHTDpXQge1D-p5gcl9RD_PukU2vzBXh1YiDZ2GjwPUoONKrUHOfDO6V_5D2UQobs
CitedBy_id crossref_primary_10_3390_info13070351
crossref_primary_10_1016_j_retrec_2023_101374
crossref_primary_10_1007_s42524_024_0297_1
crossref_primary_10_1051_matecconf_202439001008
crossref_primary_10_1016_j_tranpol_2023_12_019
crossref_primary_10_1186_s12544_024_00661_1
crossref_primary_10_3390_su151410947
crossref_primary_10_3390_info14100581
Cites_doi 10.1109/ITSC.2016.7795538
10.1016/j.treng.2020.100025
10.1016/j.trpro.2020.02.109
10.3141/2647-04
10.1016/j.tranpol.2014.09.002
10.1016/j.ijtm.2005.02.001
10.1016/j.trb.2015.03.002
10.1016/j.trpro.2017.12.072
10.1016/j.trc.2017.11.023
10.1016/j.trc.2021.103087
10.3141/2216-06
10.3390/forecast2030017
10.1287/trsc.35.1.1.10143
10.1016/j.trc.2020.102661
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.trpro.2022.02.038
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 2352-1465
EndPage 309
ExternalDocumentID 10.1016/j.trpro.2022.02.038
10_1016_j_trpro_2022_02_038
S235214652200165X
GroupedDBID 0R~
0SF
4.4
457
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
IXB
KQ8
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c1938-80b8f904b27ba4db62c2f30154f1e6087efb02759ae1276dab65ab6e0ef44f703
IEDL.DBID UNPAY
ISSN 2352-1465
2352-1457
IngestDate Tue Aug 19 18:35:43 EDT 2025
Thu Apr 24 23:10:11 EDT 2025
Wed Oct 01 02:03:58 EDT 2025
Fri Feb 23 02:35:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords bus services operations
transit services
bus bunching
operations control
automated vehicle monitoring
intelligent transport system
machine learning
service reliability
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1938-80b8f904b27ba4db62c2f30154f1e6087efb02759ae1276dab65ab6e0ef44f703
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.trpro.2022.02.038
PageCount 8
ParticipantIDs unpaywall_primary_10_1016_j_trpro_2022_02_038
crossref_primary_10_1016_j_trpro_2022_02_038
crossref_citationtrail_10_1016_j_trpro_2022_02_038
elsevier_sciencedirect_doi_10_1016_j_trpro_2022_02_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022
2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle Transportation research procedia (Online)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fricker, J., 2011. Bus Dwell Time Analysis Using On-board Video.
Comi, Polimeni (bib0006) 2020; 2
Ibarra-Rojas, Delgado, Giesen, Muñoz (bib0009) 2015; 77
Rahman, M.M.; Wirasinghe, S.C.; Kattan, L., 2018. Analysis of bus travel time distributions for varying horizons and real-time applications. Transp. Res. Part C 2018, 86, pp. 453–466.
Cats, O. and Larijani, A.N. and Koutsopoulos, H.N. and Burghout, W., 2011. Impacts of holding control strategies on transit performance: Bus simulation model analysis. SAGE Publications Sage CA: Los Angeles, CA.
Zolfaghari, Azizi, Jaber (bib00020) 2004; 2
Nesheli, Ceder (bib00012) 2017; 2647
Chen, W., Zhou, K. and Chen, C., 2016. Real-time bus holding control on a transit corridor based on multi-agent reinforcement learning. IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2016, pp. 100-106.
Moreira-Matias, Cats, Gama, Mendes-Moreira, De Sousa (bib00011) 2016; 47
Nuzzolo, Comi (bib00014) 2016; 12
Sutton, R. S and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.
Nuzzolo, Comi (bib00015) 2018; 2018
Comi, A., Zhuk, M. and Kovalyshyn, V. and Hilevych, V., 2020. Investigating bus travel time and predictive models: a time series-based approach. Transportation Research Procedia, Volume 45.
Eberlein, X. Ju. and Wilson, N.H.M. and Bernstein, D., 2001. The holding problem with real--time information available. Transportation science.
Newell, G.F. and Potts, R.B. 1969. Maintaining a bus schedule. Australian Road Research Board (ARRB) Conference, 2nd, 1964, Melbourne.
Taghipour, H.; Parsa, A.B.; Mohammadian, A., 2020. A dynamic approach to predict travel time in real time using data driven techniques and comprehensive data sources. Transp. Eng. 2020, 22, 100025.
Comi, A., Nuzzolo, A., Brinchi, S. and Verghini, R., 2017. Bus travel time variability: some experimental evidences. Transportation Research Procedia, Volume 27, Elsevier.
Cats (bib0002) 2014; 36
Laskaris, G., Cats, O., Jenelius, E., Rinaldi, M. and Viti, F., 2021. A holding control strategy for diverging bus lines. Transportation Research Part C: Emerging Technologies, Volume 126.
Wang, J. and Sun, L., 2020. Dynamic holding control to avoid bus bunching: A multi-agent deep reinforcement learning framework. Transportation Research Part C: Emerging Technologies 116.
10.1016/j.trpro.2022.02.038_bib00019
10.1016/j.trpro.2022.02.038_bib00017
10.1016/j.trpro.2022.02.038_bib00018
Ibarra-Rojas (10.1016/j.trpro.2022.02.038_bib0009) 2015; 77
Nuzzolo (10.1016/j.trpro.2022.02.038_bib00014) 2016; 12
Nuzzolo (10.1016/j.trpro.2022.02.038_bib00015) 2018; 2018
Comi (10.1016/j.trpro.2022.02.038_bib0006) 2020; 2
Moreira-Matias (10.1016/j.trpro.2022.02.038_bib00011) 2016; 47
Zolfaghari (10.1016/j.trpro.2022.02.038_bib00020) 2004; 2
10.1016/j.trpro.2022.02.038_bib0001
10.1016/j.trpro.2022.02.038_bib0003
Cats (10.1016/j.trpro.2022.02.038_bib0002) 2014; 36
10.1016/j.trpro.2022.02.038_bib0004
10.1016/j.trpro.2022.02.038_bib0005
10.1016/j.trpro.2022.02.038_bib00010
10.1016/j.trpro.2022.02.038_bib0007
10.1016/j.trpro.2022.02.038_bib00016
10.1016/j.trpro.2022.02.038_bib0008
Nesheli (10.1016/j.trpro.2022.02.038_bib00012) 2017; 2647
10.1016/j.trpro.2022.02.038_bib00013
References_xml – volume: 12
  year: 2016
  ident: bib00014
  article-title: Advanced public transport and intelligent transport systems: new modelling challenges
  publication-title: Transportmetrica A: Transport Science
– volume: 2
  year: 2004
  ident: bib00020
  article-title: A model for holding strategy in public transit systems with real-time information
  publication-title: International Journal of Transport Management
– reference: Comi, A., Zhuk, M. and Kovalyshyn, V. and Hilevych, V., 2020. Investigating bus travel time and predictive models: a time series-based approach. Transportation Research Procedia, Volume 45.
– reference: Eberlein, X. Ju. and Wilson, N.H.M. and Bernstein, D., 2001. The holding problem with real--time information available. Transportation science.
– reference: Rahman, M.M.; Wirasinghe, S.C.; Kattan, L., 2018. Analysis of bus travel time distributions for varying horizons and real-time applications. Transp. Res. Part C 2018, 86, pp. 453–466.
– volume: 2
  start-page: 309
  year: 2020
  end-page: 322
  ident: bib0006
  article-title: Bus Travel Time: Experimental Evidence and Forecasting
  publication-title: Forecasting
– reference: Laskaris, G., Cats, O., Jenelius, E., Rinaldi, M. and Viti, F., 2021. A holding control strategy for diverging bus lines. Transportation Research Part C: Emerging Technologies, Volume 126.
– volume: 47
  year: 2016
  ident: bib00011
  article-title: An online learning approach to eliminate Bus Bunching in real-time
  publication-title: Applied Soft Computing
– reference: Fricker, J., 2011. Bus Dwell Time Analysis Using On-board Video.
– volume: 2018
  year: 2018
  ident: bib00015
  article-title: A Subjective Optimal Strategy for Transit Simulation Models
  publication-title: Journal of Advanced Transportation, Volume
– reference: Cats, O. and Larijani, A.N. and Koutsopoulos, H.N. and Burghout, W., 2011. Impacts of holding control strategies on transit performance: Bus simulation model analysis. SAGE Publications Sage CA: Los Angeles, CA.
– reference: Sutton, R. S and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.
– volume: 77
  start-page: 38
  year: 2015
  end-page: 75
  ident: bib0009
  article-title: Planning, operation, and control of bus transport systems: A literature review
  publication-title: Transportation Research Part B: Methodological, Volume
– reference: Wang, J. and Sun, L., 2020. Dynamic holding control to avoid bus bunching: A multi-agent deep reinforcement learning framework. Transportation Research Part C: Emerging Technologies 116.
– volume: 2647
  start-page: 26
  year: 2017
  end-page: 32
  ident: bib00012
  article-title: Real-Time Public Transport Operations: Library of Control Strategies
  publication-title: Transportation Research Record
– reference: Comi, A., Nuzzolo, A., Brinchi, S. and Verghini, R., 2017. Bus travel time variability: some experimental evidences. Transportation Research Procedia, Volume 27, Elsevier.
– reference: Newell, G.F. and Potts, R.B. 1969. Maintaining a bus schedule. Australian Road Research Board (ARRB) Conference, 2nd, 1964, Melbourne.
– volume: 36
  start-page: 223
  year: 2014
  end-page: 230
  ident: bib0002
  article-title: Regularity-driven bus operation: Principles, implementation and business models
  publication-title: Transport Policy
– reference: Chen, W., Zhou, K. and Chen, C., 2016. Real-time bus holding control on a transit corridor based on multi-agent reinforcement learning. IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2016, pp. 100-106.
– reference: Taghipour, H.; Parsa, A.B.; Mohammadian, A., 2020. A dynamic approach to predict travel time in real time using data driven techniques and comprehensive data sources. Transp. Eng. 2020, 22, 100025.
– volume: 2018
  year: 2018
  ident: 10.1016/j.trpro.2022.02.038_bib00015
  article-title: A Subjective Optimal Strategy for Transit Simulation Models
  publication-title: Journal of Advanced Transportation, Volume
– ident: 10.1016/j.trpro.2022.02.038_bib0003
  doi: 10.1109/ITSC.2016.7795538
– ident: 10.1016/j.trpro.2022.02.038_bib00017
– ident: 10.1016/j.trpro.2022.02.038_bib00018
  doi: 10.1016/j.treng.2020.100025
– ident: 10.1016/j.trpro.2022.02.038_bib0005
  doi: 10.1016/j.trpro.2020.02.109
– volume: 2647
  start-page: 26
  issue: 1
  year: 2017
  ident: 10.1016/j.trpro.2022.02.038_bib00012
  article-title: Real-Time Public Transport Operations: Library of Control Strategies
  publication-title: Transportation Research Record
  doi: 10.3141/2647-04
– volume: 36
  start-page: 223
  year: 2014
  ident: 10.1016/j.trpro.2022.02.038_bib0002
  article-title: Regularity-driven bus operation: Principles, implementation and business models
  publication-title: Transport Policy
  doi: 10.1016/j.tranpol.2014.09.002
– ident: 10.1016/j.trpro.2022.02.038_bib0007
– volume: 2
  issue: 2
  year: 2004
  ident: 10.1016/j.trpro.2022.02.038_bib00020
  article-title: A model for holding strategy in public transit systems with real-time information
  publication-title: International Journal of Transport Management
  doi: 10.1016/j.ijtm.2005.02.001
– volume: 47
  issue: 1
  year: 2016
  ident: 10.1016/j.trpro.2022.02.038_bib00011
  article-title: An online learning approach to eliminate Bus Bunching in real-time
  publication-title: Applied Soft Computing
– volume: 77
  start-page: 38
  year: 2015
  ident: 10.1016/j.trpro.2022.02.038_bib0009
  article-title: Planning, operation, and control of bus transport systems: A literature review
  publication-title: Transportation Research Part B: Methodological, Volume
  doi: 10.1016/j.trb.2015.03.002
– ident: 10.1016/j.trpro.2022.02.038_bib0004
  doi: 10.1016/j.trpro.2017.12.072
– volume: 12
  issue: 8
  year: 2016
  ident: 10.1016/j.trpro.2022.02.038_bib00014
  article-title: Advanced public transport and intelligent transport systems: new modelling challenges
  publication-title: Transportmetrica A: Transport Science
– ident: 10.1016/j.trpro.2022.02.038_bib00016
  doi: 10.1016/j.trc.2017.11.023
– ident: 10.1016/j.trpro.2022.02.038_bib00013
– ident: 10.1016/j.trpro.2022.02.038_bib00010
  doi: 10.1016/j.trc.2021.103087
– ident: 10.1016/j.trpro.2022.02.038_bib0001
  doi: 10.3141/2216-06
– volume: 2
  start-page: 309
  issue: 3
  year: 2020
  ident: 10.1016/j.trpro.2022.02.038_bib0006
  article-title: Bus Travel Time: Experimental Evidence and Forecasting
  publication-title: Forecasting
  doi: 10.3390/forecast2030017
– ident: 10.1016/j.trpro.2022.02.038_bib0008
  doi: 10.1287/trsc.35.1.1.10143
– ident: 10.1016/j.trpro.2022.02.038_bib00019
  doi: 10.1016/j.trc.2020.102661
SSID ssj0002951331
Score 2.1704283
Snippet Bus bunching is one of the main issues encountered in bus service operations. The headway (i.e., time between two successive buses) of high-frequency services...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 302
SubjectTerms automated vehicle monitoring
bus bunching
bus services operations
intelligent transport system
machine learning
operations control
service reliability
transit services
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jL_NF_MT5RR58NKzL0o_4pkOZgr7ooG8laROZlDq2FfG_9y5Nh4IMEdqHNk1TLundr9e7-xFyYa1WSSgl41bGTFihmAqCnFlrIouIWLmiPo9P0WQqHtIw7ZBxmwuDYZVe9zc63Wlrf2bgpTmYz2aDZw7YAd5zABCIW8IU9PBIJEjfcJ_erP0sXCKDydBxzIWcYYe2-JAL81otQFPBdyLnrnYn5qn8bqB6dTVXnx-qLL8ZoLsdsu2RI71uHm6XdEy1R3ptYvFynyya9xMddVRVBfVR6JhvTgEalgx55Kmul3TpFcQVVdDiaqfmzk1IPYnEK3WGragXhkIjNaUj_8IQaXcDDdYQXVcHZHp3-zKeME-pwHJAagnYI51YGQjNY61EoSOecztCHGWHJgqS2FiNPzKlMkMeR4XSUQi7CYwVwoJ2OCTd6r0yR4RqBVhliHF-AYhdGlkoI_NIxICRrAmLPuGtHLPc1xtH2osyawPL3jIn_AyFnwWwjZI-uVx3mjflNjZfHrUTlP1YNRkYhM0d2Xo6_zLQ8X8HOiFbeNQ4bU5Jd7WozRnAmJU-d-v0C2xt8xo
  priority: 102
  providerName: Elsevier
Title Monitoring and controlling real-time bus services: a reinforcement learning procedure for eliminating bus bunching
URI https://dx.doi.org/10.1016/j.trpro.2022.02.038
https://doi.org/10.1016/j.trpro.2022.02.038
UnpaywallVersion publishedVersion
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2352-1465
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002951331
  issn: 2352-1465
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Journal
  customDbUrl:
  eissn: 2352-1465
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002951331
  issn: 2352-1465
  databaseCode: IXB
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2352-1465
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002951331
  issn: 2352-1465
  databaseCode: AKRWK
  dateStart: 20140101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uO-zktzjRkYNHM9osTVtvUxzqcIg4nKeStImgpY6uRfSvN0nToaJjQguFfJQmr-_9krz3ewAcS8lZ4IUhwjL0EZGEIeY4MZJSUKkRMTOkPjdjejkh11Nvanm2dSzMt_N744dV5EqVqIUcxoZcsx80QIt6Cng3QWsyvh08mvRxHkYuMbye9pl6NcfQ7738ZYfaZTZj728sTb_YmeFGFcA9N_SE2r3kpVcWvBd__CBvXPETNsG6xZtwUAnIFlgT2TZo1-HI8x2QV3-13t6DLEug9V3XUepQAcoU6ezzkJdzOLdq5RQyVWIYV2OzuQht6oknaMxhUuYCqkIoUpMyTDtWmw64sqF6w2sXTIYX9-eXyCZiQLHCd4GyYjyQoUM49jkjCac4xrKv0Zd0BXUCX0iujz9DJlzs04Rx6qlbOEISIpVO2QPN7DUT-wByphCOq70DnT4JQhEmTIQxJb5CVlJ4SQfgelqi2LKU62QZaVS7oz1HZjgjPZyRo65-0AEni0aziqRjeXVaz3dkcUaFHyI1dcsbooV0rPKig3_WPwTNIi_FkYI5Be-C1mB09zDqgsbV9Kxrhf0TAKL-9A
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4GHMYF8RRvcuBItC5LH-EGCDRgcGGTdquSNkFDVZn2EOLfY6fpBBKaEFJ7aZqmchL7q2v7I-TcWq2SUErGrYyZsEIxFQQZs9ZEFhGxckV9np6j7kA8DMNhg9zUuTAYVul1f6XTnbb2V1pemq3xaNR64YAdYJ8DgEDcEg5XyJoIAZ1gFt_weuFo4RIpTNqOZC7kDHvU1YdcnNdsAqoKPhQ5d8U7MVHldwvVnJdj9fmhiuKbBbrbJBseOtKr6u22SMOU26RZZxZPd8ik2qDoqaOqzKkPQ8eEcwrYsGBIJE_1fEqnXkNcUgUtrnhq5vyE1LNIvFJn2fL5xFBopKZw7F8YI-0eoMEcou9qlwzubvs3XeY5FVgGUC0Bg6QTKwOheayVyHXEM247CKRs20RBEhur8U-mVKbN4yhXOgrhNIGxQlhQD3tktXwvzT6hWgFYaWOgX9ARiTQyV0ZmkYgBJFkT5geE13JMM19wHHkvirSOLHtLnfBTFH4awNFJDsjFotO4qrex_PaonqD0x7JJwSIs78gW0_mXgQ7_O9AZaXb7T720d__8eETWsaXy4ByT1dlkbk4A08z0qVuzX7ub9kA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HXbyW5yo5ODRjDZN08bbEGUIDg8O5qkkbSJoqaMfiP71Jmk6VHRMaKGQj9Lk9b1fkvd-D4BzpQSPQ8YQVixCRBGOuOelSClJlUHE3JL63E3pZEZu5-Hc8WybWJhv5_fWD6sutSrRCzmMLblmEG-CPg018O6B_mx6P3606eNCjHxieT3dMw07jqHfe_nLDg2aYsHf33ief7EzN9ttAHdl6QmNe8nLqKnFKP34Qd645ifsgC2HN-G4FZBdsCGLPTDowpGrfVC2f7XZ3oO8yKDzXTdR6lADyhyZ7PNQNBWsnFq5hFyXWMbV1G4uQpd64glac5g1pYS6EMrcpgwzjtW2A6FtqNnwOgCzm-uHqwlyiRhQqvFdrK2YiBXziMCR4CQTFKdYBQZ9KV9SL46kEub4k3Hp44hmXNBQ39KTihCldcoh6BWvhTwCUHCNcHzjHegFJGaSZVyylJJIIyslw2wIcDctSepYyk2yjDzp3NGeEzuciRnOxNNXEA_BxbLRoiXpWF2ddvOdOJzR4odET93qhmgpHeu86Pif9U9Ary4beaphTi3OnHh_AiQ1_E0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+and+controlling+real-time+bus+services%3A+a+reinforcement+learning+procedure+for+eliminating+bus+bunching&rft.jtitle=Transportation+research+procedia+%28Online%29&rft.au=Comi%2C+Antonio&rft.au=Sassano%2C+Mario&rft.au=Valentini%2C+Alessio&rft.date=2022&rft.issn=2352-1465&rft.eissn=2352-1465&rft.volume=62&rft.spage=302&rft.epage=309&rft_id=info:doi/10.1016%2Fj.trpro.2022.02.038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trpro_2022_02_038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-1465&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-1465&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-1465&client=summon