Monitoring and controlling real-time bus services: a reinforcement learning procedure for eliminating bus bunching
Bus bunching is one of the main issues encountered in bus service operations. The headway (i.e., time between two successive buses) of high-frequency services operating on congested routes can be subject to significant variability with two or more buses arriving at the same bus stop and at the same...
        Saved in:
      
    
          | Published in | Transportation research procedia (Online) Vol. 62; pp. 302 - 309 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2352-1465 2352-1457 2352-1465  | 
| DOI | 10.1016/j.trpro.2022.02.038 | 
Cover
| Abstract | Bus bunching is one of the main issues encountered in bus service operations. The headway (i.e., time between two successive buses) of high-frequency services operating on congested routes can be subject to significant variability with two or more buses arriving at the same bus stop and at the same time (bus bunching). This affects the reliability of bus services and causes user frustration with the travel experience. Although public transport is encouraged as the most environment-friendly mass transit solution, bus bunching is undesirable given that it creates inefficiencies and can push passengers to use private transport.
The advances in information communication technologies (ICTs) offer new opportunities for transit operators to limit this effect, ensuring a more reliable service. The paper, taking advantage of the innovations in ICTs, proposes a machine learning-based procedure addressing the issues causing bus bunching. The procedure is applied to a real test case with encouraging results. It opens the possibility that it may be incorporated in a decision support system to assist operators (drivers) in taking corrective actions throughout the day, improving bus service operations. | 
    
|---|---|
| AbstractList | Bus bunching is one of the main issues encountered in bus service operations. The headway (i.e., time between two successive buses) of high-frequency services operating on congested routes can be subject to significant variability with two or more buses arriving at the same bus stop and at the same time (bus bunching). This affects the reliability of bus services and causes user frustration with the travel experience. Although public transport is encouraged as the most environment-friendly mass transit solution, bus bunching is undesirable given that it creates inefficiencies and can push passengers to use private transport.
The advances in information communication technologies (ICTs) offer new opportunities for transit operators to limit this effect, ensuring a more reliable service. The paper, taking advantage of the innovations in ICTs, proposes a machine learning-based procedure addressing the issues causing bus bunching. The procedure is applied to a real test case with encouraging results. It opens the possibility that it may be incorporated in a decision support system to assist operators (drivers) in taking corrective actions throughout the day, improving bus service operations. | 
    
| Author | Sassano, Mario Valentini, Alessio Comi, Antonio  | 
    
| Author_xml | – sequence: 1 givenname: Antonio surname: Comi fullname: Comi, Antonio organization: Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy – sequence: 2 givenname: Mario surname: Sassano fullname: Sassano, Mario organization: Dipartimento di Ingegneria Civile ed Ingegneria Informatica, University of Rome Tor Vergata, Rome, Italy – sequence: 3 givenname: Alessio surname: Valentini fullname: Valentini, Alessio email: alessio0valentini@gmail.com organization: Dipartimento di Ingegneria Civile ed Ingegneria Informatica, University of Rome Tor Vergata, Rome, Italy  | 
    
| BookMark | eNqNkMtKAzEUhoNUsNY-gZt5gRlzmavgQoo3qLjRdchkTjQlk5RkptK3N2NdiAsVTkgOP9_h5DtFM-ssIHROcEYwKS822eC33mUUU5rhWKw-QnPKCpqSvCxm394naBnCBmNMm4IwRubIPzqrB-e1fU2E7RLp7OCdMVPvQZh00D0k7RiSAH6nJYTLRMREW-W8hB7skBgQ3k5A3EJCN3pIYpiA0b22YpiSaUA7WvkWmzN0rIQJsPy6F-jl9uZ5dZ-un-4eVtfrVJKG1WmN21o1OG9p1Yq8a0sqqWKYFLkiUOK6AtViWhWNAEKrshNtWcQDGFSeqwqzBcoPc0e7Fft3YQzfet0Lv-cE80kd3_BPdXxSx3EsVkeMHTDpXQge1D-p5gcl9RD_PukU2vzBXh1YiDZ2GjwPUoONKrUHOfDO6V_5D2UQobs | 
    
| CitedBy_id | crossref_primary_10_3390_info13070351 crossref_primary_10_1016_j_retrec_2023_101374 crossref_primary_10_1007_s42524_024_0297_1 crossref_primary_10_1051_matecconf_202439001008 crossref_primary_10_1016_j_tranpol_2023_12_019 crossref_primary_10_1186_s12544_024_00661_1 crossref_primary_10_3390_su151410947 crossref_primary_10_3390_info14100581  | 
    
| Cites_doi | 10.1109/ITSC.2016.7795538 10.1016/j.treng.2020.100025 10.1016/j.trpro.2020.02.109 10.3141/2647-04 10.1016/j.tranpol.2014.09.002 10.1016/j.ijtm.2005.02.001 10.1016/j.trb.2015.03.002 10.1016/j.trpro.2017.12.072 10.1016/j.trc.2017.11.023 10.1016/j.trc.2021.103087 10.3141/2216-06 10.3390/forecast2030017 10.1287/trsc.35.1.1.10143 10.1016/j.trc.2020.102661  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 | 
    
| Copyright_xml | – notice: 2022 | 
    
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1016/j.trpro.2022.02.038 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Economics | 
    
| EISSN | 2352-1465 | 
    
| EndPage | 309 | 
    
| ExternalDocumentID | 10.1016/j.trpro.2022.02.038 10_1016_j_trpro_2022_02_038 S235214652200165X  | 
    
| GroupedDBID | 0R~ 0SF 4.4 457 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB IXB KQ8 M41 NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c1938-80b8f904b27ba4db62c2f30154f1e6087efb02759ae1276dab65ab6e0ef44f703 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2352-1465 2352-1457  | 
    
| IngestDate | Tue Aug 19 18:35:43 EDT 2025 Thu Apr 24 23:10:11 EDT 2025 Wed Oct 01 02:03:58 EDT 2025 Fri Feb 23 02:35:58 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Keywords | bus services operations transit services bus bunching operations control automated vehicle monitoring intelligent transport system machine learning service reliability  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c1938-80b8f904b27ba4db62c2f30154f1e6087efb02759ae1276dab65ab6e0ef44f703 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.trpro.2022.02.038 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_trpro_2022_02_038 crossref_primary_10_1016_j_trpro_2022_02_038 crossref_citationtrail_10_1016_j_trpro_2022_02_038 elsevier_sciencedirect_doi_10_1016_j_trpro_2022_02_038  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022 2022-00-00  | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – year: 2022 text: 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Transportation research procedia (Online) | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Fricker, J., 2011. Bus Dwell Time Analysis Using On-board Video. Comi, Polimeni (bib0006) 2020; 2 Ibarra-Rojas, Delgado, Giesen, Muñoz (bib0009) 2015; 77 Rahman, M.M.; Wirasinghe, S.C.; Kattan, L., 2018. Analysis of bus travel time distributions for varying horizons and real-time applications. Transp. Res. Part C 2018, 86, pp. 453–466. Cats, O. and Larijani, A.N. and Koutsopoulos, H.N. and Burghout, W., 2011. Impacts of holding control strategies on transit performance: Bus simulation model analysis. SAGE Publications Sage CA: Los Angeles, CA. Zolfaghari, Azizi, Jaber (bib00020) 2004; 2 Nesheli, Ceder (bib00012) 2017; 2647 Chen, W., Zhou, K. and Chen, C., 2016. Real-time bus holding control on a transit corridor based on multi-agent reinforcement learning. IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2016, pp. 100-106. Moreira-Matias, Cats, Gama, Mendes-Moreira, De Sousa (bib00011) 2016; 47 Nuzzolo, Comi (bib00014) 2016; 12 Sutton, R. S and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press. Nuzzolo, Comi (bib00015) 2018; 2018 Comi, A., Zhuk, M. and Kovalyshyn, V. and Hilevych, V., 2020. Investigating bus travel time and predictive models: a time series-based approach. Transportation Research Procedia, Volume 45. Eberlein, X. Ju. and Wilson, N.H.M. and Bernstein, D., 2001. The holding problem with real--time information available. Transportation science. Newell, G.F. and Potts, R.B. 1969. Maintaining a bus schedule. Australian Road Research Board (ARRB) Conference, 2nd, 1964, Melbourne. Taghipour, H.; Parsa, A.B.; Mohammadian, A., 2020. A dynamic approach to predict travel time in real time using data driven techniques and comprehensive data sources. Transp. Eng. 2020, 22, 100025. Comi, A., Nuzzolo, A., Brinchi, S. and Verghini, R., 2017. Bus travel time variability: some experimental evidences. Transportation Research Procedia, Volume 27, Elsevier. Cats (bib0002) 2014; 36 Laskaris, G., Cats, O., Jenelius, E., Rinaldi, M. and Viti, F., 2021. A holding control strategy for diverging bus lines. Transportation Research Part C: Emerging Technologies, Volume 126. Wang, J. and Sun, L., 2020. Dynamic holding control to avoid bus bunching: A multi-agent deep reinforcement learning framework. Transportation Research Part C: Emerging Technologies 116. 10.1016/j.trpro.2022.02.038_bib00019 10.1016/j.trpro.2022.02.038_bib00017 10.1016/j.trpro.2022.02.038_bib00018 Ibarra-Rojas (10.1016/j.trpro.2022.02.038_bib0009) 2015; 77 Nuzzolo (10.1016/j.trpro.2022.02.038_bib00014) 2016; 12 Nuzzolo (10.1016/j.trpro.2022.02.038_bib00015) 2018; 2018 Comi (10.1016/j.trpro.2022.02.038_bib0006) 2020; 2 Moreira-Matias (10.1016/j.trpro.2022.02.038_bib00011) 2016; 47 Zolfaghari (10.1016/j.trpro.2022.02.038_bib00020) 2004; 2 10.1016/j.trpro.2022.02.038_bib0001 10.1016/j.trpro.2022.02.038_bib0003 Cats (10.1016/j.trpro.2022.02.038_bib0002) 2014; 36 10.1016/j.trpro.2022.02.038_bib0004 10.1016/j.trpro.2022.02.038_bib0005 10.1016/j.trpro.2022.02.038_bib00010 10.1016/j.trpro.2022.02.038_bib0007 10.1016/j.trpro.2022.02.038_bib00016 10.1016/j.trpro.2022.02.038_bib0008 Nesheli (10.1016/j.trpro.2022.02.038_bib00012) 2017; 2647 10.1016/j.trpro.2022.02.038_bib00013  | 
    
| References_xml | – volume: 12 year: 2016 ident: bib00014 article-title: Advanced public transport and intelligent transport systems: new modelling challenges publication-title: Transportmetrica A: Transport Science – volume: 2 year: 2004 ident: bib00020 article-title: A model for holding strategy in public transit systems with real-time information publication-title: International Journal of Transport Management – reference: Comi, A., Zhuk, M. and Kovalyshyn, V. and Hilevych, V., 2020. Investigating bus travel time and predictive models: a time series-based approach. Transportation Research Procedia, Volume 45. – reference: Eberlein, X. Ju. and Wilson, N.H.M. and Bernstein, D., 2001. The holding problem with real--time information available. Transportation science. – reference: Rahman, M.M.; Wirasinghe, S.C.; Kattan, L., 2018. Analysis of bus travel time distributions for varying horizons and real-time applications. Transp. Res. Part C 2018, 86, pp. 453–466. – volume: 2 start-page: 309 year: 2020 end-page: 322 ident: bib0006 article-title: Bus Travel Time: Experimental Evidence and Forecasting publication-title: Forecasting – reference: Laskaris, G., Cats, O., Jenelius, E., Rinaldi, M. and Viti, F., 2021. A holding control strategy for diverging bus lines. Transportation Research Part C: Emerging Technologies, Volume 126. – volume: 47 year: 2016 ident: bib00011 article-title: An online learning approach to eliminate Bus Bunching in real-time publication-title: Applied Soft Computing – reference: Fricker, J., 2011. Bus Dwell Time Analysis Using On-board Video. – volume: 2018 year: 2018 ident: bib00015 article-title: A Subjective Optimal Strategy for Transit Simulation Models publication-title: Journal of Advanced Transportation, Volume – reference: Cats, O. and Larijani, A.N. and Koutsopoulos, H.N. and Burghout, W., 2011. Impacts of holding control strategies on transit performance: Bus simulation model analysis. SAGE Publications Sage CA: Los Angeles, CA. – reference: Sutton, R. S and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press. – volume: 77 start-page: 38 year: 2015 end-page: 75 ident: bib0009 article-title: Planning, operation, and control of bus transport systems: A literature review publication-title: Transportation Research Part B: Methodological, Volume – reference: Wang, J. and Sun, L., 2020. Dynamic holding control to avoid bus bunching: A multi-agent deep reinforcement learning framework. Transportation Research Part C: Emerging Technologies 116. – volume: 2647 start-page: 26 year: 2017 end-page: 32 ident: bib00012 article-title: Real-Time Public Transport Operations: Library of Control Strategies publication-title: Transportation Research Record – reference: Comi, A., Nuzzolo, A., Brinchi, S. and Verghini, R., 2017. Bus travel time variability: some experimental evidences. Transportation Research Procedia, Volume 27, Elsevier. – reference: Newell, G.F. and Potts, R.B. 1969. Maintaining a bus schedule. Australian Road Research Board (ARRB) Conference, 2nd, 1964, Melbourne. – volume: 36 start-page: 223 year: 2014 end-page: 230 ident: bib0002 article-title: Regularity-driven bus operation: Principles, implementation and business models publication-title: Transport Policy – reference: Chen, W., Zhou, K. and Chen, C., 2016. Real-time bus holding control on a transit corridor based on multi-agent reinforcement learning. IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2016, pp. 100-106. – reference: Taghipour, H.; Parsa, A.B.; Mohammadian, A., 2020. A dynamic approach to predict travel time in real time using data driven techniques and comprehensive data sources. Transp. Eng. 2020, 22, 100025. – volume: 2018 year: 2018 ident: 10.1016/j.trpro.2022.02.038_bib00015 article-title: A Subjective Optimal Strategy for Transit Simulation Models publication-title: Journal of Advanced Transportation, Volume – ident: 10.1016/j.trpro.2022.02.038_bib0003 doi: 10.1109/ITSC.2016.7795538 – ident: 10.1016/j.trpro.2022.02.038_bib00017 – ident: 10.1016/j.trpro.2022.02.038_bib00018 doi: 10.1016/j.treng.2020.100025 – ident: 10.1016/j.trpro.2022.02.038_bib0005 doi: 10.1016/j.trpro.2020.02.109 – volume: 2647 start-page: 26 issue: 1 year: 2017 ident: 10.1016/j.trpro.2022.02.038_bib00012 article-title: Real-Time Public Transport Operations: Library of Control Strategies publication-title: Transportation Research Record doi: 10.3141/2647-04 – volume: 36 start-page: 223 year: 2014 ident: 10.1016/j.trpro.2022.02.038_bib0002 article-title: Regularity-driven bus operation: Principles, implementation and business models publication-title: Transport Policy doi: 10.1016/j.tranpol.2014.09.002 – ident: 10.1016/j.trpro.2022.02.038_bib0007 – volume: 2 issue: 2 year: 2004 ident: 10.1016/j.trpro.2022.02.038_bib00020 article-title: A model for holding strategy in public transit systems with real-time information publication-title: International Journal of Transport Management doi: 10.1016/j.ijtm.2005.02.001 – volume: 47 issue: 1 year: 2016 ident: 10.1016/j.trpro.2022.02.038_bib00011 article-title: An online learning approach to eliminate Bus Bunching in real-time publication-title: Applied Soft Computing – volume: 77 start-page: 38 year: 2015 ident: 10.1016/j.trpro.2022.02.038_bib0009 article-title: Planning, operation, and control of bus transport systems: A literature review publication-title: Transportation Research Part B: Methodological, Volume doi: 10.1016/j.trb.2015.03.002 – ident: 10.1016/j.trpro.2022.02.038_bib0004 doi: 10.1016/j.trpro.2017.12.072 – volume: 12 issue: 8 year: 2016 ident: 10.1016/j.trpro.2022.02.038_bib00014 article-title: Advanced public transport and intelligent transport systems: new modelling challenges publication-title: Transportmetrica A: Transport Science – ident: 10.1016/j.trpro.2022.02.038_bib00016 doi: 10.1016/j.trc.2017.11.023 – ident: 10.1016/j.trpro.2022.02.038_bib00013 – ident: 10.1016/j.trpro.2022.02.038_bib00010 doi: 10.1016/j.trc.2021.103087 – ident: 10.1016/j.trpro.2022.02.038_bib0001 doi: 10.3141/2216-06 – volume: 2 start-page: 309 issue: 3 year: 2020 ident: 10.1016/j.trpro.2022.02.038_bib0006 article-title: Bus Travel Time: Experimental Evidence and Forecasting publication-title: Forecasting doi: 10.3390/forecast2030017 – ident: 10.1016/j.trpro.2022.02.038_bib0008 doi: 10.1287/trsc.35.1.1.10143 – ident: 10.1016/j.trpro.2022.02.038_bib00019 doi: 10.1016/j.trc.2020.102661  | 
    
| SSID | ssj0002951331 | 
    
| Score | 2.1704283 | 
    
| Snippet | Bus bunching is one of the main issues encountered in bus service operations. The headway (i.e., time between two successive buses) of high-frequency services... | 
    
| SourceID | unpaywall crossref elsevier  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 302 | 
    
| SubjectTerms | automated vehicle monitoring bus bunching bus services operations intelligent transport system machine learning operations control service reliability transit services  | 
    
| SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jL_NF_MT5RR58NKzL0o_4pkOZgr7ooG8laROZlDq2FfG_9y5Nh4IMEdqHNk1TLundr9e7-xFyYa1WSSgl41bGTFihmAqCnFlrIouIWLmiPo9P0WQqHtIw7ZBxmwuDYZVe9zc63Wlrf2bgpTmYz2aDZw7YAd5zABCIW8IU9PBIJEjfcJ_erP0sXCKDydBxzIWcYYe2-JAL81otQFPBdyLnrnYn5qn8bqB6dTVXnx-qLL8ZoLsdsu2RI71uHm6XdEy1R3ptYvFynyya9xMddVRVBfVR6JhvTgEalgx55Kmul3TpFcQVVdDiaqfmzk1IPYnEK3WGragXhkIjNaUj_8IQaXcDDdYQXVcHZHp3-zKeME-pwHJAagnYI51YGQjNY61EoSOecztCHGWHJgqS2FiNPzKlMkMeR4XSUQi7CYwVwoJ2OCTd6r0yR4RqBVhliHF-AYhdGlkoI_NIxICRrAmLPuGtHLPc1xtH2osyawPL3jIn_AyFnwWwjZI-uVx3mjflNjZfHrUTlP1YNRkYhM0d2Xo6_zLQ8X8HOiFbeNQ4bU5Jd7WozRnAmJU-d-v0C2xt8xo priority: 102 providerName: Elsevier  | 
    
| Title | Monitoring and controlling real-time bus services: a reinforcement learning procedure for eliminating bus bunching | 
    
| URI | https://dx.doi.org/10.1016/j.trpro.2022.02.038 https://doi.org/10.1016/j.trpro.2022.02.038  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 62 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2352-1465 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002951331 issn: 2352-1465 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: ScienceDirect Free and Delayed Access Journal customDbUrl: eissn: 2352-1465 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002951331 issn: 2352-1465 databaseCode: IXB dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2352-1465 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002951331 issn: 2352-1465 databaseCode: AKRWK dateStart: 20140101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uO-zktzjRkYNHM9osTVtvUxzqcIg4nKeStImgpY6uRfSvN0nToaJjQguFfJQmr-_9krz3ewAcS8lZ4IUhwjL0EZGEIeY4MZJSUKkRMTOkPjdjejkh11Nvanm2dSzMt_N744dV5EqVqIUcxoZcsx80QIt6Cng3QWsyvh08mvRxHkYuMbye9pl6NcfQ7738ZYfaZTZj728sTb_YmeFGFcA9N_SE2r3kpVcWvBd__CBvXPETNsG6xZtwUAnIFlgT2TZo1-HI8x2QV3-13t6DLEug9V3XUepQAcoU6ezzkJdzOLdq5RQyVWIYV2OzuQht6oknaMxhUuYCqkIoUpMyTDtWmw64sqF6w2sXTIYX9-eXyCZiQLHCd4GyYjyQoUM49jkjCac4xrKv0Zd0BXUCX0iujz9DJlzs04Rx6qlbOEISIpVO2QPN7DUT-wByphCOq70DnT4JQhEmTIQxJb5CVlJ4SQfgelqi2LKU62QZaVS7oz1HZjgjPZyRo65-0AEni0aziqRjeXVaz3dkcUaFHyI1dcsbooV0rPKig3_WPwTNIi_FkYI5Be-C1mB09zDqgsbV9Kxrhf0TAKL-9A | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4GHMYF8RRvcuBItC5LH-EGCDRgcGGTdquSNkFDVZn2EOLfY6fpBBKaEFJ7aZqmchL7q2v7I-TcWq2SUErGrYyZsEIxFQQZs9ZEFhGxckV9np6j7kA8DMNhg9zUuTAYVul1f6XTnbb2V1pemq3xaNR64YAdYJ8DgEDcEg5XyJoIAZ1gFt_weuFo4RIpTNqOZC7kDHvU1YdcnNdsAqoKPhQ5d8U7MVHldwvVnJdj9fmhiuKbBbrbJBseOtKr6u22SMOU26RZZxZPd8ik2qDoqaOqzKkPQ8eEcwrYsGBIJE_1fEqnXkNcUgUtrnhq5vyE1LNIvFJn2fL5xFBopKZw7F8YI-0eoMEcou9qlwzubvs3XeY5FVgGUC0Bg6QTKwOheayVyHXEM247CKRs20RBEhur8U-mVKbN4yhXOgrhNIGxQlhQD3tktXwvzT6hWgFYaWOgX9ARiTQyV0ZmkYgBJFkT5geE13JMM19wHHkvirSOLHtLnfBTFH4awNFJDsjFotO4qrex_PaonqD0x7JJwSIs78gW0_mXgQ7_O9AZaXb7T720d__8eETWsaXy4ByT1dlkbk4A08z0qVuzX7ub9kA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HXbyW5yo5ODRjDZN08bbEGUIDg8O5qkkbSJoqaMfiP71Jmk6VHRMaKGQj9Lk9b1fkvd-D4BzpQSPQ8YQVixCRBGOuOelSClJlUHE3JL63E3pZEZu5-Hc8WybWJhv5_fWD6sutSrRCzmMLblmEG-CPg018O6B_mx6P3606eNCjHxieT3dMw07jqHfe_nLDg2aYsHf33ief7EzN9ttAHdl6QmNe8nLqKnFKP34Qd645ifsgC2HN-G4FZBdsCGLPTDowpGrfVC2f7XZ3oO8yKDzXTdR6lADyhyZ7PNQNBWsnFq5hFyXWMbV1G4uQpd64glac5g1pYS6EMrcpgwzjtW2A6FtqNnwOgCzm-uHqwlyiRhQqvFdrK2YiBXziMCR4CQTFKdYBQZ9KV9SL46kEub4k3Hp44hmXNBQ39KTihCldcoh6BWvhTwCUHCNcHzjHegFJGaSZVyylJJIIyslw2wIcDctSepYyk2yjDzp3NGeEzuciRnOxNNXEA_BxbLRoiXpWF2ddvOdOJzR4odET93qhmgpHeu86Pif9U9Ary4beaphTi3OnHh_AiQ1_E0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+and+controlling+real-time+bus+services%3A+a+reinforcement+learning+procedure+for+eliminating+bus+bunching&rft.jtitle=Transportation+research+procedia+%28Online%29&rft.au=Comi%2C+Antonio&rft.au=Sassano%2C+Mario&rft.au=Valentini%2C+Alessio&rft.date=2022&rft.issn=2352-1465&rft.eissn=2352-1465&rft.volume=62&rft.spage=302&rft.epage=309&rft_id=info:doi/10.1016%2Fj.trpro.2022.02.038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trpro_2022_02_038 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-1465&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-1465&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-1465&client=summon |