Magnetoelectric coupling in Tb0.3Dy0.7Fe2/Pt/PbZr0.56Ti0.44O3 thin films deposited on Pt/TiO2/SiO2/Si substrate

Tb0.3Dy0.7Fe2/Pt/PbZr0.56Ti0.44O3 (Terfenol-D/Pt/PZT) thin films were sputtered on Pt/TiO2/SiO2/Si substrate. PZT and Terfenol-D layers were chosen for their large piezoelectric and magnetostrictive coefficients, respectively. 4%–5% magnetocapacitance has been measured on a Terfenol-D/Pt/PZT stack a...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 102; no. 2
Main Authors Cibert, C., Zhu, J., Poullain, G., Bouregba, R., More-Chevalier, J., Pautrat, A.
Format Journal Article
LanguageEnglish
Published 14.01.2013
Subjects
Online AccessGet full text
ISSN0003-6951
1077-3118
DOI10.1063/1.4775764

Cover

More Information
Summary:Tb0.3Dy0.7Fe2/Pt/PbZr0.56Ti0.44O3 (Terfenol-D/Pt/PZT) thin films were sputtered on Pt/TiO2/SiO2/Si substrate. PZT and Terfenol-D layers were chosen for their large piezoelectric and magnetostrictive coefficients, respectively. 4%–5% magnetocapacitance has been measured on a Terfenol-D/Pt/PZT stack at room temperature. A magnetoelectric (ME) voltage coefficient of 150 mV/cm Oe was obtained at low dc magnetic field out of mechanical resonance. This work demonstrates the possibility to achieve ME effect in integrated devices involving Terfenol-D and PZT thin films providing that the diffusion, which may occur between both active layers is reduced using an intermediate layer.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4775764