Assessment of global and local neural network’s performance for model-free estimation of flow angles
A synthetic flow angle sensor, able to estimate angle-of-attack and angle-of-sideslip, can exploit different methods to solve a set of equations modelling data fusion from other onboard systems. In operative scenarios, measurements used for data fusion are characterised by several uncertainties that...
Saved in:
| Published in | Aeronautical journal Vol. 128; no. 1320; pp. 309 - 324 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
01.02.2024
|
| Online Access | Get full text |
| ISSN | 0001-9240 2059-6464 |
| DOI | 10.1017/aer.2023.55 |
Cover
| Abstract | A synthetic flow angle sensor, able to estimate angle-of-attack and angle-of-sideslip, can exploit different methods to solve a set of equations modelling data fusion from other onboard systems. In operative scenarios, measurements used for data fusion are characterised by several uncertainties that would significantly affect the synthetic sensor performance. The off-line use of neural networks is not a novelty to model deterministic synthetic flow angle sensors and to mitigate issues arising from real flight applications. A common practice is to train the neural network with corrupted data that are representative of uncertainties of the current application. However, this approach requires accurate tuning on the target aircraft and extensive flight test campaigns, therefore, making the neural network tightly dependent on the specific aircraft. In order to overcome latter issues, this work proposes the use of neural networks to solve a model-free scheme, derived from classical flight mechanics, that is independent from the target aircraft, flight regime and avionics. It is crucial to make use of a training dataset that is not related to any specific aircraft or avionics to preserve the generality of the scheme. Under these circumstances, global and local neural networks are herein compared with an iterative method to assess the neural capabilities to generalise the proposed model-free solver. The final objective of the present work, in fact, is to select the neural technique that can enable a flow angle synthetic sensor to be used on board any flying body at any flight regime without any further training sessions. |
|---|---|
| AbstractList | A synthetic flow angle sensor, able to estimate angle-of-attack and angle-of-sideslip, can exploit different methods to solve a set of equations modelling data fusion from other onboard systems. In operative scenarios, measurements used for data fusion are characterised by several uncertainties that would significantly affect the synthetic sensor performance. The off-line use of neural networks is not a novelty to model deterministic synthetic flow angle sensors and to mitigate issues arising from real flight applications. A common practice is to train the neural network with corrupted data that are representative of uncertainties of the current application. However, this approach requires accurate tuning on the target aircraft and extensive flight test campaigns, therefore, making the neural network tightly dependent on the specific aircraft. In order to overcome latter issues, this work proposes the use of neural networks to solve a model-free scheme, derived from classical flight mechanics, that is independent from the target aircraft, flight regime and avionics. It is crucial to make use of a training dataset that is not related to any specific aircraft or avionics to preserve the generality of the scheme. Under these circumstances, global and local neural networks are herein compared with an iterative method to assess the neural capabilities to generalise the proposed model-free solver. The final objective of the present work, in fact, is to select the neural technique that can enable a flow angle synthetic sensor to be used on board any flying body at any flight regime without any further training sessions. |
| Author | Lerro, A. de Pasquale, L. |
| Author_xml | – sequence: 1 givenname: A. orcidid: 0000-0001-9068-4714 surname: Lerro fullname: Lerro, A. – sequence: 2 givenname: L. orcidid: 0000-0003-1062-6149 surname: de Pasquale fullname: de Pasquale, L. |
| BookMark | eNotkL1OwzAURi1UJNrCxAt4RynXjn-SsaqAIlVi6R45znVVcOzKDqrYeA1ejychAabvTEefzoLMQgxIyC2DFQOm7w2mFQderqS8IHMOsi6UUGJG5gDAipoLuCKLnF8BSuBCzIlb54w59xgGGh09-NgaT03oqI92pIDv6XeGc0xv359fmZ4wuZh6EyzSEWgfO_SFS4gU83DszXCMYZI5H8-j6uAxX5NLZ3zGm_9dkv3jw36zLXYvT8-b9a6wrGZDYbiou8qWTgulRFcJxcBJjUxrLjXIVgjVMeuU7lhbo9NKMzDY1horZatySe7-tDbFnBO65pTGQ-mjYdBMhZqxUDMVaqQsfwDBA11N |
| Cites_doi | 10.2514/2.312 10.1007/978-94-015-8300-8_2 10.2514/1.G001313 10.2514/6.2015-1311 10.1109/72.536311 10.1109/ICUAS51884.2021.9476685 10.1016/S1474-6670(17)51119-2 10.2514/1.G004010 10.1049/ip-cta:19970891 10.1139/tcsme-2010-0001 10.1139/juvs-2017-0029 10.1017/S0001924000011532 10.2514/6.2010-7855 10.1023/A:1007974400149 10.23919/ECC.2003.7085229 10.1139/tcsme-2017-1033 10.3390/electronics11010165 10.1162/neco.1991.3.2.246 10.1137/0111030 10.1162/neco.1991.3.2.213 10.1007/BF02551274 10.2514/1.G005591 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1017/aer.2023.55 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2059-6464 |
| EndPage | 324 |
| ExternalDocumentID | 10_1017_aer_2023_55 |
| GroupedDBID | -~X .DC 09C 09E 0R~ 6TJ 88I 8FE 8FG 8G5 AAAZR AABES AABWE AACJH AAGFV AAKTX AANRG AARAB AASVR AAUKB AAYXX ABBZL ABGDZ ABJCF ABJNI ABMWE ABQTM ABROB ABUWG ABVKB ABVZP ABXAU ABXHF ABZCX ACBMC ACDLN ACGFS ACGOD ACIWK ACQPF ACUIJ ACYZP ACZBM ACZWT ADCGK ADDNB ADFEC ADKIL ADMLS ADOVH ADOVT ADVJH AEBAK AEHGV AENCP AENEX AENGE AFFUJ AFKQG AFKRA AFLVW AFZFC AGABE AGBYD AGJUD AHPGS AHQXX AHRGI AIGNW AIHIV AIOIP AJCYY AJPFC AJQAS AKMAY AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARAPS ARCSS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGLVJ BJBOZ BLZWO BMAJL BPHCQ CBIIA CCPQU CCQAD CCUQV CFAFE CFBFF CGQII CHEAL CITATION CJCSC DOHLZ DWQXO EBS EGQIC EJD GNUQQ GUQSH HCIFZ IH6 IOEEP IOO JHPGK JQKCU KAFGG KCGVB KFECR L6V L7B LHUNA LW7 M2O M2P M7S NIKVX NZEOI O9- P2P P62 PADUT PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS PUEGO PYCCK RAMDC RCA ROL S6U SAAAG SC5 SJN T9M TAE TN5 UT1 WFFJZ WH7 ZDLDU ZJOSE ZMEZD ZY4 ZYDXJ |
| ID | FETCH-LOGICAL-c191t-a249d8c3f74664d84610f57e17725705b446d1cf67d1b9ef76710aeb97e86c83 |
| ISSN | 0001-9240 |
| IngestDate | Wed Oct 01 04:56:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1320 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c191t-a249d8c3f74664d84610f57e17725705b446d1cf67d1b9ef76710aeb97e86c83 |
| ORCID | 0000-0003-1062-6149 0000-0001-9068-4714 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1017_aer_2023_55 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-00 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Aeronautical journal |
| PublicationYear | 2024 |
| References | S0001924023000556_ref34 S0001924023000556_ref12 S0001924023000556_ref1 S0001924023000556_ref33 S0001924023000556_ref11 S0001924023000556_ref14 S0001924023000556_ref2 S0001924023000556_ref13 S0001924023000556_ref35 S0001924023000556_ref3 S0001924023000556_ref30 Schmidt (S0001924023000556_ref22) 2011 S0001924023000556_ref10 S0001924023000556_ref31 Etkin (S0001924023000556_ref23) 1995 S0001924023000556_ref19 S0001924023000556_ref16 Lerro (S0001924023000556_ref25) 2021; 8 S0001924023000556_ref18 S0001924023000556_ref17 Haykin (S0001924023000556_ref29) 1994 S0001924023000556_ref8 S0001924023000556_ref9 Prem (S0001924023000556_ref15) 2020; 17 S0001924023000556_ref4 S0001924023000556_ref5 S0001924023000556_ref6 S0001924023000556_ref7 Maruyama (S0001924023000556_ref28) 1992; 1 S0001924023000556_ref24 S0001924023000556_ref21 S0001924023000556_ref20 S0001924023000556_ref27 S0001924023000556_ref26 Beale (S0001924023000556_ref32) 2021 |
| References_xml | – ident: S0001924023000556_ref9 doi: 10.2514/2.312 – ident: S0001924023000556_ref1 doi: 10.1007/978-94-015-8300-8_2 – volume-title: Asia Higher Education Engineer year: 2011 ident: S0001924023000556_ref22 – ident: S0001924023000556_ref14 doi: 10.2514/1.G001313 – ident: S0001924023000556_ref5 doi: 10.2514/6.2015-1311 – volume-title: Dynamics of Flight: Stability and Control year: 1995 ident: S0001924023000556_ref23 – ident: S0001924023000556_ref33 doi: 10.1109/72.536311 – ident: S0001924023000556_ref7 – ident: S0001924023000556_ref30 – ident: S0001924023000556_ref11 – volume-title: Deep Learning Toolbox year: 2021 ident: S0001924023000556_ref32 – ident: S0001924023000556_ref18 doi: 10.1109/ICUAS51884.2021.9476685 – ident: S0001924023000556_ref2 doi: 10.1016/S1474-6670(17)51119-2 – ident: S0001924023000556_ref16 doi: 10.2514/1.G004010 – ident: S0001924023000556_ref35 doi: 10.1049/ip-cta:19970891 – ident: S0001924023000556_ref20 doi: 10.1139/tcsme-2010-0001 – ident: S0001924023000556_ref13 doi: 10.1139/juvs-2017-0029 – ident: S0001924023000556_ref12 doi: 10.1017/S0001924000011532 – volume: 17 start-page: 603 year: 2020 ident: S0001924023000556_ref15 article-title: Pseudomeasurement-aided estimation of angle of attack in mini unmanned aerial vehicle publication-title: J. Aerosp. Inform. Syst. – ident: S0001924023000556_ref4 doi: 10.2514/6.2010-7855 – ident: S0001924023000556_ref19 doi: 10.1023/A:1007974400149 – ident: S0001924023000556_ref10 doi: 10.23919/ECC.2003.7085229 – ident: S0001924023000556_ref3 doi: 10.1139/tcsme-2017-1033 – ident: S0001924023000556_ref21 doi: 10.3390/electronics11010165 – ident: S0001924023000556_ref8 – volume: 8 start-page: 273 year: 2021 ident: S0001924023000556_ref25 article-title: Physics-based modelling for a closed form solution for flow angle estimation publication-title: Adv. Aircr. Spacecr. Sci. – ident: S0001924023000556_ref27 doi: 10.1162/neco.1991.3.2.246 – ident: S0001924023000556_ref6 – ident: S0001924023000556_ref31 – ident: S0001924023000556_ref24 doi: 10.1137/0111030 – ident: S0001924023000556_ref34 doi: 10.1162/neco.1991.3.2.213 – ident: S0001924023000556_ref26 doi: 10.1007/BF02551274 – volume: 1 year: 1992 ident: S0001924023000556_ref28 article-title: Connection between GRBF and MLP publication-title: Artif. Intell. Memo – volume-title: Neural Networks: A Comprehensive Foundation year: 1994 ident: S0001924023000556_ref29 – ident: S0001924023000556_ref17 doi: 10.2514/1.G005591 |
| SSID | ssj0030244 |
| Score | 2.3286846 |
| Snippet | A synthetic flow angle sensor, able to estimate angle-of-attack and angle-of-sideslip, can exploit different methods to solve a set of equations modelling data... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 309 |
| Title | Assessment of global and local neural network’s performance for model-free estimation of flow angles |
| Volume | 128 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2059-6464 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0030244 issn: 0001-9240 databaseCode: ADMLS dateStart: 20110401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest One Academic customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2059-6464 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0030244 issn: 0001-9240 databaseCode: BENPR dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2059-6464 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0030244 issn: 0001-9240 databaseCode: 8FG dateStart: 20160101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwELU4GigQp7jlYjvkVRI7cVIixIKQoFokushObBrYRbtLQ8Vv8Ht8CTOxkzVHATRJZOVy5mkOZ-YNIT0TxzqvrGK1iDQTmVBMcySCVDaNZSUjHWHt8PVNdnkrru7Suy_VJTPdr15-rCv5j1RhDOSKVbJ_kGx3UxiAY5AvbEHCsP2VjE87Wk30-Ty3B66ENxbqBLkqm12T6d2mNRRT5CruqgUwzbBph8PsxJgTJN147NxI-zDGjOH7B59p2NLVmgk48H4ZPHzTJrNn4ktn-u1QbcBRnWL5puvq3A-XGhLRZicH6jNmELC5HymmGUvAP2OZcFTknUpN8hA7PIkCHcmjIjC33JVQf9Pkjv5JGeRsTXjfcfl-5sv-Yse67EKXuCZLuLjEi8s0XSTLCah97O2RDy5aU81hjo6m28_LF3Aip3jw5MBlCXyP4TpZ80EDPXUI2CALZrRJVgMqyS1i51igY0sdFihggTZYoA4L1GPh_fVtSgMUUDigcxTQOQrwZogC6lCwTYaD8-HZJfM9NFgFkfiMKQiv67ziVmIfgTpHen2bShNDVJXKKNVCZHVc2UzWsS6MlRm4nMroQpo8q3K-Q5ZG45HZJbTiSkgRKThdgOLXuS0sWEqbaMUTy80e6bVfqXxyTCnlD5LY_91pB2RljsBDsjSbPJsjcP9m-rgR4Qd3A1x7 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+global+and+local+neural+network%E2%80%99s+performance+for+model-free+estimation+of+flow+angles&rft.jtitle=Aeronautical+journal&rft.au=Lerro%2C+A.&rft.au=de+Pasquale%2C+L.&rft.date=2024-02-01&rft.issn=0001-9240&rft.eissn=2059-6464&rft.volume=128&rft.issue=1320&rft.spage=309&rft.epage=324&rft_id=info:doi/10.1017%2Faer.2023.55&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_aer_2023_55 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-9240&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-9240&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-9240&client=summon |