Assessment of global and local neural network’s performance for model-free estimation of flow angles

A synthetic flow angle sensor, able to estimate angle-of-attack and angle-of-sideslip, can exploit different methods to solve a set of equations modelling data fusion from other onboard systems. In operative scenarios, measurements used for data fusion are characterised by several uncertainties that...

Full description

Saved in:
Bibliographic Details
Published inAeronautical journal Vol. 128; no. 1320; pp. 309 - 324
Main Authors Lerro, A., de Pasquale, L.
Format Journal Article
LanguageEnglish
Published 01.02.2024
Online AccessGet full text
ISSN0001-9240
2059-6464
DOI10.1017/aer.2023.55

Cover

Abstract A synthetic flow angle sensor, able to estimate angle-of-attack and angle-of-sideslip, can exploit different methods to solve a set of equations modelling data fusion from other onboard systems. In operative scenarios, measurements used for data fusion are characterised by several uncertainties that would significantly affect the synthetic sensor performance. The off-line use of neural networks is not a novelty to model deterministic synthetic flow angle sensors and to mitigate issues arising from real flight applications. A common practice is to train the neural network with corrupted data that are representative of uncertainties of the current application. However, this approach requires accurate tuning on the target aircraft and extensive flight test campaigns, therefore, making the neural network tightly dependent on the specific aircraft. In order to overcome latter issues, this work proposes the use of neural networks to solve a model-free scheme, derived from classical flight mechanics, that is independent from the target aircraft, flight regime and avionics. It is crucial to make use of a training dataset that is not related to any specific aircraft or avionics to preserve the generality of the scheme. Under these circumstances, global and local neural networks are herein compared with an iterative method to assess the neural capabilities to generalise the proposed model-free solver. The final objective of the present work, in fact, is to select the neural technique that can enable a flow angle synthetic sensor to be used on board any flying body at any flight regime without any further training sessions.
AbstractList A synthetic flow angle sensor, able to estimate angle-of-attack and angle-of-sideslip, can exploit different methods to solve a set of equations modelling data fusion from other onboard systems. In operative scenarios, measurements used for data fusion are characterised by several uncertainties that would significantly affect the synthetic sensor performance. The off-line use of neural networks is not a novelty to model deterministic synthetic flow angle sensors and to mitigate issues arising from real flight applications. A common practice is to train the neural network with corrupted data that are representative of uncertainties of the current application. However, this approach requires accurate tuning on the target aircraft and extensive flight test campaigns, therefore, making the neural network tightly dependent on the specific aircraft. In order to overcome latter issues, this work proposes the use of neural networks to solve a model-free scheme, derived from classical flight mechanics, that is independent from the target aircraft, flight regime and avionics. It is crucial to make use of a training dataset that is not related to any specific aircraft or avionics to preserve the generality of the scheme. Under these circumstances, global and local neural networks are herein compared with an iterative method to assess the neural capabilities to generalise the proposed model-free solver. The final objective of the present work, in fact, is to select the neural technique that can enable a flow angle synthetic sensor to be used on board any flying body at any flight regime without any further training sessions.
Author Lerro, A.
de Pasquale, L.
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0001-9068-4714
  surname: Lerro
  fullname: Lerro, A.
– sequence: 2
  givenname: L.
  orcidid: 0000-0003-1062-6149
  surname: de Pasquale
  fullname: de Pasquale, L.
BookMark eNotkL1OwzAURi1UJNrCxAt4RynXjn-SsaqAIlVi6R45znVVcOzKDqrYeA1ejychAabvTEefzoLMQgxIyC2DFQOm7w2mFQderqS8IHMOsi6UUGJG5gDAipoLuCKLnF8BSuBCzIlb54w59xgGGh09-NgaT03oqI92pIDv6XeGc0xv359fmZ4wuZh6EyzSEWgfO_SFS4gU83DszXCMYZI5H8-j6uAxX5NLZ3zGm_9dkv3jw36zLXYvT8-b9a6wrGZDYbiou8qWTgulRFcJxcBJjUxrLjXIVgjVMeuU7lhbo9NKMzDY1horZatySe7-tDbFnBO65pTGQ-mjYdBMhZqxUDMVaqQsfwDBA11N
Cites_doi 10.2514/2.312
10.1007/978-94-015-8300-8_2
10.2514/1.G001313
10.2514/6.2015-1311
10.1109/72.536311
10.1109/ICUAS51884.2021.9476685
10.1016/S1474-6670(17)51119-2
10.2514/1.G004010
10.1049/ip-cta:19970891
10.1139/tcsme-2010-0001
10.1139/juvs-2017-0029
10.1017/S0001924000011532
10.2514/6.2010-7855
10.1023/A:1007974400149
10.23919/ECC.2003.7085229
10.1139/tcsme-2017-1033
10.3390/electronics11010165
10.1162/neco.1991.3.2.246
10.1137/0111030
10.1162/neco.1991.3.2.213
10.1007/BF02551274
10.2514/1.G005591
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1017/aer.2023.55
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2059-6464
EndPage 324
ExternalDocumentID 10_1017_aer_2023_55
GroupedDBID -~X
.DC
09C
09E
0R~
6TJ
88I
8FE
8FG
8G5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AANRG
AARAB
AASVR
AAUKB
AAYXX
ABBZL
ABGDZ
ABJCF
ABJNI
ABMWE
ABQTM
ABROB
ABUWG
ABVKB
ABVZP
ABXAU
ABXHF
ABZCX
ACBMC
ACDLN
ACGFS
ACGOD
ACIWK
ACQPF
ACUIJ
ACYZP
ACZBM
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADMLS
ADOVH
ADOVT
ADVJH
AEBAK
AEHGV
AENCP
AENEX
AENGE
AFFUJ
AFKQG
AFKRA
AFLVW
AFZFC
AGABE
AGBYD
AGJUD
AHPGS
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AJCYY
AJPFC
AJQAS
AKMAY
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARAPS
ARCSS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
CBIIA
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CGQII
CHEAL
CITATION
CJCSC
DOHLZ
DWQXO
EBS
EGQIC
EJD
GNUQQ
GUQSH
HCIFZ
IH6
IOEEP
IOO
JHPGK
JQKCU
KAFGG
KCGVB
KFECR
L6V
L7B
LHUNA
LW7
M2O
M2P
M7S
NIKVX
NZEOI
O9-
P2P
P62
PADUT
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
PYCCK
RAMDC
RCA
ROL
S6U
SAAAG
SC5
SJN
T9M
TAE
TN5
UT1
WFFJZ
WH7
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
ID FETCH-LOGICAL-c191t-a249d8c3f74664d84610f57e17725705b446d1cf67d1b9ef76710aeb97e86c83
ISSN 0001-9240
IngestDate Wed Oct 01 04:56:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1320
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c191t-a249d8c3f74664d84610f57e17725705b446d1cf67d1b9ef76710aeb97e86c83
ORCID 0000-0003-1062-6149
0000-0001-9068-4714
PageCount 16
ParticipantIDs crossref_primary_10_1017_aer_2023_55
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-00
PublicationDecade 2020
PublicationTitle Aeronautical journal
PublicationYear 2024
References S0001924023000556_ref34
S0001924023000556_ref12
S0001924023000556_ref1
S0001924023000556_ref33
S0001924023000556_ref11
S0001924023000556_ref14
S0001924023000556_ref2
S0001924023000556_ref13
S0001924023000556_ref35
S0001924023000556_ref3
S0001924023000556_ref30
Schmidt (S0001924023000556_ref22) 2011
S0001924023000556_ref10
S0001924023000556_ref31
Etkin (S0001924023000556_ref23) 1995
S0001924023000556_ref19
S0001924023000556_ref16
Lerro (S0001924023000556_ref25) 2021; 8
S0001924023000556_ref18
S0001924023000556_ref17
Haykin (S0001924023000556_ref29) 1994
S0001924023000556_ref8
S0001924023000556_ref9
Prem (S0001924023000556_ref15) 2020; 17
S0001924023000556_ref4
S0001924023000556_ref5
S0001924023000556_ref6
S0001924023000556_ref7
Maruyama (S0001924023000556_ref28) 1992; 1
S0001924023000556_ref24
S0001924023000556_ref21
S0001924023000556_ref20
S0001924023000556_ref27
S0001924023000556_ref26
Beale (S0001924023000556_ref32) 2021
References_xml – ident: S0001924023000556_ref9
  doi: 10.2514/2.312
– ident: S0001924023000556_ref1
  doi: 10.1007/978-94-015-8300-8_2
– volume-title: Asia Higher Education Engineer
  year: 2011
  ident: S0001924023000556_ref22
– ident: S0001924023000556_ref14
  doi: 10.2514/1.G001313
– ident: S0001924023000556_ref5
  doi: 10.2514/6.2015-1311
– volume-title: Dynamics of Flight: Stability and Control
  year: 1995
  ident: S0001924023000556_ref23
– ident: S0001924023000556_ref33
  doi: 10.1109/72.536311
– ident: S0001924023000556_ref7
– ident: S0001924023000556_ref30
– ident: S0001924023000556_ref11
– volume-title: Deep Learning Toolbox
  year: 2021
  ident: S0001924023000556_ref32
– ident: S0001924023000556_ref18
  doi: 10.1109/ICUAS51884.2021.9476685
– ident: S0001924023000556_ref2
  doi: 10.1016/S1474-6670(17)51119-2
– ident: S0001924023000556_ref16
  doi: 10.2514/1.G004010
– ident: S0001924023000556_ref35
  doi: 10.1049/ip-cta:19970891
– ident: S0001924023000556_ref20
  doi: 10.1139/tcsme-2010-0001
– ident: S0001924023000556_ref13
  doi: 10.1139/juvs-2017-0029
– ident: S0001924023000556_ref12
  doi: 10.1017/S0001924000011532
– volume: 17
  start-page: 603
  year: 2020
  ident: S0001924023000556_ref15
  article-title: Pseudomeasurement-aided estimation of angle of attack in mini unmanned aerial vehicle
  publication-title: J. Aerosp. Inform. Syst.
– ident: S0001924023000556_ref4
  doi: 10.2514/6.2010-7855
– ident: S0001924023000556_ref19
  doi: 10.1023/A:1007974400149
– ident: S0001924023000556_ref10
  doi: 10.23919/ECC.2003.7085229
– ident: S0001924023000556_ref3
  doi: 10.1139/tcsme-2017-1033
– ident: S0001924023000556_ref21
  doi: 10.3390/electronics11010165
– ident: S0001924023000556_ref8
– volume: 8
  start-page: 273
  year: 2021
  ident: S0001924023000556_ref25
  article-title: Physics-based modelling for a closed form solution for flow angle estimation
  publication-title: Adv. Aircr. Spacecr. Sci.
– ident: S0001924023000556_ref27
  doi: 10.1162/neco.1991.3.2.246
– ident: S0001924023000556_ref6
– ident: S0001924023000556_ref31
– ident: S0001924023000556_ref24
  doi: 10.1137/0111030
– ident: S0001924023000556_ref34
  doi: 10.1162/neco.1991.3.2.213
– ident: S0001924023000556_ref26
  doi: 10.1007/BF02551274
– volume: 1
  year: 1992
  ident: S0001924023000556_ref28
  article-title: Connection between GRBF and MLP
  publication-title: Artif. Intell. Memo
– volume-title: Neural Networks: A Comprehensive Foundation
  year: 1994
  ident: S0001924023000556_ref29
– ident: S0001924023000556_ref17
  doi: 10.2514/1.G005591
SSID ssj0030244
Score 2.3286846
Snippet A synthetic flow angle sensor, able to estimate angle-of-attack and angle-of-sideslip, can exploit different methods to solve a set of equations modelling data...
SourceID crossref
SourceType Index Database
StartPage 309
Title Assessment of global and local neural network’s performance for model-free estimation of flow angles
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2059-6464
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0030244
  issn: 0001-9240
  databaseCode: ADMLS
  dateStart: 20110401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest One Academic
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2059-6464
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0030244
  issn: 0001-9240
  databaseCode: BENPR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2059-6464
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0030244
  issn: 0001-9240
  databaseCode: 8FG
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwELU4GigQp7jlYjvkVRI7cVIixIKQoFokushObBrYRbtLQ8Vv8Ht8CTOxkzVHATRJZOVy5mkOZ-YNIT0TxzqvrGK1iDQTmVBMcySCVDaNZSUjHWHt8PVNdnkrru7Suy_VJTPdr15-rCv5j1RhDOSKVbJ_kGx3UxiAY5AvbEHCsP2VjE87Wk30-Ty3B66ENxbqBLkqm12T6d2mNRRT5CruqgUwzbBph8PsxJgTJN147NxI-zDGjOH7B59p2NLVmgk48H4ZPHzTJrNn4ktn-u1QbcBRnWL5puvq3A-XGhLRZicH6jNmELC5HymmGUvAP2OZcFTknUpN8hA7PIkCHcmjIjC33JVQf9Pkjv5JGeRsTXjfcfl-5sv-Yse67EKXuCZLuLjEi8s0XSTLCah97O2RDy5aU81hjo6m28_LF3Aip3jw5MBlCXyP4TpZ80EDPXUI2CALZrRJVgMqyS1i51igY0sdFihggTZYoA4L1GPh_fVtSgMUUDigcxTQOQrwZogC6lCwTYaD8-HZJfM9NFgFkfiMKQiv67ziVmIfgTpHen2bShNDVJXKKNVCZHVc2UzWsS6MlRm4nMroQpo8q3K-Q5ZG45HZJbTiSkgRKThdgOLXuS0sWEqbaMUTy80e6bVfqXxyTCnlD5LY_91pB2RljsBDsjSbPJsjcP9m-rgR4Qd3A1x7
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+global+and+local+neural+network%E2%80%99s+performance+for+model-free+estimation+of+flow+angles&rft.jtitle=Aeronautical+journal&rft.au=Lerro%2C+A.&rft.au=de+Pasquale%2C+L.&rft.date=2024-02-01&rft.issn=0001-9240&rft.eissn=2059-6464&rft.volume=128&rft.issue=1320&rft.spage=309&rft.epage=324&rft_id=info:doi/10.1017%2Faer.2023.55&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_aer_2023_55
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-9240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-9240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-9240&client=summon