RePaint High-Density Surface Electromyography Signal Using Denoising Diffusion Probabilistic Model
Objective: High-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However, signal loss due to poor electrode contact and channel corruption remains a significant challenge, limiting the reliability and practical applica...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. PP; pp. 1 - 12 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
02.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2025.3604527 |
Cover
| Abstract | Objective: High-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However, signal loss due to poor electrode contact and channel corruption remains a significant challenge, limiting the reliability and practical applications of HD-sEMG signals. Conventional interpolation methods fail to effectively reconstruct corrupted signals, especially when multiple adjacent channels are affected. Methods: This paper proposes a novel HD-sEMG signal reconstruction approach based on the denoising diffusion probabilistic model (DDPM) with a repaint strategy. By leveraging a U-Net structure with spatiotemporal embedding modules that effectively learn the spatial and temporal characteristics of HD-sEMG signals, the proposed method achieves high-fidelity signal reconstruction without requiring prior knowledge of corruption patterns. Results: Experimental evaluations are conducted on 6 corruption patterns with varying ratios (from 12.5% to 50%) using self-collected datasets (including an amputated subject) and a benchmark dataset. Results demonstrate that the proposed approach consistently outperforms interpolation methods (linear: 0.038<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.033, cubic: 0.038<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.032), generative adversarial net (GAN) (0.049<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.041), and variational autoencoder (VAE) (0.068<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.046) in terms of <inline-formula><tex-math notation="LaTeX">nRMSE</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX">p < 0.001</tex-math></inline-formula>), achieving the lowest error of 0.027<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.027 averaged across all corruption ratios. For <inline-formula><tex-math notation="LaTeX">PSNR</tex-math></inline-formula>, the proposed approach achieves the highest mean value (35.81<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 17.95dB) compared to interpolation methods (linear: 33.89<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>26.85, cubic: 33.88<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 26.88dB), GAN (31.08<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 19.14dB), and VAE (26.98<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 18.94dB) (<inline-formula><tex-math notation="LaTeX">p < 0.001</tex-math></inline-formula>). Furthermore, the proposed method maintained robust classification accuracy, achieving statistically equivalent performance to ground truth at the lower corruption ratio. Significance: The proposed HD-sEMG signal reconstruction approach offers a new solution for enhancing the fidelity and reliability of HD-sEMG signal acquisition. |
|---|---|
| AbstractList | High-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However, signal loss due to poor electrode contact and channel corruption remains a significant challenge, limiting the reliability and practical applications of HD-sEMG signals. Conventional interpolation methods fail to effectively reconstruct corrupted signals, especially when multiple adjacent channels are affected.
This paper proposes a novel HD-sEMG signal reconstruction approach based on the denoising diffusion probabilistic model (DDPM) with a repaint strategy. By leveraging a U-Net structure with spatiotemporal embedding modules that effectively learn the spatial and temporal characteristics of HD-sEMG signals, the proposed method achieves high-fidelity signal reconstruction without requiring prior knowledge of corruption patterns.
Experimental evaluations are conducted on 6 corruption patterns with varying ratios (from 12.5% to 50%) using self-collected datasets (including an amputated subject) and a benchmark dataset. Results demonstrate that the proposed approach consistently outperforms interpolation methods (linear: 0.038$\pm$0.033, cubic: 0.038$\pm$0.032), generative adversarial net (GAN) (0.049$\pm$0.041), and variational autoencoder (VAE) (0.068$\pm$0.046) in terms of $nRMSE$ ($p < 0.001$), achieving the lowest error of 0.027$\pm$0.027 averaged across all corruption ratios. For $PSNR$, the proposed approach achieves the highest mean value (35.81$\pm$ 17.95dB) compared to interpolation methods (linear: 33.89$\pm$26.85, cubic: 33.88$\pm$ 26.88dB), GAN (31.08$\pm$ 19.14dB), and VAE (26.98$\pm$ 18.94dB) ($p < 0.001$). Furthermore, the proposed method maintained robust classification accuracy, achieving statistically equivalent performance to ground truth at the lower corruption ratio.
The proposed HD-sEMG signal reconstruction approach offers a new solution for enhancing the fidelity and reliability of HD-sEMG signal acquisition. Objective: High-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However, signal loss due to poor electrode contact and channel corruption remains a significant challenge, limiting the reliability and practical applications of HD-sEMG signals. Conventional interpolation methods fail to effectively reconstruct corrupted signals, especially when multiple adjacent channels are affected. Methods: This paper proposes a novel HD-sEMG signal reconstruction approach based on the denoising diffusion probabilistic model (DDPM) with a repaint strategy. By leveraging a U-Net structure with spatiotemporal embedding modules that effectively learn the spatial and temporal characteristics of HD-sEMG signals, the proposed method achieves high-fidelity signal reconstruction without requiring prior knowledge of corruption patterns. Results: Experimental evaluations are conducted on 6 corruption patterns with varying ratios (from 12.5% to 50%) using self-collected datasets (including an amputated subject) and a benchmark dataset. Results demonstrate that the proposed approach consistently outperforms interpolation methods (linear: 0.038<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.033, cubic: 0.038<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.032), generative adversarial net (GAN) (0.049<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.041), and variational autoencoder (VAE) (0.068<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.046) in terms of <inline-formula><tex-math notation="LaTeX">nRMSE</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX">p < 0.001</tex-math></inline-formula>), achieving the lowest error of 0.027<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>0.027 averaged across all corruption ratios. For <inline-formula><tex-math notation="LaTeX">PSNR</tex-math></inline-formula>, the proposed approach achieves the highest mean value (35.81<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 17.95dB) compared to interpolation methods (linear: 33.89<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>26.85, cubic: 33.88<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 26.88dB), GAN (31.08<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 19.14dB), and VAE (26.98<inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 18.94dB) (<inline-formula><tex-math notation="LaTeX">p < 0.001</tex-math></inline-formula>). Furthermore, the proposed method maintained robust classification accuracy, achieving statistically equivalent performance to ground truth at the lower corruption ratio. Significance: The proposed HD-sEMG signal reconstruction approach offers a new solution for enhancing the fidelity and reliability of HD-sEMG signal acquisition. High-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However, signal loss due to poor electrode contact and channel corruption remains a significant challenge, limiting the reliability and practical applications of HD-sEMG signals. Conventional interpolation methods fail to effectively reconstruct corrupted signals, especially when multiple adjacent channels are affected.OBJECTIVEHigh-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However, signal loss due to poor electrode contact and channel corruption remains a significant challenge, limiting the reliability and practical applications of HD-sEMG signals. Conventional interpolation methods fail to effectively reconstruct corrupted signals, especially when multiple adjacent channels are affected.This paper proposes a novel HD-sEMG signal reconstruction approach based on the denoising diffusion probabilistic model (DDPM) with a repaint strategy. By leveraging a U-Net structure with spatiotemporal embedding modules that effectively learn the spatial and temporal characteristics of HD-sEMG signals, the proposed method achieves high-fidelity signal reconstruction without requiring prior knowledge of corruption patterns.METHODSThis paper proposes a novel HD-sEMG signal reconstruction approach based on the denoising diffusion probabilistic model (DDPM) with a repaint strategy. By leveraging a U-Net structure with spatiotemporal embedding modules that effectively learn the spatial and temporal characteristics of HD-sEMG signals, the proposed method achieves high-fidelity signal reconstruction without requiring prior knowledge of corruption patterns.Experimental evaluations are conducted on 6 corruption patterns with varying ratios (from 12.5% to 50%) using self-collected datasets (including an amputated subject) and a benchmark dataset. Results demonstrate that the proposed approach consistently outperforms interpolation methods (linear: 0.038$\pm$0.033, cubic: 0.038$\pm$0.032), generative adversarial net (GAN) (0.049$\pm$0.041), and variational autoencoder (VAE) (0.068$\pm$0.046) in terms of $nRMSE$ ($p < 0.001$), achieving the lowest error of 0.027$\pm$0.027 averaged across all corruption ratios. For $PSNR$, the proposed approach achieves the highest mean value (35.81$\pm$ 17.95dB) compared to interpolation methods (linear: 33.89$\pm$26.85, cubic: 33.88$\pm$ 26.88dB), GAN (31.08$\pm$ 19.14dB), and VAE (26.98$\pm$ 18.94dB) ($p < 0.001$). Furthermore, the proposed method maintained robust classification accuracy, achieving statistically equivalent performance to ground truth at the lower corruption ratio.RESULTSExperimental evaluations are conducted on 6 corruption patterns with varying ratios (from 12.5% to 50%) using self-collected datasets (including an amputated subject) and a benchmark dataset. Results demonstrate that the proposed approach consistently outperforms interpolation methods (linear: 0.038$\pm$0.033, cubic: 0.038$\pm$0.032), generative adversarial net (GAN) (0.049$\pm$0.041), and variational autoencoder (VAE) (0.068$\pm$0.046) in terms of $nRMSE$ ($p < 0.001$), achieving the lowest error of 0.027$\pm$0.027 averaged across all corruption ratios. For $PSNR$, the proposed approach achieves the highest mean value (35.81$\pm$ 17.95dB) compared to interpolation methods (linear: 33.89$\pm$26.85, cubic: 33.88$\pm$ 26.88dB), GAN (31.08$\pm$ 19.14dB), and VAE (26.98$\pm$ 18.94dB) ($p < 0.001$). Furthermore, the proposed method maintained robust classification accuracy, achieving statistically equivalent performance to ground truth at the lower corruption ratio.The proposed HD-sEMG signal reconstruction approach offers a new solution for enhancing the fidelity and reliability of HD-sEMG signal acquisition.SIGNIFICANCEThe proposed HD-sEMG signal reconstruction approach offers a new solution for enhancing the fidelity and reliability of HD-sEMG signal acquisition. |
| Author | Liao, Jiawei Wang, Hai Jiang, Ning He, Jiayuan Fang, Xia Zhao, Yihui |
| Author_xml | – sequence: 1 givenname: Yihui surname: Zhao fullname: Zhao, Yihui email: y_zhao1994@wchscu.edu.cn organization: National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China – sequence: 2 givenname: Jiawei surname: Liao fullname: Liao, Jiawei email: liaojiawei@stu.scu.edu.sn organization: National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China – sequence: 3 givenname: Xia surname: Fang fullname: Fang, Xia email: fangxia@scu.edu.cn organization: National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China – sequence: 4 givenname: Hai surname: Wang fullname: Wang, Hai email: wanghai_huaxi@stu.scu.edu.cn organization: National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China – sequence: 5 givenname: Ning surname: Jiang fullname: Jiang, Ning email: jiangning21@wchscu.cn organization: National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China – sequence: 6 givenname: Jiayuan surname: He fullname: He, Jiayuan email: jiayuan.he@wchscu.cn organization: National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, Sichuan, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40892666$$D View this record in MEDLINE/PubMed |
| BookMark | eNpFkEtPwzAMgCMEgvH4AUgI9cilI86jTY4wxkNiYuJxrpI0HUFdM5L2sH9Ppg2QD7blz5b1HaP9zncWoXPAYwAsr99vZ9MxwYSPaYEZJ-UeGgHnIiecwj4aYQwil0SyI3Qc41dqmWDFITpiWEhSFMUI6Vc7V67rs0e3-MzvbBddv87ehtAoY7Npa00f_HLtF0GtPtPALTrVZh_RdYss0d5tK9c0Q3S-y-bBa6Vd62LvTDbztW1P0UGj2mjPdvkEfdxP3yeP-fPLw9Pk5jk3IKHPBTFc4xSkoEIxLUtJS15KqTUQAqrAjaopBcWg4UZgVta45ETUUnAwVtMTdLW9uwr-e7Cxr5YuGtu2qrN-iBUlLF0uiRQJvdyhg17auloFt1RhXf16SQBsARN8jME2fwjgauO-2rivNu6rnfu0c7Hdcdbafx6A8fQt_QEl1X8N |
| CODEN | IEBEAX |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TBME.2025.3604527 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 12 |
| ExternalDocumentID | 40892666 10_1109_TBME_2025_3604527 11145804 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 5GY 5RE 6IF 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 .55 .GJ 53G 5VS AAYJJ AAYXX ACKIV AETIX AFFNX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH VH1 VJK X7M ZGI ZXP NPM 7X8 |
| ID | FETCH-LOGICAL-c191t-82c5b0b0b2638a4b979375799bb1221a60fad331a41f5c8047d07528d9851ceb3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Thu Oct 02 21:42:23 EDT 2025 Thu Sep 04 04:48:23 EDT 2025 Wed Oct 01 05:30:07 EDT 2025 Wed Sep 10 07:40:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c191t-82c5b0b0b2638a4b979375799bb1221a60fad331a41f5c8047d07528d9851ceb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 40892666 |
| PQID | 3246387298 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_3246387298 ieee_primary_11145804 pubmed_primary_40892666 crossref_primary_10_1109_TBME_2025_3604527 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Sep-02 |
| PublicationDateYYYYMMDD | 2025-09-02 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-Sep-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0014846 |
| Score | 2.478965 |
| Snippet | Objective: High-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However,... High-density surface electromyography (HD-sEMG) has emerged as a powerful tool for myoelectric control and activation pattern analysis. However, signal loss... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Benchmark testing Diffusion model Electrodes Electromyography Hands High-density Electromyography Interpolation Muscles Myoelectric control Noise reduction Recording Signal reconstruction Spatiotemporal phenomena |
| Title | RePaint High-Density Surface Electromyography Signal Using Denoising Diffusion Probabilistic Model |
| URI | https://ieeexplore.ieee.org/document/11145804 https://www.ncbi.nlm.nih.gov/pubmed/40892666 https://www.proquest.com/docview/3246387298 |
| Volume | PP |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLeABwQPbOPzgE2ZtKdJPdI07SWPgx1Ckw4hPiTeqiRNptOgh27tA_vrsdMebEhIU6UqD2naxHFtx_bPAF-MRYvaV2mSGeUSlLdZoq3Bmwg-R4FcKE4JzpPz4uxG_rjNb_tk9ZgL472PwWd-SM3oy69mrqWjsiPkS5krQv9cHqmiS9Z6dhlI1WXl8BQ5WGjZuzBTro-ujydjNAVFPswKghAf_SOEYlWVtxXMKGhO38H54hO7-JJfw7axQ_fnFXrjf8_hPWz0Kif71u2RD7Dk601Y_wuIcBNWJ72LfQvspb8w07phFAGSfKf49uaRXbXzYJxn465qzv1jj3TNrqY_afAYecCw92zataYhtHQQxy7m-MegCFwChGZUeu1uG25Ox9cnZ0lfiCFxaM41iRIutxwvgdxqpNUEqpePtLY2FSI1BQ-myrLUyDTkDic3qlATEarSqM85NNd3YKWe1X4PmDUEeSY156GQ2N-Kqsh8SHWQzmRaDuDrgjLlQ4e3UUY7heuSyFgSGcuejAPYpgV-6div7QA-L4hZIreQC8TUftb-LlF9xCmgQaEGsNtR-flpyZVGdaXYf2PUA1ijl8cAM3EIK8289R9RI2nsp7gTnwAe09sK |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED9GC9v60G5dt2XdhwZ7GjiVZcmxHveRkm1NKGsKfTOSLI2wzimp_dD-9b2Tne4DCsNg9CALSafz3enufgfwzli0qH2VJpkpXILyNku0NfgSwSsUyHnBKcF5Ossnp_LrmTrrk9VjLoz3Pgaf-SE1oy-_WrqWrsoOkC-lKgj9c1NJKVWXrnXrNJBFl5fDU-RhoWXvxEy5Pph_nI7RGBRqmOUEIj76SwzFuip3q5hR1BzuwGw9yS7C5OewbezQXf-D3_jfq3gE273SyT50p-Qx3PP1Lmz9AUW4C_envZP9Cdjv_tgs6oZRDEjymSLcmyt20q6CcZ6Nu7o5v656rGt2svhBg8fYA4a9l4uutQihpas4drzCfwbF4BIkNKPia-d7cHo4nn-aJH0phsShQdckhXDKcnwE8quRVhOsnhppbW0qRGpyHkyVZamRaVAOFzeqUBcRRaVRo3NosD-FjXpZ--fArCHQM6k5D7nE_lZUeeZDqoN0JtNyAO_XlCkvOsSNMloqXJdExpLIWPZkHMAebfDvjv3eDuDtmpgl8gs5QUztl-1liQokLgFNimIAzzoq334teaFRYclf3DHqG3gwmU-PyqMvs2_78JAmEsPNxEvYaFatf4X6SWNfx1N5A8CV3lc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RePaint+High-Density+Surface+Electromyography+Signal+Using+Denoising+Diffusion+Probabilistic+Model&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Zhao%2C+Yihui&rft.au=Liao%2C+Jiawei&rft.au=Fang%2C+Xia&rft.au=Wang%2C+Hai&rft.date=2025-09-02&rft.eissn=1558-2531&rft.volume=PP&rft_id=info:doi/10.1109%2FTBME.2025.3604527&rft_id=info%3Apmid%2F40892666&rft.externalDocID=40892666 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |