Blow up and asymptotic behavior of solutions for a p(x)-Laplacian equation with delay term and variable exponents
In this article, we consider a nonlinear p(x)-Laplacian equation with time delay and variable exponents. Firstly, we prove the blow up of solutions. Then, by applying an integral inequality due to Komornik, we obtain the decay result. For more information see https://ejde.math.txstate.edu/Volumes/20...
Saved in:
Published in | Electronic journal of differential equations Vol. 2021; no. 1-104; p. 84 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
08.10.2021
|
Online Access | Get full text |
ISSN | 1072-6691 1072-6691 |
DOI | 10.58997/ejde.2021.84 |
Cover
Abstract | In this article, we consider a nonlinear p(x)-Laplacian equation with time delay and variable exponents. Firstly, we prove the blow up of solutions. Then, by applying an integral inequality due to Komornik, we obtain the decay result.
For more information see https://ejde.math.txstate.edu/Volumes/2021/84/abstr.html |
---|---|
AbstractList | In this article, we consider a nonlinear p(x)-Laplacian equation with time delay and variable exponents. Firstly, we prove the blow up of solutions. Then, by applying an integral inequality due to Komornik, we obtain the decay result.
For more information see https://ejde.math.txstate.edu/Volumes/2021/84/abstr.html |
Author | Ferreira, Jorge Yuksekkaya, Hazal Piskin, Erhan Shahrouzi, Mohammad Antontsev, Stanislav |
Author_xml | – sequence: 1 givenname: Stanislav surname: Antontsev fullname: Antontsev, Stanislav – sequence: 2 givenname: Jorge surname: Ferreira fullname: Ferreira, Jorge – sequence: 3 givenname: Erhan surname: Piskin fullname: Piskin, Erhan – sequence: 4 givenname: Hazal surname: Yuksekkaya fullname: Yuksekkaya, Hazal – sequence: 5 givenname: Mohammad surname: Shahrouzi fullname: Shahrouzi, Mohammad |
BookMark | eNp1kM1PAjEQxRuDiYAevfeoh8W2291tj0r8Ski86Hkz9COUlO3SFoH_XkAPxsTTTObNe3n5jdCgC51B6JqSSSWkbO7MUpsJI4xOBD9DQ0oaVtS1pINf-wUapbQkhErO-BCtH3zY4k2PodMY0n7V55CdwnOzgE8XIg4Wp-A32YUuYXs4AO5vdrfFDHoPykGHzXoDRxlvXV5gbTzscTZxdYr8hOhg7g02u_7QtsvpEp1b8Mlc_cwx-nh6fJ--FLO359fp_axQVFJeVFVTMS4t8EpabmutDG14IySjJTFQl6Q2kinCSzpvBGGN0NISrUWlqeZElmNUfueqGFKKxrbK5VPRHMH5lpL2RK09UmuP1FrBD67ij6uPbgVx_8__F4v6clE |
CitedBy_id | crossref_primary_10_3233_ASY_231891 crossref_primary_10_32323_ujma_1028304 |
Cites_doi | 10.21136/CMJ.1991.102493 10.1016/j.camwa.2018.07.035 10.1080/00036811.2012.661043 10.23884/mejs.2019.5.2.05 10.1080/00036811.2018.1530760 10.1016/j.camwa.2017.07.048 10.2991/978-94-6239-112-3 10.1002/mma.5501 10.1137/060648891 10.4064/ap180524-31-10 10.7153/dea-03-32 10.1007/978-3-642-18363-8 10.1007/s00009-014-0500-4 10.1002/mma.4505 10.3934/dcds.2020084 10.1186/s13661-016-0682-8 10.1016/j.crme.2011.09.001 10.1016/j.aml.2018.07.008 10.11650/tjm/181105 10.1006/jmaa.2001.7618 10.1016/j.camwa.2018.03.005 10.1016/j.crme.2017.04.002 10.1002/mma.6254 10.1186/s13661-015-0395-4 10.1007/BFb0104030 10.1137/050624522 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.58997/ejde.2021.84 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1072-6691 |
ExternalDocumentID | 10_58997_ejde_2021_84 |
GroupedDBID | -~9 29G 2WC 5GY 5VS AAYXX ABDBF ACUHS ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS AMVHM B0M BCNDV CITATION E3Z EAP EMK EPL ESX FRJ FRP GROUPED_DOAJ KQ8 M~E OK1 OVT P2P QF4 QN7 REM RNS TR2 TUS XSB ~8M |
ID | FETCH-LOGICAL-c1914-5575249fa459f4f6dce1747892130ea6306e92c0431b780278d9f0dd85d1d4093 |
ISSN | 1072-6691 |
IngestDate | Tue Jul 01 02:01:31 EDT 2025 Thu Apr 24 23:05:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-104 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1914-5575249fa459f4f6dce1747892130ea6306e92c0431b780278d9f0dd85d1d4093 |
OpenAccessLink | https://ejde-ojs-txstate.tdl.org/ejde/article/download/322/303 |
ParticipantIDs | crossref_citationtrail_10_58997_ejde_2021_84 crossref_primary_10_58997_ejde_2021_84 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-08 |
PublicationDateYYYYMMDD | 2021-10-08 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-08 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | Electronic journal of differential equations |
PublicationYear | 2021 |
References | 9465 9487 9466 9488 9463 9485 9464 9486 9469 9467 9489 9468 9480 9483 9462 9484 9481 9482 9476 9477 9474 9475 9478 9479 9490 9491 9472 9473 9470 9492 9471 9493 |
References_xml | – ident: 9474 doi: 10.21136/CMJ.1991.102493 – ident: 9479 doi: 10.1016/j.camwa.2018.07.035 – ident: 9492 doi: 10.1080/00036811.2012.661043 – ident: 9486 doi: 10.23884/mejs.2019.5.2.05 – ident: 9469 doi: 10.1080/00036811.2018.1530760 – ident: 9480 doi: 10.1016/j.camwa.2017.07.048 – ident: 9462 doi: 10.2991/978-94-6239-112-3 – ident: 9482 doi: 10.1002/mma.5501 – ident: 9481 doi: 10.1137/060648891 – ident: 9487 – ident: 9489 – ident: 9475 doi: 10.4064/ap180524-31-10 – ident: 9464 doi: 10.7153/dea-03-32 – ident: 9466 doi: 10.1007/978-3-642-18363-8 – ident: 9472 doi: 10.1007/s00009-014-0500-4 – ident: 9473 – ident: 9476 doi: 10.1002/mma.4505 – ident: 9493 doi: 10.3934/dcds.2020084 – ident: 9468 doi: 10.1186/s13661-016-0682-8 – ident: 9463 doi: 10.1016/j.crme.2011.09.001 – ident: 9485 doi: 10.23884/mejs.2019.5.2.05 – ident: 9471 doi: 10.1016/j.aml.2018.07.008 – ident: 9483 doi: 10.11650/tjm/181105 – ident: 9467 doi: 10.1006/jmaa.2001.7618 – ident: 9491 doi: 10.1016/j.camwa.2018.03.005 – ident: 9470 doi: 10.1016/j.crme.2017.04.002 – ident: 9478 doi: 10.1002/mma.6254 – ident: 9488 – ident: 9477 doi: 10.1016/j.camwa.2018.07.035 – ident: 9484 doi: 10.1186/s13661-015-0395-4 – ident: 9490 doi: 10.1007/BFb0104030 – ident: 9465 doi: 10.1137/050624522 |
SSID | ssj0019424 |
Score | 2.3802838 |
Snippet | In this article, we consider a nonlinear p(x)-Laplacian equation with time delay and variable exponents. Firstly, we prove the blow up of solutions. Then, by... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 84 |
Title | Blow up and asymptotic behavior of solutions for a p(x)-Laplacian equation with delay term and variable exponents |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1072-6691 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019424 issn: 1072-6691 databaseCode: KQ8 dateStart: 19930101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ : directory of open access journals customDbUrl: eissn: 1072-6691 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019424 issn: 1072-6691 databaseCode: DOA dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1072-6691 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019424 issn: 1072-6691 databaseCode: ABDBF dateStart: 20030401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1072-6691 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019424 issn: 1072-6691 databaseCode: M~E dateStart: 19930101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoED4inKo_IBIVDxkk3sPI4t2mqFWE6tVE6R4zhiu2U33U1K2wO_ih_Ymdhx0moPhUsUWbYTZb6MZ8bjbwh553nak1khWCQzzjjXPpMyUSyHuwKUchIUeDh5-j2cHPGvx-J4MPjby1qqq2yorjaeK_kfqUIbyBVPyf6DZN2k0AD3IF-4goTheicZ758uf-_WpSFcXV_-Kqsl8q-2R-_REHQvYNIld0uwKGG9Sdg3ielY-HvrM0P3bWKyyBoJFiko7Gbac_Clm9NV-qJcLlriJxfL74ro9Cgo2qIrFUbj29md7b6HVYsrWJBNkplczACV57249krPViaDF8P1TnfP1rZy2Hj1s4P0j3q-1vO5vGxGTOSV_WY2kOHbTLqe7vUin4WhKd411BvarMLGwX1oMlvB2OpgU3Lu9tIgwLHE3Wl9kiM7qj8amn43KbhvLY0uYRFcpWaCFIenODyN-T1y34_CEOtmTP-M3d5Vwk0p5fbVDbNrM_xz_-k9S6hn0hw-Jo-sL0L3DLCekIFePCUPp47Id_2MnCHEaF1SwALtIEZbiNFlQR3EKECMSlp-uPjYwYu2AKAIL9rAiyK8milbeFEHr-fk6GB8-GXCbJUOppAbkAkw-MGHLyQXScGLMFd6hEUZEh_MIy1D8El14iskccqiGDe686Tw8jwW-SjnXhK8IFsLeMJLQmMlYN2OeZxFAVdKZSoQWRYIDVa9liLcJp_aL5YqS2GPlVRO043y2SbvXffScLds7vjqrh1fkwcdct-QrWpV67dglFbZThPM2WmQcA0yU5RA |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blow+up+and+asymptotic+behavior+of+solutions+for+a+p%28x%29-Laplacian+equation+with+delay+term+and+variable+exponents&rft.jtitle=Electronic+journal+of+differential+equations&rft.au=Antontsev%2C+Stanislav&rft.au=Ferreira%2C+Jorge&rft.au=Piskin%2C+Erhan&rft.au=Yuksekkaya%2C+Hazal&rft.date=2021-10-08&rft.issn=1072-6691&rft.eissn=1072-6691&rft.volume=2021&rft.issue=1-104&rft.spage=84&rft_id=info:doi/10.58997%2Fejde.2021.84&rft.externalDBID=n%2Fa&rft.externalDocID=10_58997_ejde_2021_84 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-6691&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-6691&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-6691&client=summon |