Self-supervised feature learning for cardiac Cine MR image reconstruction

We propose a self-supervised feature learning assisted reconstruction (SSFL-Recon) framework for MRI reconstruction to address the limitation of existing supervised learning methods. Although recent deep learning-based methods have shown promising performance in MRI reconstruction, most require full...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 44; no. 9; p. 1
Main Authors Xu, Siying, Fruh, Marcel, Hammernik, Kerstin, Lingg, Andreas, Kubler, Jens, Krumm, Patrick, Rueckert, Daniel, Gatidis, Sergios, Kustner, Thomas
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2025
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2025.3570226

Cover

Abstract We propose a self-supervised feature learning assisted reconstruction (SSFL-Recon) framework for MRI reconstruction to address the limitation of existing supervised learning methods. Although recent deep learning-based methods have shown promising performance in MRI reconstruction, most require fully-sampled images for supervised learning, which is challenging in practice considering long acquisition times under respiratory or organ motion. Moreover, nearly all fully-sampled datasets are obtained from conventional reconstruction of mildly accelerated datasets, thus potentially biasing the achievable performance. The numerous undersampled datasets with different accelerations in clinical practice, hence, remain underutilized. To address these issues, we first train a self-supervised feature extractor on undersampled images to learn sampling-insensitive features. The pre-learned features are subsequently embedded in the self-supervised reconstruction network to assist in removing artifacts. Experiments were conducted retrospectively on an in-house 2D cardiac Cine dataset, including 91 cardiovascular patients and 38 healthy subjects. The results demonstrate that the proposed SSFL-Recon framework outperforms existing self-supervised MRI reconstruction methods and even exhibits comparable or better performance to supervised learning up to 16× retrospective undersampling. The feature learning strategy can effectively extract global representations, which have proven beneficial in removing artifacts and increasing generalization ability during reconstruction.
AbstractList We propose a self-supervised feature learning assisted reconstruction (SSFL-Recon) framework for MRI reconstruction to address the limitation of existing supervised learning methods. Although recent deep learning-based methods have shown promising performance in MRI reconstruction, most require fully-sampled images for supervised learning, which is challenging in practice considering long acquisition times under respiratory or organ motion. Moreover, nearly all fully-sampled datasets are obtained from conventional reconstruction of mildly accelerated datasets, thus potentially biasing the achievable performance. The numerous undersampled datasets with different accelerations in clinical practice, hence, remain underutilized. To address these issues, we first train a self-supervised feature extractor on undersampled images to learn sampling-insensitive features. The pre-learned features are subsequently embedded in the self-supervised reconstruction network to assist in removing artifacts. Experiments were conducted retrospectively on an in-house 2D cardiac Cine dataset, including 91 cardiovascular patients and 38 healthy subjects. The results demonstrate that the proposed SSFL-Recon framework outperforms existing self-supervised MRI reconstruction methods and even exhibits comparable or better performance to supervised learning up to ${16}\times $ retrospective undersampling. The feature learning strategy can effectively extract global representations, which have proven beneficial in removing artifacts and increasing generalization ability during reconstruction.
We propose a self-supervised feature learning assisted reconstruction (SSFL-Recon) framework for MRI reconstruction to address the limitation of existing supervised learning methods. Although recent deep learning-based methods have shown promising performance in MRI reconstruction, most require fully-sampled images for supervised learning, which is challenging in practice considering long acquisition times under respiratory or organ motion. Moreover, nearly all fully-sampled datasets are obtained from conventional reconstruction of mildly accelerated datasets, thus potentially biasing the achievable performance. The numerous undersampled datasets with different accelerations in clinical practice, hence, remain underutilized. To address these issues, we first train a self-supervised feature extractor on undersampled images to learn sampling-insensitive features. The pre-learned features are subsequently embedded in the self-supervised reconstruction network to assist in removing artifacts. Experiments were conducted retrospectively on an in-house 2D cardiac Cine dataset, including 91 cardiovascular patients and 38 healthy subjects. The results demonstrate that the proposed SSFL-Recon framework outperforms existing self-supervised MRI reconstruction methods and even exhibits comparable or better performance to supervised learning up to 16× retrospective undersampling. The feature learning strategy can effectively extract global representations, which have proven beneficial in removing artifacts and increasing generalization ability during reconstruction.
We propose a self-supervised feature learning assisted reconstruction (SSFL-Recon) framework for MRI reconstruction to address the limitation of existing supervised learning methods. Although recent deep learning-based methods have shown promising performance in MRI reconstruction, most require fully-sampled images for supervised learning, which is challenging in practice considering long acquisition times under respiratory or organ motion. Moreover, nearly all fully-sampled datasets are obtained from conventional reconstruction of mildly accelerated datasets, thus potentially biasing the achievable performance. The numerous undersampled datasets with different accelerations in clinical practice, hence, remain underutilized. To address these issues, we first train a self-supervised feature extractor on undersampled images to learn sampling-insensitive features. The pre-learned features are subsequently embedded in the self-supervised reconstruction network to assist in removing artifacts. Experiments were conducted retrospectively on an in-house 2D cardiac Cine dataset, including 91 cardiovascular patients and 38 healthy subjects. The results demonstrate that the proposed SSFL-Recon framework outperforms existing self-supervised MRI reconstruction methods and even exhibits comparable or better performance to supervised learning up to 16× retrospective undersampling. The feature learning strategy can effectively extract global representations, which have proven beneficial in removing artifacts and increasing generalization ability during reconstruction.We propose a self-supervised feature learning assisted reconstruction (SSFL-Recon) framework for MRI reconstruction to address the limitation of existing supervised learning methods. Although recent deep learning-based methods have shown promising performance in MRI reconstruction, most require fully-sampled images for supervised learning, which is challenging in practice considering long acquisition times under respiratory or organ motion. Moreover, nearly all fully-sampled datasets are obtained from conventional reconstruction of mildly accelerated datasets, thus potentially biasing the achievable performance. The numerous undersampled datasets with different accelerations in clinical practice, hence, remain underutilized. To address these issues, we first train a self-supervised feature extractor on undersampled images to learn sampling-insensitive features. The pre-learned features are subsequently embedded in the self-supervised reconstruction network to assist in removing artifacts. Experiments were conducted retrospectively on an in-house 2D cardiac Cine dataset, including 91 cardiovascular patients and 38 healthy subjects. The results demonstrate that the proposed SSFL-Recon framework outperforms existing self-supervised MRI reconstruction methods and even exhibits comparable or better performance to supervised learning up to 16× retrospective undersampling. The feature learning strategy can effectively extract global representations, which have proven beneficial in removing artifacts and increasing generalization ability during reconstruction.
Author Kubler, Jens
Gatidis, Sergios
Krumm, Patrick
Xu, Siying
Lingg, Andreas
Fruh, Marcel
Hammernik, Kerstin
Rueckert, Daniel
Kustner, Thomas
Author_xml – sequence: 1
  givenname: Siying
  orcidid: 0009-0000-1713-4951
  surname: Xu
  fullname: Xu, Siying
  email: siying.xu@med.uni-tuebingen.de
  organization: Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany
– sequence: 2
  givenname: Marcel
  surname: Fruh
  fullname: Fruh, Marcel
  email: marcel.frueh@med.uni-tuebingen.de
  organization: Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany
– sequence: 3
  givenname: Kerstin
  orcidid: 0000-0002-2734-1409
  surname: Hammernik
  fullname: Hammernik, Kerstin
  email: k.hammernik@tum.de
  organization: School of Computation, Information and Technology, Technical University of Munich, Germany
– sequence: 4
  givenname: Andreas
  orcidid: 0000-0001-8583-8627
  surname: Lingg
  fullname: Lingg, Andreas
  email: andreas.lingg@med.uni-tuebingen.de
  organization: Department of Diagnostic and Interventional Radiology, University of Tuebingen, Germany
– sequence: 5
  givenname: Jens
  surname: Kubler
  fullname: Kubler, Jens
  email: jens.kuebler@med.uni-tuebingen.de
  organization: Department of Diagnostic and Interventional Radiology, University of Tuebingen, Germany
– sequence: 6
  givenname: Patrick
  orcidid: 0000-0003-1705-8439
  surname: Krumm
  fullname: Krumm, Patrick
  email: patrick.krumm@med.uni-tuebingen.de
  organization: Department of Diagnostic and Interventional Radiology, University of Tuebingen, Germany
– sequence: 7
  givenname: Daniel
  orcidid: 0000-0002-5683-5889
  surname: Rueckert
  fullname: Rueckert, Daniel
  email: daniel.rueckert@tum.de
  organization: School of Computation, Information and Technology, Technical University of Munich, Germany
– sequence: 8
  givenname: Sergios
  orcidid: 0000-0002-6928-4967
  surname: Gatidis
  fullname: Gatidis, Sergios
  email: sergios.gatidis@med.uni-tuebingen.de
  organization: Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany
– sequence: 9
  givenname: Thomas
  orcidid: 0000-0002-0353-4898
  surname: Kustner
  fullname: Kustner, Thomas
  email: thomas.kuestner@med.uni-tuebingen.de
  organization: Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40408221$$D View this record in MEDLINE/PubMed
BookMark eNpFkEtLw0AUhQdRtK3uXYjM0k3qnWeSpRQfhRZBK7gbksmdEkkndSYR_PemtOrqbr5zuOcbk2PfeiTkksGUMchvV8v5lANXU6FS4FwfkRFTKku4ku_HZAQ8zRIAzc_IOMYPACYV5KfkTIKEjHM2IvNXbFwS-y2GrzpiRR0WXR-QNlgEX_s1dW2gtghVXVg6qz3S5QutN8UaaUDb-tiF3nZ168_JiSuaiBeHOyFvD_er2VOyeH6cz-4WiWU5dIkStuTappxVrkyd1IqVSudlxpxwrhK61JhbmWqZIerdroEAleoSuSwyLibkZt-7De1nj7EzmzpabJrCY9tHIzikHJjI9IBeH9C-3GBltmF4PHyb3_kDAHvAhjbGgO4PYWB2hs1g2OwMm4PhIXK1j9SI-I-zwa1mufgBRlt1UQ
CODEN ITMID4
Cites_doi 10.1002/mrm.30105
10.1002/mrm.10171
10.1109/TMI.2017.2760978
10.1002/nbm.4798
10.1002/mrm.29759
10.1002/mrm.26977
10.1109/TCBB.2022.3213669
10.1038/s41598-020-70551-8
10.1002/mrm.27480
10.1007/978-3-030-20351-1_61
10.1109/TMI.2014.2301271
10.1002/mrm.21236
10.1109/CVPR42600.2020.00975
10.1109/TIP.2013.2277798
10.1002/mrm.26081
10.1109/TBME.2018.2821699
10.1007/s10334-024-01173-8
10.1109/TCI.2023.3299212
10.1038/s41598-021-97995-w
10.1002/mrm.25507
10.1186/s12880-021-00727-9
10.1109/TMI.2010.2100850
10.1109/CVPR46437.2021.01549
10.1109/CVPR42600.2020.01208
10.1002/nbm.5143
10.58530/2022/1051
10.1109/TMI.2019.2930318
10.1109/ITAB.2008.4570588
10.1002/mrm.22428
10.1142/9789812797926_0003
10.1073/pnas.1907377117
10.1002/mrm.24751
10.1109/SSIAI.2016.7459186
10.1002/mrm.28378
10.1002/mrm.28485
10.1016/j.media.2010.08.001
10.1002/mrm.27420
10.1109/IEEECONF59524.2023.10477042
10.1109/ICCV48922.2021.00978
10.1002/mrm.27201
10.1016/j.media.2022.102538
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1137/040605412
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TMI.2025.3570226
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1
ExternalDocumentID 40408221
10_1109_TMI_2025_3570226
11014619
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: EXC 2064/1 ? 390727645
  funderid: 10.13039/501100001659
GroupedDBID ---
-DZ
-~X
0R~
29I
4.4
5GY
5RE
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
.GJ
53G
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c190t-53cb26c721dfb7f4651b569b81f3ffd36b6e9c47648ee635706510576be24a823
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Wed Jul 02 02:56:46 EDT 2025
Sat Sep 27 02:51:35 EDT 2025
Thu Sep 25 00:46:54 EDT 2025
Wed Aug 27 01:52:25 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c190t-53cb26c721dfb7f4651b569b81f3ffd36b6e9c47648ee635706510576be24a823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1705-8439
0000-0002-2734-1409
0000-0002-6928-4967
0000-0002-0353-4898
0000-0001-8583-8627
0000-0002-5683-5889
0009-0000-1713-4951
0000-0002-3450-7585
PMID 40408221
PQID 3207201386
PQPubID 23479
PageCount 1
ParticipantIDs ieee_primary_11014619
crossref_primary_10_1109_TMI_2025_3570226
proquest_miscellaneous_3207201386
pubmed_primary_40408221
PublicationCentury 2000
PublicationDate 2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref53
Kingma (ref50) 2014
ref52
ref11
ref10
ref17
ref16
ref19
ref18
Žbontar (ref41)
ref51
Song (ref32) 2021
Chen (ref40)
ref47
ref42
Yi (ref44) 2021
van den Oord (ref45) 2018
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref36
ref31
ref30
ref2
ref1
ref39
Chen (ref48) 2020
Arjovsky (ref46)
Bardes (ref38)
ref24
ref23
ref26
ref25
ref20
ref22
Cui (ref33) 2022
ref21
ref28
ref27
ref29
References_xml – year: 2022
  ident: ref33
  article-title: Self-score: Self-supervised learning on score-based models for MRI reconstruction
  publication-title: arXiv:2209.00835
– ident: ref22
  doi: 10.1002/mrm.30105
– year: 2021
  ident: ref44
  article-title: Contrastive learning for local and global learning MRI reconstruction
  publication-title: arXiv:2111.15200
– ident: ref2
  doi: 10.1002/mrm.10171
– ident: ref17
  doi: 10.1109/TMI.2017.2760978
– ident: ref27
  doi: 10.1002/nbm.4798
– ident: ref31
  doi: 10.1002/mrm.29759
– year: 2020
  ident: ref48
  article-title: OCMR (v1.0)-Open-Access multi-coil k-Space dataset for cardiovascular magnetic resonance imaging
  publication-title: arXiv:2008.03410
– ident: ref18
  doi: 10.1002/mrm.26977
– year: 2021
  ident: ref32
  article-title: Solving inverse problems in medical imaging with score-based generative models
  publication-title: arXiv:2111.08005
– ident: ref43
  doi: 10.1109/TCBB.2022.3213669
– ident: ref19
  doi: 10.1038/s41598-020-70551-8
– year: 2014
  ident: ref50
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref15
  doi: 10.1002/mrm.27480
– ident: ref52
  doi: 10.1007/978-3-030-20351-1_61
– ident: ref9
  doi: 10.1109/TMI.2014.2301271
– ident: ref7
  doi: 10.1002/mrm.21236
– ident: ref36
  doi: 10.1109/CVPR42600.2020.00975
– ident: ref8
  doi: 10.1109/TIP.2013.2277798
– ident: ref12
  doi: 10.1002/mrm.26081
– start-page: 12310
  volume-title: Proc. ICML
  ident: ref41
  article-title: Barlow twins: Self-supervised learning via redundancy reduction
– ident: ref14
  doi: 10.1109/TBME.2018.2821699
– ident: ref24
  doi: 10.1007/s10334-024-01173-8
– ident: ref28
  doi: 10.1109/TCI.2023.3299212
– ident: ref53
  doi: 10.1038/s41598-021-97995-w
– ident: ref47
  doi: 10.1002/mrm.25507
– ident: ref23
  doi: 10.1186/s12880-021-00727-9
– start-page: 1
  volume-title: Proc. ICML
  ident: ref40
  article-title: A simple framework for contrastive learning of visual representations
– ident: ref51
  doi: 10.1109/TMI.2010.2100850
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref38
  article-title: VICReg: Variance-invariance-covariance regularization for self-supervised learning
– ident: ref37
  doi: 10.1109/CVPR46437.2021.01549
– ident: ref29
  doi: 10.1109/CVPR42600.2020.01208
– year: 2018
  ident: ref45
  article-title: Representation learning with contrastive predictive coding
  publication-title: arXiv:1807.03748
– start-page: 1120
  volume-title: Proc. ICML
  ident: ref46
  article-title: Unitary evolution recurrent neural networks
– ident: ref42
  doi: 10.1002/nbm.5143
– ident: ref49
  doi: 10.58530/2022/1051
– ident: ref16
  doi: 10.1109/TMI.2019.2930318
– ident: ref11
  doi: 10.1109/ITAB.2008.4570588
– ident: ref3
  doi: 10.1002/mrm.22428
– ident: ref39
  doi: 10.1142/9789812797926_0003
– ident: ref25
  doi: 10.1073/pnas.1907377117
– ident: ref4
  doi: 10.1002/mrm.24751
– ident: ref10
  doi: 10.1109/SSIAI.2016.7459186
– ident: ref26
  doi: 10.1002/mrm.28378
– ident: ref21
  doi: 10.1002/mrm.28485
– ident: ref5
  doi: 10.1016/j.media.2010.08.001
– ident: ref13
  doi: 10.1002/mrm.27420
– ident: ref34
  doi: 10.1109/IEEECONF59524.2023.10477042
– ident: ref35
  doi: 10.1109/ICCV48922.2021.00978
– ident: ref20
  doi: 10.1002/mrm.27201
– ident: ref30
  doi: 10.1016/j.media.2022.102538
– ident: ref1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: ref6
  doi: 10.1137/040605412
SSID ssj0014509
Score 2.4845197
Snippet We propose a self-supervised feature learning assisted reconstruction (SSFL-Recon) framework for MRI reconstruction to address the limitation of existing...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Adult
Algorithms
cardiac Cine MRI
Contrastive learning
Data mining
Deep Learning
Feature extraction
feature learning
Female
Heart - diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Image reconstruction
Imaging
Magnetic resonance imaging
Magnetic Resonance Imaging, Cine - methods
Male
MRI reconstruction
Reconstruction algorithms
Representation learning
self-supervised learning
Sensitivity
Supervised Machine Learning
Training
Title Self-supervised feature learning for cardiac Cine MR image reconstruction
URI https://ieeexplore.ieee.org/document/11014619
https://www.ncbi.nlm.nih.gov/pubmed/40408221
https://www.proquest.com/docview/3207201386
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gBwQHHuM1XgoSFw4dbZqm7REhpg1pO8Am7VY1qYMQsE3aduHXY6fteEhIXKoemj5iN7Zj-_sYu0qLJDHKgGfQHHm4Shovz431YgiKXEtVSEXNyf2B6o7kwzgaV83qrhcGAFzxGbTp1OXyi6lZ0lbZTUDEsopAPtdRz8pmrVXKQEZlPYcgyFhfiTon6ac3w34PI0ERtcMoRptFtEXSJ6ZlEfwwR45f5W9X05mczg4b1C9bVpq8tpcL3TYfv3Ac__01u2y7cj75bakte2wNJk229Q2SsMk2-lWyfZ_1nuDNevPljJaTORTcgkMB5RXTxDNHh5cbp2KG3-EY3n_kL--4QnEXZ6-waQ_YqHM_vOt6FfOCZ9BBWHhRaLRQBqPDwurYEl-6jlSqk8CG1hah0gpSI2MlEwBCtENHhgiDlQYh80SEh6wxmU7gmPGIcEbzJLS5SCXgQRTKEIopdbRKHbTYdS2AbFYCbGQuMPHTDOWWkdyySm4tdkDT-HVdNYMtdlmLLMO_g1Ie-QSmy3kWCj8WlIzFsUelLFejaxU4-eOup2yTHl4WlJ2xBs4ZnKMHstAXTvM-AXHD00A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0hkGh7oEApXQrFSL30kCVxHCc5IgTapWQPsEjcotgZowrYRdrdS399Z5xk-ZCQeolyiCPHM_HMeGbeA_iZ11lmtcXAkjkKaJe0QVVZF6QY1ZVRulaam5OLkR7cqIvb5LZtVve9MIjoi8-wz7c-l19P7YKPyo4jJpbVDPK5llBYkTXtWsukgUqaig7JoLGhll1WMsyPx8WQYkGZ9OMkJavFxEUqZK5lGb0ySJ5h5X1n0xud888w6qbb1Jrc9xdz07d_3yA5_vf3bMJG636Kk0ZftmAFJ9vw6QUo4TasF226_QsMr_HBBbPFE28oM6yFQ48DKlquiTtBLq-wXsmsOKUxorgSfx5pjxI-0l6i0-7AzfnZ-HQQtNwLgSUXYR4ksTVSW4oPa2dSx4zpJtG5ySIXO1fH2mjMrUq1yhAZ045cGaYM1galqjIZf4XVyXSC30AkjDRaZbGrZK6QLrLWlnFMuadVmagHvzoBlE8NxEbpQ5MwL0luJcutbOXWgx1exufn2hXswVEnspL-D056VBOcLmZlLMNUcjqWxu42slyO7lRg7523HsKHwbi4LC-Ho9_f4SNPpCkv24dVWj88IH9kbn54LfwHwSHWkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Supervised+Feature+Learning+for+Cardiac+Cine+MR+Image+Reconstruction&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Xu%2C+Siying&rft.au=Fruh%2C+Marcel&rft.au=Hammernik%2C+Kerstin&rft.au=Lingg%2C+Andreas&rft.date=2025-09-01&rft.eissn=1558-254X&rft.volume=44&rft.issue=9&rft.spage=3858&rft_id=info:doi/10.1109%2FTMI.2025.3570226&rft_id=info%3Apmid%2F40408221&rft.externalDocID=40408221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon