First Vehicle Arrival Time Prediction at Signalized Intersection Based on Wavelet-Elman Neural Network
There is a close relationship between the vehicle arrival time at signalized intersection and the vehicle delay at intersection entrance. When the red light of the signalized intersection is on, the first vehicle stopping at the stop line of the entrance is taken as the study object, and the time di...
Saved in:
| Published in | NeuroQuantology Vol. 16; no. 6 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Bornova Izmir
NeuroQuantology
2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1303-5150 1303-5150 |
| DOI | 10.14704/nq.2018.16.6.1657 |
Cover
| Abstract | There is a close relationship between the vehicle arrival time at signalized intersection and the vehicle delay at intersection entrance. When the red light of the signalized intersection is on, the first vehicle stopping at the stop line of the entrance is taken as the study object, and the time difference in the red light’s turning on and the first vehicle’s arriving at the stop line is defined as the first vehicle arrival time at signalized intersection. There is great randomness in the first vehicle arrival time series at signalized intersection. Firstly, the wavelet transform (WT) method is adopted to decompose the non-stationary original arrival time series into low-frequency signal and high-frequency signal. Then the dynamics and fast feedback of Elman neural network are used to predict different signals respectively. Finally, a final predicted result of the first vehicle arrival time is obtained when they are subject to linear superposition. The result shows that the error of the first vehicle arrival time prediction at signalized intersection based on wavelet-Elman neural network is small, and the predicted value is highly consistent with the actual value, which can provide reliable data source for delay parameter extraction and signal timing optimization at signalized intersection. |
|---|---|
| AbstractList | There is a close relationship between the vehicle arrival time at signalized intersection and the vehicle delay at intersection entrance. When the red light of the signalized intersection is on, the first vehicle stopping at the stop line of the entrance is taken as the study object, and the time difference in the red light’s turning on and the first vehicle’s arriving at the stop line is defined as the first vehicle arrival time at signalized intersection. There is great randomness in the first vehicle arrival time series at signalized intersection. Firstly, the wavelet transform (WT) method is adopted to decompose the non-stationary original arrival time series into low-frequency signal and high-frequency signal. Then the dynamics and fast feedback of Elman neural network are used to predict different signals respectively. Finally, a final predicted result of the first vehicle arrival time is obtained when they are subject to linear superposition. The result shows that the error of the first vehicle arrival time prediction at signalized intersection based on wavelet-Elman neural network is small, and the predicted value is highly consistent with the actual value, which can provide reliable data source for delay parameter extraction and signal timing optimization at signalized intersection. |
| Author | Jiang, Wuting Ao, Guchang Yang, Linyu Zhang, Huiling |
| Author_xml | – sequence: 1 givenname: Guchang surname: Ao fullname: Ao, Guchang – sequence: 2 givenname: Huiling surname: Zhang fullname: Zhang, Huiling – sequence: 3 givenname: Linyu surname: Yang fullname: Yang, Linyu – sequence: 4 givenname: Wuting surname: Jiang fullname: Jiang, Wuting |
| BookMark | eNp9UE1PAjEQbYwmAvoHPG3iedd2P9sjElASgiaiHptud6rFpQttweivt4gH48HLzGTmvZc3r4-OTWcAoQuCE5JXOL8ymyTFhCakTMpQiuoI9UiGs7ggBT7-NZ-ivnNLjIsKs7KH1ERb56MneNWyhWhord6JNlroFUT3Fhotve5MJHz0oF-MaPUnNNHUeLAODqdr4cIqDM9iBy34eNyuhInmsLVBaA7-vbNvZ-hEidbB-U8foMfJeDG6jWd3N9PRcBZLwrAPBpWStGKKEqzqGrIiraqMpYLUTQENa0qlCsloDg2RuZBMCUKzEkhOGdS5zAbo8qC7tt1mC87zZbe1wbfjKaaYEZrjNKDoASVt55wFxaX2Yv-Nt0K3nGD-nSo3G75PlZOSl3yfaqCmf6hrq1fCfvxH-gLwl35B |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2950327 |
| ContentType | Journal Article |
| Copyright | Copyright NeuroQuantology 2018 |
| Copyright_xml | – notice: Copyright NeuroQuantology 2018 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88G 8FE 8FG 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. M0S M2M P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U |
| DOI | 10.14704/nq.2018.16.6.1657 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Psychology Database (Alumni) ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Psychology Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest One Psychology ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest One Psychology |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1303-5150 |
| ExternalDocumentID | 10_14704_nq_2018_16_6_1657 |
| GroupedDBID | --- 123 29N 2WC 7X7 8FE 8FG 8FI 8FJ AAYXX ABUWG ACIHN ADBBV AEAQA AENEX AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ BVXVI CCPQU CITATION DWQXO E3Z FYUFA GNUQQ GX1 HCIFZ HMCUK IHR KWQ M2M M~E OK1 OVT P62 P6G PHGZM PHGZT PQGLB PQQKQ PROAC PSYQQ PUEGO PV9 RZL TR2 UKHRP XSB 3V. 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c190t-51ffc879f810fbbe35277392a1bd5ed9d6ff5c984ed1c4ac9fa1836e1489eb4c3 |
| IEDL.DBID | BENPR |
| ISSN | 1303-5150 |
| IngestDate | Tue Oct 07 06:42:34 EDT 2025 Wed Oct 01 00:51:33 EDT 2025 Thu Apr 24 23:01:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c190t-51ffc879f810fbbe35277392a1bd5ed9d6ff5c984ed1c4ac9fa1836e1489eb4c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2080918402 |
| PQPubID | 2035897 |
| ParticipantIDs | proquest_journals_2080918402 crossref_citationtrail_10_14704_nq_2018_16_6_1657 crossref_primary_10_14704_nq_2018_16_6_1657 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-00-00 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – year: 2018 text: 2018-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | Bornova Izmir |
| PublicationPlace_xml | – name: Bornova Izmir |
| PublicationTitle | NeuroQuantology |
| PublicationYear | 2018 |
| Publisher | NeuroQuantology |
| Publisher_xml | – name: NeuroQuantology |
| SSID | ssj0057096 |
| Score | 2.059357 |
| Snippet | There is a close relationship between the vehicle arrival time at signalized intersection and the vehicle delay at intersection entrance. When the red light of... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| SubjectTerms | Neural networks Optimization Time series Traffic intersections Wavelet transforms |
| Title | First Vehicle Arrival Time Prediction at Signalized Intersection Based on Wavelet-Elman Neural Network |
| URI | https://www.proquest.com/docview/2080918402 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1303-5150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057096 issn: 1303-5150 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1303-5150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057096 issn: 1303-5150 databaseCode: M~E dateStart: 20030101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1303-5150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057096 issn: 1303-5150 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1303-5150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057096 issn: 1303-5150 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1303-5150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057096 issn: 1303-5150 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV25TgMxELUgNDQIBIgzckGHDHFi73oLhAAlICQixJnO8gmRYCHJ0vD1zOzB0dBYq_Wui2d73hsfM4TsSa6i8F3Fel0fmPDRskzJjPVM1vGpNN6WQX2uhsnFvbgcydEcGTZ3YfBYZWMTS0Pt3xyukYOTroDawB3pHr9PGGaNwt3VJoWGqVMr-KMyxNg8WehiZKwWWTjtD69vGtssU1Ds9dUZkXbEYT7B013qgCcHCRRIUr_p6a91LilnsEyWaq1IT6rOXSFzIV8lcTAGwUYfwjO-hMrpGAYLxasc9HqK2y4INTUFvR0_ocr-DJ6W636zUFWdAnF5Cg-PBrNOFKz_8mpyimE6oKFhdS58jdwP-ndnF6xOlsAccHrBJI_RqTSLineitQGEVZqC-DHcehl85pMYpcuUCJ47YVwWDczmJIA7lAUrXG-dtPK3PGwQyqUTHohfWeOEE1I5qwC64LyTIlq1SXiDkXZ1JHFMaPGi0aNAXHU-0Yir5olONOK6Sfa__3mv4mj8-_VOA72u59RM_4yArf-rt8kiNlctlOyQVjH9CLsgHQrbJvPpKIVSDc7b9dj4An0Hxps |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxQxFG4QDnoxEjSiCD3gyRS3s-1MeyBGZDeLwIYoKLfan7oJDuzuGAN_HH-b780PkAs3LpPJdKaH19f5vq_te4-QTclVEiFTrJ-FyERIjmklNetb3QuFtMHVSX0Ox_noRHw-lacL5LqLhcFjld0_sf5Rh3OPa-Qg0hVAG8iR7MPFlGHVKNxd7Upo2La0QtiuU4y1gR378fIvSLj59t4ujPfbLBsOjj-NWFtlgHkAw4pJnpJXhU6K95JzERhJUQBrsNwFGYMOeUrSayVi4F5Yr5OFaZBH0BE6OuH70O8jsiT6QoP4W9oZjI--dFggC1AIbaiOKHrifTnF02Rqi-dbOVwQFP-Hw7toUEPc8Bl52nJT-rFxpmWyEMsVkoYTIIj0W_yFD6FxNgHnpBg6Qo9muM2DQ0ttRb9OfiKrv4qB1uuM89g07QBQBgo33y1WuajY4Oy3LSmmBYGOxs059Ofk5EHM9oIsludlfEkol14EIBrKWS-8kMo7BaaLPngpklOrhHc2Mr7NXI4FNM4MKhi0qymnBu1qeG5yg3ZdJe9uvrlo8nbc-_ZaZ3rTzuG5ufW4V_c3b5DHo-PDA3OwN95_TZ5g180izRpZrGZ_4hugLZVbb32Dkh8P7Y7_AFdRA1M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+Vehicle+Arrival+Time+Prediction+at+Signalized+Intersection+Based+on+Wavelet-Elman+Neural+Network&rft.jtitle=NeuroQuantology&rft.au=Ao%2C+Guchang&rft.au=Zhang%2C+Huiling&rft.au=Yang%2C+Linyu&rft.au=Jiang%2C+Wuting&rft.date=2018&rft.pub=NeuroQuantology&rft.eissn=1303-5150&rft.volume=16&rft.issue=6&rft_id=info:doi/10.14704%2Fnq.2018.16.6.1657 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1303-5150&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1303-5150&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1303-5150&client=summon |