A Technical Evaluation of Landslide Vulnerability Using Analytical Hierarchy Process ( AHP ) and the Frequency Ratio ( FR ) Methods for Chamoli Region of Uttarakhand, India

The Chamoli region of Uttarakhand, India, is vulnerable to landslides because of its varied terrain, intense monsoonal rains and growing infrastructure. Landslides in this region pose a significant threat to life, infrastructure, and the local economy, urging the need for better landslide susceptibi...

Full description

Saved in:
Bibliographic Details
Published inGeological journal (Chichester, England)
Main Authors Singh, Shubham, Nayak, Nirlipta Priyadarshani, Aggarwal, Ashish, Verma, Harsh Kumar
Format Journal Article
LanguageEnglish
Published 28.07.2025
Online AccessGet full text
ISSN0072-1050
1099-1034
DOI10.1002/gj.70045

Cover

Abstract The Chamoli region of Uttarakhand, India, is vulnerable to landslides because of its varied terrain, intense monsoonal rains and growing infrastructure. Landslides in this region pose a significant threat to life, infrastructure, and the local economy, urging the need for better landslide susceptibility maps that will be beneficial for disaster preparedness and management. To evaluate landslide vulnerability throughout the region, the study combines GIS (Geographic Information System) tools with the AHP (Analytical Hierarchy Process) and the FR (Frequency Ratio) models. The analysis included 11 landslide causative factors, namely geology, slope, plan curvature, profile curvature, aspect, rainfall, NDVI, LULC, proximity to roads, drainage and faults. These causative factors are chosen based on their relevance to the regional terrain conditions, literature survey and correlation with landslide occurrences. The results from the AHP and FR models classified the area into five susceptibility zones. 21.47% of the region is classed as having very high susceptibility under the AHP model, whereas 12.63% is classified as such by the FR model. These findings indicate that a major portion of the Chamoli region faces significant landslide risks, highlighting the need for focused risk reduction strategies. Model validation using AUC (Area Under Curve) analysis revealed success rates of 0.829 (95% Confidence Interval (CI): 0.805–0.845) for AHP and 0.820 (95% CI: 0.806–0.834) for FR, while the prediction rates for AHP and FR were 0.834 (95% CI: 0.806–0.857) and 0.818 (95% CI: 0.796–0.839). The close alignment between success and prediction rates in both models indicated minimal overfitting, suggesting the models' consistent performance on both known and new data. Overall, the results demonstrate that both AHP and FR are effective and reliable approaches for landslide susceptibility mapping in the study area.
AbstractList The Chamoli region of Uttarakhand, India, is vulnerable to landslides because of its varied terrain, intense monsoonal rains and growing infrastructure. Landslides in this region pose a significant threat to life, infrastructure, and the local economy, urging the need for better landslide susceptibility maps that will be beneficial for disaster preparedness and management. To evaluate landslide vulnerability throughout the region, the study combines GIS (Geographic Information System) tools with the AHP (Analytical Hierarchy Process) and the FR (Frequency Ratio) models. The analysis included 11 landslide causative factors, namely geology, slope, plan curvature, profile curvature, aspect, rainfall, NDVI, LULC, proximity to roads, drainage and faults. These causative factors are chosen based on their relevance to the regional terrain conditions, literature survey and correlation with landslide occurrences. The results from the AHP and FR models classified the area into five susceptibility zones. 21.47% of the region is classed as having very high susceptibility under the AHP model, whereas 12.63% is classified as such by the FR model. These findings indicate that a major portion of the Chamoli region faces significant landslide risks, highlighting the need for focused risk reduction strategies. Model validation using AUC (Area Under Curve) analysis revealed success rates of 0.829 (95% Confidence Interval (CI): 0.805–0.845) for AHP and 0.820 (95% CI: 0.806–0.834) for FR, while the prediction rates for AHP and FR were 0.834 (95% CI: 0.806–0.857) and 0.818 (95% CI: 0.796–0.839). The close alignment between success and prediction rates in both models indicated minimal overfitting, suggesting the models' consistent performance on both known and new data. Overall, the results demonstrate that both AHP and FR are effective and reliable approaches for landslide susceptibility mapping in the study area.
Author Nayak, Nirlipta Priyadarshani
Verma, Harsh Kumar
Singh, Shubham
Aggarwal, Ashish
Author_xml – sequence: 1
  givenname: Shubham
  surname: Singh
  fullname: Singh, Shubham
  organization: Energy Cluster, UPES Dehradun India
– sequence: 2
  givenname: Nirlipta Priyadarshani
  surname: Nayak
  fullname: Nayak, Nirlipta Priyadarshani
  organization: Energy Cluster, UPES Dehradun India
– sequence: 3
  givenname: Ashish
  orcidid: 0000-0001-9144-2872
  surname: Aggarwal
  fullname: Aggarwal, Ashish
  organization: Energy Cluster, UPES Dehradun India
– sequence: 4
  givenname: Harsh Kumar
  surname: Verma
  fullname: Verma, Harsh Kumar
  organization: CSIR—Central Institute of Mining and Fuel Research, Research Centre Bilaspur Bilaspur India
BookMark eNotkN1qwkAQRpdioWoLfYS5tNDY2fwYcymiVbBURHsbxt1NsjZu2t1YyDv1IRutVzPM4TsDX491TGUUY48chxzRf8kPwxgxjG5Yl2OSeByDsMO6iLHf7hHesZ5zB0TOMeRd9juBrRKF0YJKmP1QeaJaVwaqDFZkpCu1VPBxKo2ytNelrhvYOW1ymBgqm_oSW-gWWlE0sLaVUM7BACaLNTxBa4C6UDC36vukjGhgc9a3fL5p8Zuqi0o6yCoL04KOValho_Lr_11dk6XPopU8w9JITffsNqPSqYfr7LPdfLadLrzV--tyOll5gidYez4moyTAIAkkUSCFvx_7I1-GIYVyLP0wbm9CEMYiUjKiiJCTVHy0V1K1vQRBnw3-vcJWzlmVpV9WH8k2Kcf03HKaH9JLy8Efq3Rx8A
Cites_doi 10.1016/j.catena.2011.01.014
10.1007/s40808‐019‐00575‐1
10.5194/ica‐proc‐2‐24‐2019
10.1007/978-1-4614-3597-6
10.3390/land10020162
10.1109/JSTARS.2019.2938554
10.1051/e3sconf/202560401004
10.1016/j.geomorph.2018.10.024
10.1007/s41062‐019‐0215‐2
10.1016/j.jafrearsci.2020.103795
10.1007/s11356‐024‐33287‐w
10.1007/s11069‐012‐0418‐8
10.1007/s11356‐022‐21931‐2
10.1007/s11629‐017‐4634‐2
10.1186/s40562‐019‐0140‐4
10.1016/j.catena.2014.02.005
10.1186/s40677‐014‐0009‐y
10.1007/s40098‐018‐0334‐2
10.3390/w12010267
10.17163/lgr.n39.2024.07
10.1007/s43621‐024‐00730‐4
10.1016/j.cageo.2012.11.003
10.17014/ijog.7.1.51‐63
10.1007/s40098‐022‐00634‐y
10.1007/s10064‐023‐03344‐8
10.1016/j.gr.2019.06.001
10.1007/s10346‐021‐01645‐1
10.1007/s12594‐016‐0395‐8
10.1007/s12594‐023‐2386‐x
10.1016/0270‐0255(87)90473‐8
10.1007/s42452‐025‐06498‐0
10.1007/s10706‐020‐01284‐8
10.1007/s11629‐007‐0203‐4
10.1007/s11069‐012‐0463‐3
10.1007/s10706‐022‐02214‐6
10.1038/s43017‐022‐00373‐x
10.1007/s11069‐024‐06491‐7
10.1186/s40677‐020‐00170‐y
10.1007/s11356‐023‐31486‐5
10.1016/0022‐2496(77)90033‐5
10.1016/j.qsa.2024.100263
10.1186/s40677‐020‐00155‐x
10.1016/j.jrmge.2014.03.006
10.5194/nhess‐18‐2161‐2018
10.1007/s12594‐019‐1247‐0
10.1186/s40677‐017‐0083‐z
10.18520/cs/v120/i12/1927-1932
10.1007/s10346‐015‐0657‐3
10.1016/j.jksus.2016.05.002
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/gj.70045
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1099-1034
ExternalDocumentID 10_1002_gj_70045
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
ID FETCH-LOGICAL-c190t-2096930393daa3dc2b8262d44a4d8d2473dccca07c5ed5a5a01ade16bede01133
ISSN 0072-1050
IngestDate Thu Jul 31 01:02:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c190t-2096930393daa3dc2b8262d44a4d8d2473dccca07c5ed5a5a01ade16bede01133
ORCID 0000-0001-9144-2872
ParticipantIDs crossref_primary_10_1002_gj_70045
PublicationCentury 2000
PublicationDate 2025-07-28
PublicationDateYYYYMMDD 2025-07-28
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-28
  day: 28
PublicationDecade 2020
PublicationTitle Geological journal (Chichester, England)
PublicationYear 2025
References e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_39_1
e_1_2_9_37_1
e_1_2_9_18_1
Heim A. (e_1_2_9_16_1) 1975
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
Kumar R. (e_1_2_9_23_1) 2015; 108
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Saaty T. L. (e_1_2_9_40_1) 2012
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
Gupta V. (e_1_2_9_14_1) 2021; 120
e_1_2_9_42_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
Feizizadeh B. (e_1_2_9_12_1) 2013; 7
e_1_2_9_29_1
References_xml – start-page: 73
  volume-title: Central Himalaya: Geological Observations of the Swiss Expedition, 1936
  year: 1975
  ident: e_1_2_9_16_1
– ident: e_1_2_9_48_1
– ident: e_1_2_9_52_1
  doi: 10.1016/j.catena.2011.01.014
– ident: e_1_2_9_31_1
  doi: 10.1007/s40808‐019‐00575‐1
– ident: e_1_2_9_10_1
  doi: 10.5194/ica‐proc‐2‐24‐2019
– volume-title: Models, Methods, Concepts & Applications of the Analytic Hierarchy Process
  year: 2012
  ident: e_1_2_9_40_1
  doi: 10.1007/978-1-4614-3597-6
– ident: e_1_2_9_37_1
  doi: 10.3390/land10020162
– ident: e_1_2_9_54_1
  doi: 10.1109/JSTARS.2019.2938554
– ident: e_1_2_9_18_1
  doi: 10.1051/e3sconf/202560401004
– ident: e_1_2_9_53_1
  doi: 10.1016/j.geomorph.2018.10.024
– ident: e_1_2_9_22_1
  doi: 10.1007/s41062‐019‐0215‐2
– ident: e_1_2_9_4_1
  doi: 10.1016/j.jafrearsci.2020.103795
– ident: e_1_2_9_55_1
  doi: 10.1007/s11356‐024‐33287‐w
– ident: e_1_2_9_8_1
  doi: 10.1007/s11069‐012‐0418‐8
– ident: e_1_2_9_20_1
  doi: 10.1007/s11356‐022‐21931‐2
– ident: e_1_2_9_43_1
  doi: 10.1007/s11629‐017‐4634‐2
– ident: e_1_2_9_42_1
  doi: 10.1186/s40562‐019‐0140‐4
– ident: e_1_2_9_47_1
  doi: 10.1016/j.catena.2014.02.005
– ident: e_1_2_9_2_1
  doi: 10.1186/s40677‐014‐0009‐y
– ident: e_1_2_9_41_1
  doi: 10.1007/s40098‐018‐0334‐2
– ident: e_1_2_9_9_1
  doi: 10.3390/w12010267
– ident: e_1_2_9_6_1
  doi: 10.17163/lgr.n39.2024.07
– ident: e_1_2_9_45_1
  doi: 10.1007/s43621‐024‐00730‐4
– ident: e_1_2_9_21_1
  doi: 10.1016/j.cageo.2012.11.003
– ident: e_1_2_9_3_1
  doi: 10.17014/ijog.7.1.51‐63
– ident: e_1_2_9_25_1
  doi: 10.1007/s40098‐022‐00634‐y
– ident: e_1_2_9_36_1
  doi: 10.1007/s10064‐023‐03344‐8
– ident: e_1_2_9_30_1
  doi: 10.1016/j.gr.2019.06.001
– ident: e_1_2_9_27_1
  doi: 10.1007/s10346‐021‐01645‐1
– ident: e_1_2_9_24_1
  doi: 10.1007/s12594‐016‐0395‐8
– volume: 108
  start-page: 1662
  issue: 9
  year: 2015
  ident: e_1_2_9_23_1
  article-title: Landslide Susceptibility Zonation of Tehri Reservoir Rim Region Using Binary Logistic Regression Model
  publication-title: Current Science
– ident: e_1_2_9_5_1
  doi: 10.1007/s12594‐023‐2386‐x
– ident: e_1_2_9_38_1
  doi: 10.1016/0270‐0255(87)90473‐8
– ident: e_1_2_9_44_1
  doi: 10.1007/s42452‐025‐06498‐0
– ident: e_1_2_9_33_1
  doi: 10.1007/s10706‐020‐01284‐8
– ident: e_1_2_9_34_1
  doi: 10.1007/s11629‐007‐0203‐4
– ident: e_1_2_9_11_1
  doi: 10.1007/s11069‐012‐0463‐3
– ident: e_1_2_9_19_1
– ident: e_1_2_9_51_1
  doi: 10.1007/s10706‐022‐02214‐6
– ident: e_1_2_9_7_1
  doi: 10.1038/s43017‐022‐00373‐x
– ident: e_1_2_9_46_1
  doi: 10.1007/s11069‐024‐06491‐7
– ident: e_1_2_9_50_1
  doi: 10.1186/s40677‐020‐00170‐y
– ident: e_1_2_9_32_1
  doi: 10.1007/s11356‐023‐31486‐5
– ident: e_1_2_9_39_1
  doi: 10.1016/0022‐2496(77)90033‐5
– ident: e_1_2_9_26_1
  doi: 10.1016/j.qsa.2024.100263
– ident: e_1_2_9_28_1
  doi: 10.1186/s40677‐020‐00155‐x
– ident: e_1_2_9_29_1
  doi: 10.1016/j.jrmge.2014.03.006
– ident: e_1_2_9_13_1
  doi: 10.5194/nhess‐18‐2161‐2018
– ident: e_1_2_9_49_1
  doi: 10.1007/s12594‐019‐1247‐0
– ident: e_1_2_9_35_1
  doi: 10.1186/s40677‐017‐0083‐z
– volume: 7
  start-page: 319
  issue: 2
  year: 2013
  ident: e_1_2_9_12_1
  article-title: Landslide Susceptibility Mapping for the Urmia Lake Basin, Iran: A Multi‐ Criteria Evaluation Approach Using GIS
  publication-title: International Journal of Environmental Research
– volume: 120
  start-page: 1927
  issue: 12
  year: 2021
  ident: e_1_2_9_14_1
  article-title: Spatial Distribution of Landslides Vis‐à‐Vis Epicentral Distribution of Earthquakes in the Vicinity of the Main Central Thrust Zone, Uttarakhand Himalaya, India
  publication-title: Current Science
  doi: 10.18520/cs/v120/i12/1927-1932
– ident: e_1_2_9_17_1
  doi: 10.1007/s10346‐015‐0657‐3
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jksus.2016.05.002
SSID ssj0011041
Score 2.3900223
SecondaryResourceType online_first
Snippet The Chamoli region of Uttarakhand, India, is vulnerable to landslides because of its varied terrain, intense monsoonal rains and growing infrastructure....
SourceID crossref
SourceType Index Database
Title A Technical Evaluation of Landslide Vulnerability Using Analytical Hierarchy Process ( AHP ) and the Frequency Ratio ( FR ) Methods for Chamoli Region of Uttarakhand, India
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKIiQuiF_xr0HiAAotqRO32WOFthSkRai7Xe2tmsRukqWbomwqFJ6JR-GhGNuJGxYOC5eochzb8Xz1jCfjbxh7GSkRxkLyvtQ8Q2EiRv14GIv-CsMkijXhtknad_hpNFuEH0_Faa_3sxO1tK3iQfL9r-dK_keqVEZy1adk_0GyrlEqoN8kX7qShOl6JRk3nnEzzweOttu6_QtJFqRU3sl2rYmlTQxs7dkIAcNEYp3Ys1yfQE6yuj0yoE1ObzL77Gl_QRteOS1txDUZ7LoLU2c6N1UOTQpqw-qgv92fb9Y5ySxtxrGoKizxS9aET34oZI5de_i9cotvy2GhPytneZPHyyzVNs9Ix2dxRC9h3EFH2TbO8Nx5tLFGm1MoL9e0GCK9VF6jpM07jSB34E5TLL-hDU-4yPIL5xI_0XrKaGP9iGfiz7t-ES60w5VH3bV-zEnJWFrbgbLLu-YjHfrWffqH8rBktOnZQFP-i52CbIMCLulNF81omZ_5Mj1bmievset8TJacNtHnjsyM7KzQ5m9sxtVSIfv8bdtnxzjqWDnHt9mtZnsCE4u1O6ynirvshpVSfY_9mIBDHOwQB5sVOMTBb4gDgzjYIQ4c4qBBHLwCwhu8BmoBCG3g0AYGbXR_OqfbDdKAkAYN0sAiTfffQdobMDi7zxbTg-N3s36T76OfkFla0V97XyfmDPYDiRjIhMe09-UyDDGUkeThmMpowfHHiVBSoEB_iFINR7GSiqY3CB6wvWJTqIcMkK8iFfgYUIOhZuBUCRlhKx8x4Rx59Ii9aCd6-dXSuiwvi_HxFeo8YTd32HvK9qpyq56RlVrFz43wfwHiWJRr
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Technical+Evaluation+of+Landslide+Vulnerability+Using+Analytical+Hierarchy+Process+%28+AHP+%29+and+the+Frequency+Ratio+%28+FR+%29+Methods+for+Chamoli+Region+of+Uttarakhand%2C+India&rft.jtitle=Geological+journal+%28Chichester%2C+England%29&rft.au=Singh%2C+Shubham&rft.au=Nayak%2C+Nirlipta+Priyadarshani&rft.au=Aggarwal%2C+Ashish&rft.au=Verma%2C+Harsh+Kumar&rft.date=2025-07-28&rft.issn=0072-1050&rft.eissn=1099-1034&rft_id=info:doi/10.1002%2Fgj.70045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_gj_70045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0072-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0072-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0072-1050&client=summon