A Technical Evaluation of Landslide Vulnerability Using Analytical Hierarchy Process ( AHP ) and the Frequency Ratio ( FR ) Methods for Chamoli Region of Uttarakhand, India
The Chamoli region of Uttarakhand, India, is vulnerable to landslides because of its varied terrain, intense monsoonal rains and growing infrastructure. Landslides in this region pose a significant threat to life, infrastructure, and the local economy, urging the need for better landslide susceptibi...
Saved in:
Published in | Geological journal (Chichester, England) |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
28.07.2025
|
Online Access | Get full text |
ISSN | 0072-1050 1099-1034 |
DOI | 10.1002/gj.70045 |
Cover
Abstract | The Chamoli region of Uttarakhand, India, is vulnerable to landslides because of its varied terrain, intense monsoonal rains and growing infrastructure. Landslides in this region pose a significant threat to life, infrastructure, and the local economy, urging the need for better landslide susceptibility maps that will be beneficial for disaster preparedness and management. To evaluate landslide vulnerability throughout the region, the study combines GIS (Geographic Information System) tools with the AHP (Analytical Hierarchy Process) and the FR (Frequency Ratio) models. The analysis included 11 landslide causative factors, namely geology, slope, plan curvature, profile curvature, aspect, rainfall, NDVI, LULC, proximity to roads, drainage and faults. These causative factors are chosen based on their relevance to the regional terrain conditions, literature survey and correlation with landslide occurrences. The results from the AHP and FR models classified the area into five susceptibility zones. 21.47% of the region is classed as having very high susceptibility under the AHP model, whereas 12.63% is classified as such by the FR model. These findings indicate that a major portion of the Chamoli region faces significant landslide risks, highlighting the need for focused risk reduction strategies. Model validation using AUC (Area Under Curve) analysis revealed success rates of 0.829 (95% Confidence Interval (CI): 0.805–0.845) for AHP and 0.820 (95% CI: 0.806–0.834) for FR, while the prediction rates for AHP and FR were 0.834 (95% CI: 0.806–0.857) and 0.818 (95% CI: 0.796–0.839). The close alignment between success and prediction rates in both models indicated minimal overfitting, suggesting the models' consistent performance on both known and new data. Overall, the results demonstrate that both AHP and FR are effective and reliable approaches for landslide susceptibility mapping in the study area. |
---|---|
AbstractList | The Chamoli region of Uttarakhand, India, is vulnerable to landslides because of its varied terrain, intense monsoonal rains and growing infrastructure. Landslides in this region pose a significant threat to life, infrastructure, and the local economy, urging the need for better landslide susceptibility maps that will be beneficial for disaster preparedness and management. To evaluate landslide vulnerability throughout the region, the study combines GIS (Geographic Information System) tools with the AHP (Analytical Hierarchy Process) and the FR (Frequency Ratio) models. The analysis included 11 landslide causative factors, namely geology, slope, plan curvature, profile curvature, aspect, rainfall, NDVI, LULC, proximity to roads, drainage and faults. These causative factors are chosen based on their relevance to the regional terrain conditions, literature survey and correlation with landslide occurrences. The results from the AHP and FR models classified the area into five susceptibility zones. 21.47% of the region is classed as having very high susceptibility under the AHP model, whereas 12.63% is classified as such by the FR model. These findings indicate that a major portion of the Chamoli region faces significant landslide risks, highlighting the need for focused risk reduction strategies. Model validation using AUC (Area Under Curve) analysis revealed success rates of 0.829 (95% Confidence Interval (CI): 0.805–0.845) for AHP and 0.820 (95% CI: 0.806–0.834) for FR, while the prediction rates for AHP and FR were 0.834 (95% CI: 0.806–0.857) and 0.818 (95% CI: 0.796–0.839). The close alignment between success and prediction rates in both models indicated minimal overfitting, suggesting the models' consistent performance on both known and new data. Overall, the results demonstrate that both AHP and FR are effective and reliable approaches for landslide susceptibility mapping in the study area. |
Author | Nayak, Nirlipta Priyadarshani Verma, Harsh Kumar Singh, Shubham Aggarwal, Ashish |
Author_xml | – sequence: 1 givenname: Shubham surname: Singh fullname: Singh, Shubham organization: Energy Cluster, UPES Dehradun India – sequence: 2 givenname: Nirlipta Priyadarshani surname: Nayak fullname: Nayak, Nirlipta Priyadarshani organization: Energy Cluster, UPES Dehradun India – sequence: 3 givenname: Ashish orcidid: 0000-0001-9144-2872 surname: Aggarwal fullname: Aggarwal, Ashish organization: Energy Cluster, UPES Dehradun India – sequence: 4 givenname: Harsh Kumar surname: Verma fullname: Verma, Harsh Kumar organization: CSIR—Central Institute of Mining and Fuel Research, Research Centre Bilaspur Bilaspur India |
BookMark | eNotkN1qwkAQRpdioWoLfYS5tNDY2fwYcymiVbBURHsbxt1NsjZu2t1YyDv1IRutVzPM4TsDX491TGUUY48chxzRf8kPwxgxjG5Yl2OSeByDsMO6iLHf7hHesZ5zB0TOMeRd9juBrRKF0YJKmP1QeaJaVwaqDFZkpCu1VPBxKo2ytNelrhvYOW1ymBgqm_oSW-gWWlE0sLaVUM7BACaLNTxBa4C6UDC36vukjGhgc9a3fL5p8Zuqi0o6yCoL04KOValho_Lr_11dk6XPopU8w9JITffsNqPSqYfr7LPdfLadLrzV--tyOll5gidYez4moyTAIAkkUSCFvx_7I1-GIYVyLP0wbm9CEMYiUjKiiJCTVHy0V1K1vQRBnw3-vcJWzlmVpV9WH8k2Kcf03HKaH9JLy8Efq3Rx8A |
Cites_doi | 10.1016/j.catena.2011.01.014 10.1007/s40808‐019‐00575‐1 10.5194/ica‐proc‐2‐24‐2019 10.1007/978-1-4614-3597-6 10.3390/land10020162 10.1109/JSTARS.2019.2938554 10.1051/e3sconf/202560401004 10.1016/j.geomorph.2018.10.024 10.1007/s41062‐019‐0215‐2 10.1016/j.jafrearsci.2020.103795 10.1007/s11356‐024‐33287‐w 10.1007/s11069‐012‐0418‐8 10.1007/s11356‐022‐21931‐2 10.1007/s11629‐017‐4634‐2 10.1186/s40562‐019‐0140‐4 10.1016/j.catena.2014.02.005 10.1186/s40677‐014‐0009‐y 10.1007/s40098‐018‐0334‐2 10.3390/w12010267 10.17163/lgr.n39.2024.07 10.1007/s43621‐024‐00730‐4 10.1016/j.cageo.2012.11.003 10.17014/ijog.7.1.51‐63 10.1007/s40098‐022‐00634‐y 10.1007/s10064‐023‐03344‐8 10.1016/j.gr.2019.06.001 10.1007/s10346‐021‐01645‐1 10.1007/s12594‐016‐0395‐8 10.1007/s12594‐023‐2386‐x 10.1016/0270‐0255(87)90473‐8 10.1007/s42452‐025‐06498‐0 10.1007/s10706‐020‐01284‐8 10.1007/s11629‐007‐0203‐4 10.1007/s11069‐012‐0463‐3 10.1007/s10706‐022‐02214‐6 10.1038/s43017‐022‐00373‐x 10.1007/s11069‐024‐06491‐7 10.1186/s40677‐020‐00170‐y 10.1007/s11356‐023‐31486‐5 10.1016/0022‐2496(77)90033‐5 10.1016/j.qsa.2024.100263 10.1186/s40677‐020‐00155‐x 10.1016/j.jrmge.2014.03.006 10.5194/nhess‐18‐2161‐2018 10.1007/s12594‐019‐1247‐0 10.1186/s40677‐017‐0083‐z 10.18520/cs/v120/i12/1927-1932 10.1007/s10346‐015‐0657‐3 10.1016/j.jksus.2016.05.002 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/gj.70045 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1099-1034 |
ExternalDocumentID | 10_1002_gj_70045 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 UB1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WUPDE WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT |
ID | FETCH-LOGICAL-c190t-2096930393daa3dc2b8262d44a4d8d2473dccca07c5ed5a5a01ade16bede01133 |
ISSN | 0072-1050 |
IngestDate | Thu Jul 31 01:02:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c190t-2096930393daa3dc2b8262d44a4d8d2473dccca07c5ed5a5a01ade16bede01133 |
ORCID | 0000-0001-9144-2872 |
ParticipantIDs | crossref_primary_10_1002_gj_70045 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-28 |
PublicationDateYYYYMMDD | 2025-07-28 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Geological journal (Chichester, England) |
PublicationYear | 2025 |
References | e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_39_1 e_1_2_9_37_1 e_1_2_9_18_1 Heim A. (e_1_2_9_16_1) 1975 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 Kumar R. (e_1_2_9_23_1) 2015; 108 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Saaty T. L. (e_1_2_9_40_1) 2012 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 Gupta V. (e_1_2_9_14_1) 2021; 120 e_1_2_9_42_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 Feizizadeh B. (e_1_2_9_12_1) 2013; 7 e_1_2_9_29_1 |
References_xml | – start-page: 73 volume-title: Central Himalaya: Geological Observations of the Swiss Expedition, 1936 year: 1975 ident: e_1_2_9_16_1 – ident: e_1_2_9_48_1 – ident: e_1_2_9_52_1 doi: 10.1016/j.catena.2011.01.014 – ident: e_1_2_9_31_1 doi: 10.1007/s40808‐019‐00575‐1 – ident: e_1_2_9_10_1 doi: 10.5194/ica‐proc‐2‐24‐2019 – volume-title: Models, Methods, Concepts & Applications of the Analytic Hierarchy Process year: 2012 ident: e_1_2_9_40_1 doi: 10.1007/978-1-4614-3597-6 – ident: e_1_2_9_37_1 doi: 10.3390/land10020162 – ident: e_1_2_9_54_1 doi: 10.1109/JSTARS.2019.2938554 – ident: e_1_2_9_18_1 doi: 10.1051/e3sconf/202560401004 – ident: e_1_2_9_53_1 doi: 10.1016/j.geomorph.2018.10.024 – ident: e_1_2_9_22_1 doi: 10.1007/s41062‐019‐0215‐2 – ident: e_1_2_9_4_1 doi: 10.1016/j.jafrearsci.2020.103795 – ident: e_1_2_9_55_1 doi: 10.1007/s11356‐024‐33287‐w – ident: e_1_2_9_8_1 doi: 10.1007/s11069‐012‐0418‐8 – ident: e_1_2_9_20_1 doi: 10.1007/s11356‐022‐21931‐2 – ident: e_1_2_9_43_1 doi: 10.1007/s11629‐017‐4634‐2 – ident: e_1_2_9_42_1 doi: 10.1186/s40562‐019‐0140‐4 – ident: e_1_2_9_47_1 doi: 10.1016/j.catena.2014.02.005 – ident: e_1_2_9_2_1 doi: 10.1186/s40677‐014‐0009‐y – ident: e_1_2_9_41_1 doi: 10.1007/s40098‐018‐0334‐2 – ident: e_1_2_9_9_1 doi: 10.3390/w12010267 – ident: e_1_2_9_6_1 doi: 10.17163/lgr.n39.2024.07 – ident: e_1_2_9_45_1 doi: 10.1007/s43621‐024‐00730‐4 – ident: e_1_2_9_21_1 doi: 10.1016/j.cageo.2012.11.003 – ident: e_1_2_9_3_1 doi: 10.17014/ijog.7.1.51‐63 – ident: e_1_2_9_25_1 doi: 10.1007/s40098‐022‐00634‐y – ident: e_1_2_9_36_1 doi: 10.1007/s10064‐023‐03344‐8 – ident: e_1_2_9_30_1 doi: 10.1016/j.gr.2019.06.001 – ident: e_1_2_9_27_1 doi: 10.1007/s10346‐021‐01645‐1 – ident: e_1_2_9_24_1 doi: 10.1007/s12594‐016‐0395‐8 – volume: 108 start-page: 1662 issue: 9 year: 2015 ident: e_1_2_9_23_1 article-title: Landslide Susceptibility Zonation of Tehri Reservoir Rim Region Using Binary Logistic Regression Model publication-title: Current Science – ident: e_1_2_9_5_1 doi: 10.1007/s12594‐023‐2386‐x – ident: e_1_2_9_38_1 doi: 10.1016/0270‐0255(87)90473‐8 – ident: e_1_2_9_44_1 doi: 10.1007/s42452‐025‐06498‐0 – ident: e_1_2_9_33_1 doi: 10.1007/s10706‐020‐01284‐8 – ident: e_1_2_9_34_1 doi: 10.1007/s11629‐007‐0203‐4 – ident: e_1_2_9_11_1 doi: 10.1007/s11069‐012‐0463‐3 – ident: e_1_2_9_19_1 – ident: e_1_2_9_51_1 doi: 10.1007/s10706‐022‐02214‐6 – ident: e_1_2_9_7_1 doi: 10.1038/s43017‐022‐00373‐x – ident: e_1_2_9_46_1 doi: 10.1007/s11069‐024‐06491‐7 – ident: e_1_2_9_50_1 doi: 10.1186/s40677‐020‐00170‐y – ident: e_1_2_9_32_1 doi: 10.1007/s11356‐023‐31486‐5 – ident: e_1_2_9_39_1 doi: 10.1016/0022‐2496(77)90033‐5 – ident: e_1_2_9_26_1 doi: 10.1016/j.qsa.2024.100263 – ident: e_1_2_9_28_1 doi: 10.1186/s40677‐020‐00155‐x – ident: e_1_2_9_29_1 doi: 10.1016/j.jrmge.2014.03.006 – ident: e_1_2_9_13_1 doi: 10.5194/nhess‐18‐2161‐2018 – ident: e_1_2_9_49_1 doi: 10.1007/s12594‐019‐1247‐0 – ident: e_1_2_9_35_1 doi: 10.1186/s40677‐017‐0083‐z – volume: 7 start-page: 319 issue: 2 year: 2013 ident: e_1_2_9_12_1 article-title: Landslide Susceptibility Mapping for the Urmia Lake Basin, Iran: A Multi‐ Criteria Evaluation Approach Using GIS publication-title: International Journal of Environmental Research – volume: 120 start-page: 1927 issue: 12 year: 2021 ident: e_1_2_9_14_1 article-title: Spatial Distribution of Landslides Vis‐à‐Vis Epicentral Distribution of Earthquakes in the Vicinity of the Main Central Thrust Zone, Uttarakhand Himalaya, India publication-title: Current Science doi: 10.18520/cs/v120/i12/1927-1932 – ident: e_1_2_9_17_1 doi: 10.1007/s10346‐015‐0657‐3 – ident: e_1_2_9_15_1 doi: 10.1016/j.jksus.2016.05.002 |
SSID | ssj0011041 |
Score | 2.3900223 |
SecondaryResourceType | online_first |
Snippet | The Chamoli region of Uttarakhand, India, is vulnerable to landslides because of its varied terrain, intense monsoonal rains and growing infrastructure.... |
SourceID | crossref |
SourceType | Index Database |
Title | A Technical Evaluation of Landslide Vulnerability Using Analytical Hierarchy Process ( AHP ) and the Frequency Ratio ( FR ) Methods for Chamoli Region of Uttarakhand, India |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKIiQuiF_xr0HiAAotqRO32WOFthSkRai7Xe2tmsRukqWbomwqFJ6JR-GhGNuJGxYOC5eochzb8Xz1jCfjbxh7GSkRxkLyvtQ8Q2EiRv14GIv-CsMkijXhtknad_hpNFuEH0_Faa_3sxO1tK3iQfL9r-dK_keqVEZy1adk_0GyrlEqoN8kX7qShOl6JRk3nnEzzweOttu6_QtJFqRU3sl2rYmlTQxs7dkIAcNEYp3Ys1yfQE6yuj0yoE1ObzL77Gl_QRteOS1txDUZ7LoLU2c6N1UOTQpqw-qgv92fb9Y5ySxtxrGoKizxS9aET34oZI5de_i9cotvy2GhPytneZPHyyzVNs9Ix2dxRC9h3EFH2TbO8Nx5tLFGm1MoL9e0GCK9VF6jpM07jSB34E5TLL-hDU-4yPIL5xI_0XrKaGP9iGfiz7t-ES60w5VH3bV-zEnJWFrbgbLLu-YjHfrWffqH8rBktOnZQFP-i52CbIMCLulNF81omZ_5Mj1bmievset8TJacNtHnjsyM7KzQ5m9sxtVSIfv8bdtnxzjqWDnHt9mtZnsCE4u1O6ynirvshpVSfY_9mIBDHOwQB5sVOMTBb4gDgzjYIQ4c4qBBHLwCwhu8BmoBCG3g0AYGbXR_OqfbDdKAkAYN0sAiTfffQdobMDi7zxbTg-N3s36T76OfkFla0V97XyfmDPYDiRjIhMe09-UyDDGUkeThmMpowfHHiVBSoEB_iFINR7GSiqY3CB6wvWJTqIcMkK8iFfgYUIOhZuBUCRlhKx8x4Rx59Ii9aCd6-dXSuiwvi_HxFeo8YTd32HvK9qpyq56RlVrFz43wfwHiWJRr |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Technical+Evaluation+of+Landslide+Vulnerability+Using+Analytical+Hierarchy+Process+%28+AHP+%29+and+the+Frequency+Ratio+%28+FR+%29+Methods+for+Chamoli+Region+of+Uttarakhand%2C+India&rft.jtitle=Geological+journal+%28Chichester%2C+England%29&rft.au=Singh%2C+Shubham&rft.au=Nayak%2C+Nirlipta+Priyadarshani&rft.au=Aggarwal%2C+Ashish&rft.au=Verma%2C+Harsh+Kumar&rft.date=2025-07-28&rft.issn=0072-1050&rft.eissn=1099-1034&rft_id=info:doi/10.1002%2Fgj.70045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_gj_70045 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0072-1050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0072-1050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0072-1050&client=summon |