An improved you only look once model for the multi-scale steel surface defect detection with multi-level alignment and cross-layer redistribution features
Steel surface defects involve a wide variety of sizes and irregular shapes. The performance of the detection models depends greatly on the effective extraction of the cross-scale features. The sequential feature fusion in the traditional Feature Pyramid Network (FPN) is subject to an information los...
Saved in:
| Published in | Engineering applications of artificial intelligence Vol. 145; p. 110214 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0952-1976 |
| DOI | 10.1016/j.engappai.2025.110214 |
Cover
| Abstract | Steel surface defects involve a wide variety of sizes and irregular shapes. The performance of the detection models depends greatly on the effective extraction of the cross-scale features. The sequential feature fusion in the traditional Feature Pyramid Network (FPN) is subject to an information loss during the aggregation and transition across shallow and deep features. The classification and localization of steel surface defects using common You Only Look Once (YOLO) detection model may lead to sub-optimal performance when they are involved with the multi-scale objects. To realize a complete shallow-deep feature representation for different scale steel surface defects, an aggregation-redistribution network is introduced into the YOLO detection model to aggregate and refine features across different levels. In the aggregation sub-network, a Multi-level Alignment Module (MAM) is adopted to address the feature misalignment in FPN by aligning the feature maps from level-wise extractors. Therein, the scale deviation at pixels is compensated by the multiple parallel dilated convolutions. Meanwhile, in the redistribution sub-network, a Fusion-Redistribution Module (FRM) is constructed to impose the global information on the fused multi-level features to steer cross-layerly the generation of prediction feature maps for YOLO. The global feature provides a semantic adaptive weight and serves as a complement on the multi-level features through an attention mechanism. Finally, by incorporating the aggregation-redistribution network into YOLOv5, an improved YOLO detection model, i.e., Aggregation-Redistribution YOLO (ARYOLO), is derived for the steel surface defects. The validation results indicate that ARYOLO has achieved a rather satisfactory detection performance for the defects with large variations in scale and shape. It provides a mean average precision of 80.7% on the North Eastern University Surface Defect Dataset (NEU-DET) and 71.2% on the Global 10 Class Metallic Surface Defect Dataset (GC10-DET), giving a great potential in detection and localization tasks. |
|---|---|
| AbstractList | Steel surface defects involve a wide variety of sizes and irregular shapes. The performance of the detection models depends greatly on the effective extraction of the cross-scale features. The sequential feature fusion in the traditional Feature Pyramid Network (FPN) is subject to an information loss during the aggregation and transition across shallow and deep features. The classification and localization of steel surface defects using common You Only Look Once (YOLO) detection model may lead to sub-optimal performance when they are involved with the multi-scale objects. To realize a complete shallow-deep feature representation for different scale steel surface defects, an aggregation-redistribution network is introduced into the YOLO detection model to aggregate and refine features across different levels. In the aggregation sub-network, a Multi-level Alignment Module (MAM) is adopted to address the feature misalignment in FPN by aligning the feature maps from level-wise extractors. Therein, the scale deviation at pixels is compensated by the multiple parallel dilated convolutions. Meanwhile, in the redistribution sub-network, a Fusion-Redistribution Module (FRM) is constructed to impose the global information on the fused multi-level features to steer cross-layerly the generation of prediction feature maps for YOLO. The global feature provides a semantic adaptive weight and serves as a complement on the multi-level features through an attention mechanism. Finally, by incorporating the aggregation-redistribution network into YOLOv5, an improved YOLO detection model, i.e., Aggregation-Redistribution YOLO (ARYOLO), is derived for the steel surface defects. The validation results indicate that ARYOLO has achieved a rather satisfactory detection performance for the defects with large variations in scale and shape. It provides a mean average precision of 80.7% on the North Eastern University Surface Defect Dataset (NEU-DET) and 71.2% on the Global 10 Class Metallic Surface Defect Dataset (GC10-DET), giving a great potential in detection and localization tasks. |
| ArticleNumber | 110214 |
| Author | Jia, Lijie Zhou, Yitian Zhang, Xinliang Huang, Jianhang |
| Author_xml | – sequence: 1 givenname: Jianhang surname: Huang fullname: Huang, Jianhang email: 1509532694@qq.com organization: School of Electrical Engineering and Automation, Henan International Joint Laboratory of Direct Drive and Control of Intelligent Equipment, Henan Polytechnic University, Jiaozuo, 454003, China – sequence: 2 givenname: Xinliang orcidid: 0000-0003-0467-8946 surname: Zhang fullname: Zhang, Xinliang email: zxldq@hpu.edu.cn organization: School of Electrical Engineering and Automation, Henan International Joint Laboratory of Direct Drive and Control of Intelligent Equipment, Henan Polytechnic University, Jiaozuo, 454003, China – sequence: 3 givenname: Lijie surname: Jia fullname: Jia, Lijie email: jialijie@126.com organization: School of Electrical Engineering and Automation, Henan International Joint Laboratory of Direct Drive and Control of Intelligent Equipment, Henan Polytechnic University, Jiaozuo, 454003, China – sequence: 4 givenname: Yitian surname: Zhou fullname: Zhou, Yitian email: tianyisjtu@163.com organization: Zhoushan Yangwangnaxin Technology Co. Ltd, Zhoushan, 3161041, China |
| BookMark | eNqFkMtOwzAQRb0oEi3wC8g_kGDnnR1VxUuqxAbWlmNPWhfHrmynKL_C1-I-WLO6M5p7R1dngWbGGkDonpKUElo97FIwG77fc5VmJCtTSklGixmak7bMEtrW1TVaeL8jhORNUc3Rz9JgNeydPYDEkx2xNXrC2tqvOAnAg5WgcW8dDtu4jTqoxAuuAfsA8eJH1_Pok9CDCFFCFGUN_lZhe_FrOEQn12pjBjABcyOxcNb7RPMJHHYglQ9OdeMp2QMPowN_i656rj3cXfQGfT4_faxek_X7y9tquU4EbdqQFBVA1tKu7_pcAs1kRSTUdSsLQeqaQybbloiypl1e55ALQduyqWnWlA1pgFf5DarOf0-dHPRs79TA3cQoYUeqbMf-qLIjVXamGoOP5yDEdgcFjnmhIFKTykUKTFr134tfDOOMMA |
| Cites_doi | 10.1016/j.aei.2023.102061 10.1109/TMM.2023.3321394 10.1016/j.asoc.2024.111516 10.1016/j.knosys.2022.110176 10.1109/TPAMI.2016.2577031 10.1016/j.measurement.2021.109185 10.1016/j.measurement.2021.109316 10.1109/TIM.2019.2915404 10.1016/j.knosys.2022.108338 10.1016/j.engappai.2023.107133 10.3390/electronics13142771 10.1016/j.neucom.2024.127809 10.1016/j.measurement.2023.112467 10.3390/s20061562 10.1016/j.apsusc.2013.09.002 10.1016/j.ajo.2013.03.034 10.1016/j.ymssp.2022.109109 10.1088/1361-6501/ad6281 10.1109/TFUZZ.2023.3297718 10.1016/j.nlp.2023.100026 10.1016/j.heliyon.2023.e17730 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2025.110214 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2025_110214 S0952197625002143 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 ~G- 29G AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY7 M41 R2- SBC SET UHS WUQ ZMT ~HD |
| ID | FETCH-LOGICAL-c189t-46ee291bfbf3de12d60de779d4c077ae2d990c571b373e3cc195871285808ea63 |
| IEDL.DBID | .~1 |
| ISSN | 0952-1976 |
| IngestDate | Wed Oct 01 06:42:53 EDT 2025 Sat Mar 08 15:49:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Steel surface defect Feature redistribution Feature misalignment You only Look once Multi-scale objects |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c189t-46ee291bfbf3de12d60de779d4c077ae2d990c571b373e3cc195871285808ea63 |
| ORCID | 0000-0003-0467-8946 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2025_110214 elsevier_sciencedirect_doi_10_1016_j_engappai_2025_110214 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 2025-04-00 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Yang, Xie, Wu, Huang (bib41) 2024; 13 Huang, Zhang, Jia (bib16) 2024; 35 Li, You, Zhu (bib20) 2020 Alberto, Eduardo, Yevhen (bib1) 2024; 146 Lv, Duan, Jiang (bib23) 2020; 20 Tan, Pang, V Le (bib32) 2020 Qian, Wu, Yang (bib28) 2024; 32 Jocher (bib18) 2022 Xiong, Su, Wang (bib38) 2024; 157 Fu, Jia, Zhu (bib7) 2022; 175 Ouyang, He, Zhang (bib27) 2023 Liu, Qi, Qin, Shi (bib21) 2018 Tian, Jia (bib33) 2022 He, Song, Meng (bib12) 2020; 69 Jaderberg, Simonyan, Zisserman (bib17) 2016 Wang, Bochkovskiy, Liao (bib34) 2023 Zhang, Zhang, Liu (bib44) 2023; 9 Cheng, Wang, Lin (bib4) 2023; 126 Ren, He, Girshick (bib30) 2017; 39 Han, He, Ke (bib11) 2024; 593 Hu, Yang, Jiang (bib14) 2023 Wang, Yeh, Liao (bib36) 2024 Xing, Jia (bib37) 2021; 176 Minsu, Minseok, Wonjae (bib25) 2025; 147 Chen, Guo, Yang (bib3) 2022 Wang, Dai, Chen (bib35) 2023 Ojala, Pietikainen, Harwood (bib26) 1994; vol. 1 Zhang, Zhang, Wu (bib45) 2024; 26 Ge, Liu, Wang (bib8) 2021 Xu, Li, Qian (bib39) 2021; 178 Rejin, Sambath (bib29) 2024 Yu, Lyu, Zhou (bib42) 2022; vol. 71 Khan, Daud, Khan (bib19) 2023; 4 Zhu, Zhang, Zhang (bib46) 2023; 57 Girshick, Jeff, Trevor (bib10) 2014 Yu, Lyu, Wang (bib43) 2023; 260 David, David, Ayala (bib6) 2013; 156 Girshick (bib9) 2015 Dalal, Triggs (bib5) 2005; 1 Mboutayeb, Majda, Zenkouar (bib24) 2024 Huang, Wei, Wang (bib15) 2021; 44 Yang, Fan, Huo (bib40) 2022; 242 He, Song, Meng (bib13) 2020; 69 Liu, Huang, Gao (bib22) 2023; 209 Song, Yan (bib31) 2013; 285 Cai, Vasconcelos (bib2) 2018 Cheng (10.1016/j.engappai.2025.110214_bib4) 2023; 126 Hu (10.1016/j.engappai.2025.110214_bib14) 2023 Huang (10.1016/j.engappai.2025.110214_bib16) 2024; 35 Yang (10.1016/j.engappai.2025.110214_bib40) 2022; 242 Yang (10.1016/j.engappai.2025.110214_bib41) 2024; 13 Xu (10.1016/j.engappai.2025.110214_bib39) 2021; 178 Liu (10.1016/j.engappai.2025.110214_bib22) 2023; 209 Girshick (10.1016/j.engappai.2025.110214_bib10) 2014 Lv (10.1016/j.engappai.2025.110214_bib23) 2020; 20 Tan (10.1016/j.engappai.2025.110214_bib32) 2020 He (10.1016/j.engappai.2025.110214_bib13) 2020; 69 Song (10.1016/j.engappai.2025.110214_bib31) 2013; 285 Wang (10.1016/j.engappai.2025.110214_bib36) 2024 Jaderberg (10.1016/j.engappai.2025.110214_bib17) 2016 He (10.1016/j.engappai.2025.110214_bib12) 2020; 69 Zhang (10.1016/j.engappai.2025.110214_bib45) 2024; 26 Chen (10.1016/j.engappai.2025.110214_bib3) 2022 Li (10.1016/j.engappai.2025.110214_bib20) 2020 Wang (10.1016/j.engappai.2025.110214_bib35) 2023 Liu (10.1016/j.engappai.2025.110214_bib21) 2018 Fu (10.1016/j.engappai.2025.110214_bib7) 2022; 175 Ge (10.1016/j.engappai.2025.110214_bib8) 2021 Cai (10.1016/j.engappai.2025.110214_bib2) 2018 Khan (10.1016/j.engappai.2025.110214_bib19) 2023; 4 Xing (10.1016/j.engappai.2025.110214_bib37) 2021; 176 Alberto (10.1016/j.engappai.2025.110214_bib1) 2024; 146 Yu (10.1016/j.engappai.2025.110214_bib42) 2022; vol. 71 David (10.1016/j.engappai.2025.110214_bib6) 2013; 156 Minsu (10.1016/j.engappai.2025.110214_bib25) 2025; 147 Jocher (10.1016/j.engappai.2025.110214_bib18) 2022 Dalal (10.1016/j.engappai.2025.110214_bib5) 2005; 1 Huang (10.1016/j.engappai.2025.110214_bib15) 2021; 44 Ojala (10.1016/j.engappai.2025.110214_bib26) 1994; vol. 1 Zhang (10.1016/j.engappai.2025.110214_bib44) 2023; 9 Han (10.1016/j.engappai.2025.110214_bib11) 2024; 593 Ren (10.1016/j.engappai.2025.110214_bib30) 2017; 39 Yu (10.1016/j.engappai.2025.110214_bib43) 2023; 260 Ouyang (10.1016/j.engappai.2025.110214_bib27) 2023 Rejin (10.1016/j.engappai.2025.110214_bib29) 2024 Tian (10.1016/j.engappai.2025.110214_bib33) 2022 Wang (10.1016/j.engappai.2025.110214_bib34) 2023 Girshick (10.1016/j.engappai.2025.110214_bib9) 2015 Mboutayeb (10.1016/j.engappai.2025.110214_bib24) 2024 Xiong (10.1016/j.engappai.2025.110214_bib38) 2024; 157 Qian (10.1016/j.engappai.2025.110214_bib28) 2024; 32 Zhu (10.1016/j.engappai.2025.110214_bib46) 2023; 57 |
| References_xml | – start-page: 1 year: 2024 end-page: 6 ident: bib29 article-title: YOLOv8: a novel object detection algorithm with enhanced performance and Robustnes-s 2024 International Conference on publication-title: Advances in Data Engineering and Intelligent Computing Systems (ADICS) – volume: 39 start-page: 1137 year: 2017 end-page: 1149 ident: bib30 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2023 ident: bib35 article-title: InternImage: Exploring large-scale vision foundation models with deformable convolutions publication-title: Computer Vision and Pattern Recognition (CVPR) – volume: 209 year: 2023 ident: bib22 article-title: MSC-DNet: an efficient detector with multi-scale context for defect detection on strip steel surface publication-title: Measurement – start-page: 6154 year: 2018 end-page: 6162 ident: bib2 article-title: Cascade R-CNN: Delving into high Quality object detection publication-title: CVF Conference on Computer Vision and Pattern Recognition – volume: 175 year: 2022 ident: bib7 article-title: Fusion of multi-light source illuminated images for effective defect inspection on highly reflective surfaces publication-title: Mech. Syst. Signal Process. – start-page: 580 year: 2014 end-page: 587 ident: bib10 article-title: Rich feature Hierarchies for accurate object detection and semantic segmentation publication-title: Computer Vision and Pattern Recognition (CVPR) – volume: 242 year: 2022 ident: bib40 article-title: A nondestructive automatic defect detection method with pixelwise segmentation publication-title: Knowl. Base Syst. – volume: 4 year: 2023 ident: bib19 article-title: Exploring the frontiers of deep learning and natural language processing: a comprehensive overview of key challenges and emerging trends publication-title: Natural Language Processing Journal – volume: 69 start-page: 1493 year: 2020 end-page: 1504 ident: bib12 article-title: An End-to-End steel surface defect detection approach via fusing multiple hierarchical features publication-title: IEEE Trans. Instrum. Meas. – year: 2022 ident: bib3 article-title: Fast Vehicle Detection Algorithm in Traffic Scene Based on Improved SSD Measurement 201 111655 – start-page: 10778 year: 2020 end-page: 10787 ident: bib32 article-title: EfficientDet: Scalable and efficient object detection publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 1 start-page: 886 year: 2005 end-page: 893 ident: bib5 article-title: Histograms of oriented gradients for human detection publication-title: Computer Vision and Pattern Recognition(CVPR) – start-page: 775 year: 2020 end-page: 793 ident: bib20 article-title: Semantic Flow for fast and accurate Scene Parsing publication-title: European Conference on Computer Vision(ECCV) – volume: 26 start-page: 4183 year: 2024 end-page: 4193 ident: bib45 article-title: Multi-scale Spatiotemporal feature fusion network for Video saliency prediction publication-title: IEEE Trans. Multimed. – volume: 593 year: 2024 ident: bib11 article-title: Weighted parallel decoupled feature pyramid network for object detection publication-title: Neurocomputing – volume: 69 start-page: 1493 year: 2020 end-page: 1504 ident: bib13 article-title: An End-to-End St-eel surface defect detection approach via fusing multiple hierarchical features publication-title: IEEE Trans. Instrum. Meas. – start-page: 1440 year: 2015 end-page: 1448 ident: bib9 article-title: Fast R-CNN – volume: 57 year: 2023 ident: bib46 article-title: Surface defect detection and classification of steel using an efficient Swin Transformer publication-title: Adv. Eng. Inform. – year: 2016 ident: bib17 article-title: Spatial transformer networks publication-title: Computer Vision and Pattern Recognition (CVPR) – year: 2023 ident: bib14 article-title: Steel Surface Defect Detection Based on Self-Supervised Contrastive Representation Learning with Matching Metric Applied Soft Computing 145 110578 – volume: 156 start-page: 237 year: 2013 end-page: 246 ident: bib6 article-title: Detection of Subclinical Keratoconus using an automated Decision tree classification publication-title: Am. J. Ophthalmol. – volume: 285 start-page: 858 year: 2013 end-page: 864 ident: bib31 article-title: A noise robust method based on completed local binary patterns for hot-rolled steel str-ip surface defects publication-title: Appl. Surf. Sci. – volume: 146 year: 2024 ident: bib1 article-title: Flexible anisotropic magnetoresistive sensors for novel magnetic flux leakage testing capabilities publication-title: NDT E Int. – volume: 35 year: 2024 ident: bib16 article-title: A high-speed YOLO detection model for steel surface defects with the channel residual convolution and fusion-distribution publication-title: Meas. Sci. Technol. – year: 2021 ident: bib8 article-title: YOLOX: Exceeding YOLO Series in 2021 – year: 2024 ident: bib24 article-title: FCOSH: A Novel Single-Head FCOS for Faster Object Detection in Autonomous-Driving Systems Intelligent Systems with Applications 21 200324 – volume: 9 year: 2023 ident: bib44 article-title: Small object intelligent detection method based on adaptive recursive feature pyramid publication-title: Heliyon – volume: 126 year: 2023 ident: bib4 article-title: A feature enhanced RetinaNet-based for instance-level ship recognition publication-title: Eng. Appl. Artif. Intell. – volume: 32 start-page: 281 year: 2024 end-page: 293 ident: bib28 article-title: Event-driven reduced-order fault detection filter design for nonlinear systems with complex communication channel publication-title: IEEE Trans. Fuzzy Syst. – start-page: 7464 year: 2023 end-page: 7475 ident: bib34 article-title: YOLOv7: Trainable Bag-of-Freebies sets new State-of-the-Art for real-time object detectors 2023 publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2022 ident: bib33 article-title: DCC-CenterNet: A Rapid Detection Method for Steel Surface Defects Measurement 187 110211 – year: 2022 ident: bib18 article-title: ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation Zenodo – volume: vol. 1 start-page: 582 year: 1994 end-page: 585 ident: bib26 article-title: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions publication-title: Proceedings of 12th International Conference on Pattern Recognition – volume: 176 year: 2021 ident: bib37 article-title: A convolutional neural network-based method for workpiece surface defect detection publication-title: Measurement – volume: vol. 71 start-page: 1 year: 2022 end-page: 14 ident: bib42 article-title: ES-net: efficient scale-Aware network for tiny Defe-ct detection publication-title: IEEE Transactions on Instrumentation and Measurement – start-page: 1 year: 2023 end-page: 5 ident: bib27 article-title: Efficient multi-scale attention module with cross-spatial learning ICASSP 2023 publication-title: 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – year: 2024 ident: bib36 article-title: YOLOv9: Learning what You Want to Learn Using Programmable Gradient Information arXiv – start-page: 8759 year: 2018 end-page: 8768 ident: bib21 article-title: Path aggregation network for instance segmentation publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR) – volume: 13 start-page: 2771 year: 2024 ident: bib41 article-title: CFE-YOLOv8s: improved YOLOv8s for steel surface defect detection publication-title: Electronics – volume: 147 year: 2025 ident: bib25 article-title: Near-surface defect detection in ultrasonic testing using domain-knowledge-informed self-supervised learning publication-title: Ultrasonics – volume: 260 year: 2023 ident: bib43 article-title: Progressive refined redistribution pyramid network for defect detection in complex scenarios publication-title: Knowl. Base Syst. – volume: 178 year: 2021 ident: bib39 article-title: Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN publication-title: Measurement – volume: 157 year: 2024 ident: bib38 article-title: Dynamic adaptive graph convolutional transformer with broad learning system for multi-dimensional chaotic time series prediction publication-title: Appl. Soft Comput. – volume: 44 start-page: 550 year: 2021 end-page: 557 ident: bib15 article-title: AlignSeg: feature-aligned segmentation networks publication-title: IEEE Trans. Software Eng. – volume: 20 start-page: 1562 year: 2020 ident: bib23 article-title: Deep Metallic surface defect detection: the new Benchmark and detection Netwo-rk publication-title: Sensors – year: 2016 ident: 10.1016/j.engappai.2025.110214_bib17 article-title: Spatial transformer networks publication-title: Computer Vision and Pattern Recognition (CVPR) – volume: 57 year: 2023 ident: 10.1016/j.engappai.2025.110214_bib46 article-title: Surface defect detection and classification of steel using an efficient Swin Transformer publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2023.102061 – volume: 1 start-page: 886 year: 2005 ident: 10.1016/j.engappai.2025.110214_bib5 article-title: Histograms of oriented gradients for human detection publication-title: Computer Vision and Pattern Recognition(CVPR) – volume: 26 start-page: 4183 year: 2024 ident: 10.1016/j.engappai.2025.110214_bib45 article-title: Multi-scale Spatiotemporal feature fusion network for Video saliency prediction publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2023.3321394 – volume: 157 year: 2024 ident: 10.1016/j.engappai.2025.110214_bib38 article-title: Dynamic adaptive graph convolutional transformer with broad learning system for multi-dimensional chaotic time series prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111516 – volume: vol. 71 start-page: 1 year: 2022 ident: 10.1016/j.engappai.2025.110214_bib42 article-title: ES-net: efficient scale-Aware network for tiny Defe-ct detection – volume: 260 year: 2023 ident: 10.1016/j.engappai.2025.110214_bib43 article-title: Progressive refined redistribution pyramid network for defect detection in complex scenarios publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2022.110176 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 10.1016/j.engappai.2025.110214_bib30 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 176 year: 2021 ident: 10.1016/j.engappai.2025.110214_bib37 article-title: A convolutional neural network-based method for workpiece surface defect detection publication-title: Measurement doi: 10.1016/j.measurement.2021.109185 – volume: 178 year: 2021 ident: 10.1016/j.engappai.2025.110214_bib39 article-title: Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN publication-title: Measurement doi: 10.1016/j.measurement.2021.109316 – volume: 69 start-page: 1493 year: 2020 ident: 10.1016/j.engappai.2025.110214_bib13 article-title: An End-to-End St-eel surface defect detection approach via fusing multiple hierarchical features publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2915404 – start-page: 8759 year: 2018 ident: 10.1016/j.engappai.2025.110214_bib21 article-title: Path aggregation network for instance segmentation 2018 – volume: vol. 1 start-page: 582 year: 1994 ident: 10.1016/j.engappai.2025.110214_bib26 article-title: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions – start-page: 775 year: 2020 ident: 10.1016/j.engappai.2025.110214_bib20 article-title: Semantic Flow for fast and accurate Scene Parsing publication-title: European Conference on Computer Vision(ECCV) – volume: 242 year: 2022 ident: 10.1016/j.engappai.2025.110214_bib40 article-title: A nondestructive automatic defect detection method with pixelwise segmentation publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2022.108338 – volume: 126 year: 2023 ident: 10.1016/j.engappai.2025.110214_bib4 article-title: A feature enhanced RetinaNet-based for instance-level ship recognition publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107133 – year: 2024 ident: 10.1016/j.engappai.2025.110214_bib24 – volume: 13 start-page: 2771 year: 2024 ident: 10.1016/j.engappai.2025.110214_bib41 article-title: CFE-YOLOv8s: improved YOLOv8s for steel surface defect detection publication-title: Electronics doi: 10.3390/electronics13142771 – volume: 593 year: 2024 ident: 10.1016/j.engappai.2025.110214_bib11 article-title: Weighted parallel decoupled feature pyramid network for object detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.127809 – volume: 147 year: 2025 ident: 10.1016/j.engappai.2025.110214_bib25 article-title: Near-surface defect detection in ultrasonic testing using domain-knowledge-informed self-supervised learning publication-title: Ultrasonics – volume: 209 year: 2023 ident: 10.1016/j.engappai.2025.110214_bib22 article-title: MSC-DNet: an efficient detector with multi-scale context for defect detection on strip steel surface publication-title: Measurement doi: 10.1016/j.measurement.2023.112467 – year: 2024 ident: 10.1016/j.engappai.2025.110214_bib36 – year: 2022 ident: 10.1016/j.engappai.2025.110214_bib3 – start-page: 7464 year: 2023 ident: 10.1016/j.engappai.2025.110214_bib34 article-title: YOLOv7: Trainable Bag-of-Freebies sets new State-of-the-Art for real-time object detectors 2023 – start-page: 1440 year: 2015 ident: 10.1016/j.engappai.2025.110214_bib9 – start-page: 10778 year: 2020 ident: 10.1016/j.engappai.2025.110214_bib32 article-title: EfficientDet: Scalable and efficient object detection 2020 – start-page: 580 year: 2014 ident: 10.1016/j.engappai.2025.110214_bib10 article-title: Rich feature Hierarchies for accurate object detection and semantic segmentation publication-title: Computer Vision and Pattern Recognition (CVPR) – volume: 20 start-page: 1562 year: 2020 ident: 10.1016/j.engappai.2025.110214_bib23 article-title: Deep Metallic surface defect detection: the new Benchmark and detection Netwo-rk publication-title: Sensors doi: 10.3390/s20061562 – volume: 285 start-page: 858 issue: 21 year: 2013 ident: 10.1016/j.engappai.2025.110214_bib31 article-title: A noise robust method based on completed local binary patterns for hot-rolled steel str-ip surface defects publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.09.002 – volume: 44 start-page: 550 issue: 1 year: 2021 ident: 10.1016/j.engappai.2025.110214_bib15 article-title: AlignSeg: feature-aligned segmentation networks publication-title: IEEE Trans. Software Eng. – year: 2022 ident: 10.1016/j.engappai.2025.110214_bib18 – start-page: 1 year: 2024 ident: 10.1016/j.engappai.2025.110214_bib29 article-title: YOLOv8: a novel object detection algorithm with enhanced performance and Robustnes-s 2024 International Conference on – start-page: 1 year: 2023 ident: 10.1016/j.engappai.2025.110214_bib27 article-title: Efficient multi-scale attention module with cross-spatial learning ICASSP 2023 – volume: 156 start-page: 237 year: 2013 ident: 10.1016/j.engappai.2025.110214_bib6 article-title: Detection of Subclinical Keratoconus using an automated Decision tree classification publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2013.03.034 – start-page: 6154 year: 2018 ident: 10.1016/j.engappai.2025.110214_bib2 article-title: Cascade R-CNN: Delving into high Quality object detection – year: 2023 ident: 10.1016/j.engappai.2025.110214_bib14 – volume: 146 year: 2024 ident: 10.1016/j.engappai.2025.110214_bib1 article-title: Flexible anisotropic magnetoresistive sensors for novel magnetic flux leakage testing capabilities publication-title: NDT E Int. – year: 2021 ident: 10.1016/j.engappai.2025.110214_bib8 – volume: 175 year: 2022 ident: 10.1016/j.engappai.2025.110214_bib7 article-title: Fusion of multi-light source illuminated images for effective defect inspection on highly reflective surfaces publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109109 – volume: 69 start-page: 1493 issue: 4 year: 2020 ident: 10.1016/j.engappai.2025.110214_bib12 article-title: An End-to-End steel surface defect detection approach via fusing multiple hierarchical features publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2915404 – volume: 35 issue: 10 year: 2024 ident: 10.1016/j.engappai.2025.110214_bib16 article-title: A high-speed YOLO detection model for steel surface defects with the channel residual convolution and fusion-distribution publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ad6281 – year: 2022 ident: 10.1016/j.engappai.2025.110214_bib33 – volume: 32 start-page: 281 issue: 1 year: 2024 ident: 10.1016/j.engappai.2025.110214_bib28 article-title: Event-driven reduced-order fault detection filter design for nonlinear systems with complex communication channel publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2023.3297718 – volume: 4 year: 2023 ident: 10.1016/j.engappai.2025.110214_bib19 article-title: Exploring the frontiers of deep learning and natural language processing: a comprehensive overview of key challenges and emerging trends publication-title: Natural Language Processing Journal doi: 10.1016/j.nlp.2023.100026 – year: 2023 ident: 10.1016/j.engappai.2025.110214_bib35 article-title: InternImage: Exploring large-scale vision foundation models with deformable convolutions publication-title: Computer Vision and Pattern Recognition (CVPR) – volume: 9 issue: 7 year: 2023 ident: 10.1016/j.engappai.2025.110214_bib44 article-title: Small object intelligent detection method based on adaptive recursive feature pyramid publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e17730 |
| SSID | ssj0003846 |
| Score | 2.452579 |
| Snippet | Steel surface defects involve a wide variety of sizes and irregular shapes. The performance of the detection models depends greatly on the effective extraction... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 110214 |
| SubjectTerms | Feature misalignment Feature redistribution Multi-scale objects Steel surface defect You only Look once |
| Title | An improved you only look once model for the multi-scale steel surface defect detection with multi-level alignment and cross-layer redistribution features |
| URI | https://dx.doi.org/10.1016/j.engappai.2025.110214 |
| Volume | 145 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0952-1976 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003846 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0952-1976 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003846 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) issn: 0952-1976 databaseCode: ACRLP dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003846 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0952-1976 databaseCode: AIKHN dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003846 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0952-1976 databaseCode: AKRWK dateStart: 19880301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqsrDwRjyrG1hNm6fjsUKgQkUHHoItcuxL1apKqz6GLvwQfi1nJ-EhITEwWXHOUnJn-z5b390xdiE8Ur3Skktlch5mseSJEZoblB4diEwsXSam-0Hcew7vXqPXBruqY2EsrbLa-8s93e3WVU-70mZ7Nhq1Hwkc0HKjxRy5xF8242cYClvF4PLti-YRJGWwDglzK_0tSnh8icVQzWZqROdEP7KMeN8Lf3dQ35zOzQ7bqtAidMsP2mUNLPbYdoUcoVqXC-qqizPUffvsvVvAyN0YkOR6uoJpMVnDhDA12EhFcCVwgCArEAQExyvkCzIYAtmd3ixW81yRnEFL-KBm6UhbBdib20p-YhlHQEh-6DgFoAoD7q_4RBGUh7kN-v0sqQU5uiyiiwP2fHP9dNXjVSEGrr1ELnkYI_rSy_IsDwx6vok7BoWQJtQdIRT6hnyajoSXBSLAQGubwYZmQRIlnQRVHByyZjEt8IiB9pWRESqV2bw0HZPlOlaBINQUYqBMdszatfbTWZlvI62JaOO0tldq7ZWW9jpmsjZS-mPmpOQU_hh78o-xp2zTPpUsnjPWXM5XeE4AZZm13AxssY3ubb83sG3_4aX_AW_D650 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDLDwRpTnDaymTZzE8YgqUHkugMQWOfYFFVVp1cfAwg_h13J2Eh4SEgNTJPssOXe277P13R1jJzIg1WujuNK24FGeKJ5aabhFFdCFyCbKZ2K6vUv6j9HVU_y0wHpNLIyjVdZnf3Wm-9O6bunU2uyMB4POPYED2m60mWOf-EsssqUoDqW7gZ2-ffE8RFpF65A0d-LfwoRfTrF81uOxHtBFMYwdJT4Mot891Devc7HOVmu4CGfVjDbYApabbK2GjlBvzCk1NdUZmrYt9n5WwsA_GZDk62gOo3L4CkMC1eBCFcHXwAHCrEAYEDyxkE_JYghkeOqZzieFJjmLjvFBn5lnbZXgnm5r-aGjHAFB-WdPKgBdWvB_xYeasDxMXNTvZ00tKNCnEZ1us8eL84den9eVGLgJUjXjUYIYqiAv8kJYDEKbdC1KqWxkulJqDC05NRPLIBdSoDDGpbChZZDGaTdFnYgd1ipHJe4yMKG2Kkatc5eYpmvzwiRaSIJNEQpt8zbrNNrPxlXCjaxhor1kjb0yZ6-sslebqcZI2Y-lk5FX-GPs3j_GHrPl_sPtTXZzeXe9z1ZcT0XpOWCt2WSOh4RWZvmRX40fjrzrjw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+you+only+look+once+model+for+the+multi-scale+steel+surface+defect+detection+with+multi-level+alignment+and+cross-layer+redistribution+features&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Huang%2C+Jianhang&rft.au=Zhang%2C+Xinliang&rft.au=Jia%2C+Lijie&rft.au=Zhou%2C+Yitian&rft.date=2025-04-01&rft.issn=0952-1976&rft.volume=145&rft.spage=110214&rft_id=info:doi/10.1016%2Fj.engappai.2025.110214&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2025_110214 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |