APPLICATION OF IMPROVED BP NEURAL NETWORK USING GENETIC ALGORITHM IN FAULT ASSESSMENT OF BEARING IN ELECTROMECHANICAL SYSTEM
The research aims at the serious economic loss and life-threatening problems caused by mechanical and electrical system accidents and bearing failures. The fault detection and identification of bearings in mechanical and electrical systems are discussed. The structure, fault cause, vibration mechani...
Saved in:
| Published in | International Journal of Mechatronics & Applied Mechanics Vol. 1; no. 10; pp. 69 - 79 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Bucharest
Editura Cefin
2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2559-4397 2559-4400 2559-6497 2559-6497 |
| DOI | 10.17683/ijomam/issue10/v2.8 |
Cover
| Abstract | The research aims at the serious economic loss and life-threatening problems caused by mechanical and electrical system accidents and bearing failures. The fault detection and identification of bearings in mechanical and electrical systems are discussed. The structure, fault cause, vibration mechanism, and characteristic frequency of rolling bearing are analyzed, and the noise of vibration signals is removed and eliminated in light of the characteristics of the initial fault signal of rolling bearing. Because of the shortcomings of the wavelet, wavelet packet transform is proposed to characterize the normal state of rolling bearing, rolling element fault, inner ring fault, and outer ring fault signal. Based on the characteristics of global optimization of GA (genetic algorithm), the algorithm falls into local optimal value following the defects of BP (backpropagation) neural network and uses GA to optimize the BP neural network algorithm for fault diagnosis of rolling bearings. According to the experimental results, when the evolution algebra of the fault diagnosis model GA-BP is 8 at the drive end, the optimal classification accuracy of the population reaches 98.83%. In this case, a rolling element fault in the test data is misclassified. When the evolution algebra of the GA-BP fault diagnosis model is 2 at the fan side, the overall optimal classification accuracy reaches 97.62% in total. Under this condition, a rolling element fault and an outer ring fault are misclassified in the test data. Through the comparison experiment with the traditional optimized BP neural network, it is found that the GA-BP neural network algorithm model is suitable for the fault classification of rolling bearings. |
|---|---|
| AbstractList | The research aims at the serious economic loss and life-threatening problems caused by mechanical and electrical system accidents and bearing failures. The fault detection and identification of bearings in mechanical and electrical systems are discussed. The structure, fault cause, vibration mechanism, and characteristic frequency of rolling bearing are analyzed, and the noise of vibration signals is removed and eliminated in light of the characteristics of the initial fault signal of rolling bearing. Because of the shortcomings of the wavelet, wavelet packet transform is proposed to characterize the normal state of rolling bearing, rolling element fault, inner ring fault, and outer ring fault signal. Based on the characteristics of global optimization of GA (genetic algorithm), the algorithm falls into local optimal value following the defects of BP (backpropagation) neural network and uses GA to optimize the BP neural network algorithm for fault diagnosis of rolling bearings. According to the experimental results, when the evolution algebra of the fault diagnosis model GA-BP is 8 at the drive end, the optimal classification accuracy of the population reaches 98.83%. In this case, a rolling element fault in the test data is misclassified. When the evolution algebra of the GA-BP fault diagnosis model is 2 at the fan side, the overall optimal classification accuracy reaches 97.62% in total. Under this condition, a rolling element fault and an outer ring fault are misclassified in the test data. Through the comparison experiment with the traditional optimized BP neural network, it is found that the GA-BP neural network algorithm model is suitable for the fault classification of rolling bearings. |
| Author | Zhang, Shuyue |
| Author_xml | – sequence: 1 givenname: Shuyue surname: Zhang fullname: Zhang, Shuyue |
| BookMark | eNqNUMtuwjAQtCoqlVL-oAdLPVMc23n4GFIToualPFr1ZBljJBAQmjRUSP34JoUP6Gl3Z2dmV3MPBofqoAF4NNCzYVsOmW621V7up5umabWBpif87NyAITZNNrEoswfXnhJm34Fx02wRQpjRDrOH4MdN0zDw3CJIYpjMYRClWfLGX-AshTEvMzfsSvGeZK-wzIPYhz7v5sCDbugnWVAsIhjEcO6WYQHdPOd5HvG46J1m3M16QbfmIfeKLIm4t3Dj7lgI84-84NEDuF3LXaPH1zoC5ZwX3mISJn5PmyjDYc5EW0RSrFbSpFKypWNhyZQmS2WukKmWlCBb2kojE2NEV7ZUhlbE0jbrIGqQJRkB8-LbHo7y_C13O3GsN3tZn4WBxF-K4pKiuKYoTlg4ne7pojvW1Wermy-xrdr60L0qsMUs0yCE9ix6Yam6appar_9n_gsTLoB7 |
| ContentType | Journal Article |
| Copyright | 2021. This work is published under https://ijomam.com/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is published under https://ijomam.com/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY |
| DOI | 10.17683/ijomam/issue10/v2.8 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2559-6497 |
| EndPage | 79 |
| ExternalDocumentID | 10.17683/ijomam/issue10/v2.8 10_17683_ijomam_issue10_v2_8 |
| GroupedDBID | 8FE 8FG AAYXX ABJCF AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ L6V M7S P62 PHGZM PHGZT PIMPY PQGLB PTHSS PUEGO TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ABDBF ADTOC EOJEC ESX OBODZ UNPAY |
| ID | FETCH-LOGICAL-c1898-e63a42cda54aa9b862a9ce3bc5d05cb4307a7ce052204d7ac1ec36e79e05413b3 |
| IEDL.DBID | UNPAY |
| ISSN | 2559-4397 2559-4400 2559-6497 |
| IngestDate | Tue Aug 19 22:29:44 EDT 2025 Fri Jul 25 11:50:39 EDT 2025 Wed Oct 01 04:55:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1898-e63a42cda54aa9b862a9ce3bc5d05cb4307a7ce052204d7ac1ec36e79e05413b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.17683/ijomam/issue10/v2.8 |
| PQID | 2696513348 |
| PQPubID | 4464516 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_17683_ijomam_issue10_v2_8 proquest_journals_2696513348 crossref_primary_10_17683_ijomam_issue10_v2_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Bucharest |
| PublicationPlace_xml | – name: Bucharest |
| PublicationTitle | International Journal of Mechatronics & Applied Mechanics |
| PublicationYear | 2021 |
| Publisher | Editura Cefin |
| Publisher_xml | – name: Editura Cefin |
| SSID | ssj0002945597 |
| Score | 1.7477655 |
| Snippet | The research aims at the serious economic loss and life-threatening problems caused by mechanical and electrical system accidents and bearing failures. The... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 69 |
| SubjectTerms | Back propagation networks Bearings Classification Corrosion Deep learning Economic impact Evolution Failure Fault detection Fault diagnosis Genetic algorithms Global optimization Industrial production Machine learning Methods Neural networks Roller bearings Tomography Vibration analysis Wavelet transforms |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAXBALEloJ84JpuNnEc54BQdvF2UzYP5VHKKfIrEqjd3ZYWhMSPx7NNWrggTpYcaQ6T8czn8cx8CL2V1JciZNQJlRTwzGicqDOu0_lEm4CF3dSF3uE0o8uGnJwFZ3soG3phoKxy8Ik7R603CnLkE49GFLhICHu_vXSANQpeVwcKDdFTK-h3uxFjD9C-B5OxRmh_xrOivMu6eBEBCA2Mc3Z1IBr3_XQWdvuT5CRP43SSVFXDp-7k1Dtif8erexD68Ga9FT9_iPPzP-LR4gl63ANJHN_--adoz6yfoV9xUQy9wThf4CQtyvyUf8CzAme8KeOVXepPefkRA9_GMYbKtTqZ43h1nJdJvUxxkuFF3KxqHFfgamHWP0ia8RjqJuAzX_F5XeYpny_jDMYp4OpzVfP0OWoWvJ4vnZ5fwVFTFjHHUF8QT2kRECEiae82IlLGlyrQbqAkscdfhMq4FqK5RIdCTY3yqQkju2Vjn_RfoNF6szYvEQ59KqhkWneuIiaiUopOMGZ8l-nAwogxcgYtttvbMRotXD9A6-2Xr5sLcdHuDM1ufvdaNkaHg6rb_lB9a-9NYIyO7tT_X_IO_i3vFXrkQa3KLrVyiEbXVzfmtQUb1_JNb0G_AX1ny5Q priority: 102 providerName: ProQuest |
| Title | APPLICATION OF IMPROVED BP NEURAL NETWORK USING GENETIC ALGORITHM IN FAULT ASSESSMENT OF BEARING IN ELECTROMECHANICAL SYSTEM |
| URI | https://www.proquest.com/docview/2696513348 https://doi.org/10.17683/ijomam/issue10/v2.8 |
| UnpaywallVersion | publishedVersion |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2559-6497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002945597 issn: 2559-4397 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2559-6497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002945597 issn: 2559-4397 databaseCode: 8FG dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLe29gAXPgSIwah84EjaNHYc5-gWpy00H0oT2E6R7TjSYOsmaIdA_PHYbTIGEtI4xYqVJ-c9x-_n-P3eA-C1JEiKgBInUFLYY0bthI12nQbhWvs0aMau5Q7HCZmX-N2Jf3IA3nRcmNvn9wYJo9HZp8sLcTHajWLsjq69IT0EfeIb5N0D_TLJ2KmtH2eAsWN9600b79gnuzbBYdCy5v4l8k-v9Btq3tuur8T3b-L8_JbXiR6CuBvvPtjk83C7kUP1469Ujnd9oUfgQQs_IdvPl8fgQK-fgJ8syzpGMUwjuIizPP3A38JJBhNe5mxpLsXHNH8PbZWOGbTxbsViCtlyluaLYh7DRQIjVi4LyFZ2gbYVAqykCWc22sJ28yWfFnka8-mcJTYJA1ydrgoePwVlxIvp3GmrMjhqTEPqaIIE9lQtfCxEKM2OSIRKI6n82vWVxGbREIHSrgF2Lq4DocZaIaKD0NwyHlOiZ6C3vlzr5wAGiAgiaV03rsI6JFKKRlCqkUtr34CPI-B0Vqmu9sk3KrtpsXqs9nqsWj1W115Fj8BxZ7qq_RS_Vh4JiS1ig0338Macd5L34n8feAnuezbmZfeL5hj0Nl-2-pUBLRs5AIc0mg1Af8KTLB-0M_cXgNXkOA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKeygXBALEQgEf4JhuNnEc51Ch7DbbpJsvJdlSTsF2HKlVu7vQlqoSv43fhmebtHBBXHqy5EhzmIxn3oxn_BD6IKgtuMuo4UrB4ZpRGV6rTKO1SaMc5rYjE2aHk5SGc3J47BxvoF_9LAy0VfY-ce2om6WEGvnQoh4FLhLCPq2-GcAaBberPYUG76gVmr31E2PdYMdM3VzrFO5iL9rX__ujZU2DahIaHcuAIUfMY4aiNieWbLhDOPeERvjck8oW0mlMRwqiDwF3pTI1UDFJ43I5UtKmyvX0lo4AwtZyH6EtYhNPJ39b4yDNi7sqj-URgOzAcKdXA6J_N7-nYb49jA6zxE-GUVnOg5E5PLJ22d_x8R70bl8tVvzmmp-d_RH_pk_Rkw64Yv_W0p6hDbV4jn76ed7PIuNsiqMkL7KjYB-Pc5wG88KP9VJ9zooZBn6PAwydclU0wX58kBVRFSY4SvHUn8cV9ktw7cAtAJLGgQ99GvA5iINJVWRJMAn9FFSKyy9lFSQv0PxBNP0SbS6WC_UKYdemnArWNK0pifKoELzljCnbZI2jYcsAGb0W69Xtsx01pDug9frkdHnOz-u1YevNH1bNBminV3XdHeKL-t7kBmj3Tv3_Je_1v-W9R9thlcR1HKWzN-ixBX0y67LODtq8_H6l3mqgcyneddaE0deHNuDfSAsI1Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKkYALAgFioYAPcEyTTZzEOSCU7ia76eZL-SjlFGzHkUDt7kJbqkr8Mn4dnt2khQvi0pMlR5rDy3jm2Z7xQ-gtdyzOXOporuAMrhml5nXS0DqLtNKmbjc2oHc4SZ15TQ6P7eMd9GvohYGyyiEmbgJ1uxJwRq6bjueAFgmheteXReTT8MP6mwYKUnDTOshpbF1kIa8u1fbt7H00Vf_6nWmGQTWZa73CgCbG1KOadCxGTNEymzDmccXumSekxYXdGrbgRC0A5gppKJJikNZlYiyF5UjXU1Mq-nNL2b2D7rrwijt0qYez6_Md0yNA1kHbTo0a5P2-c08RfEuPDrPET_SoLOtgbOhH5j79OzPe0N37F8s1u7pkJyd_ZL7wEXrYU1bsb33sMdqRyyfop5_nQxcyzkIcJXmRHQVTfJDjNKgLP1ZD9TErFhiUPWYYauSqaIL9eJYVUTVPcJTi0K_jCvslBHVQFQBLB4EPFRrwOYiDSVVkSTCZ-ykAistPZRUkT1F9Kzg_Q7vL1VI-R1hhzRxO27YzBJGewznrGKXSMmhrK8IyQtqAYrPePtjRwEYHUG--fF2dstNm49Jq8ofZ0BHaG6Bu-uV71tw42wjtX8P_X_Ze_NveG3RPuW0TR-niJXpgQoHM5jxnD-2ef7-QrxTDOeevN66E0efb9t3f6msGbw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELbYcti98NDuannKB46bNo0dxzmaktJC81Ca7MIpsh1H4lUQtCAQPx67TYBdaSX2FCtWRs6M4_kczzcDwJ4gSHCPEsuTgptjRmX5lbKtCuFSudSrurbhDocRGeT46MQ9WQI_Gy7M-_N7jYRR5-z8-opfdeaj6Nqde6dNP4Fl4mrk3QLLeZSwU1M_TgNjy_jW1zaes0_mbYJ9r2bN_Uvkn17pDWp-nk1u-OMDv7x853X6qyBsxrsINrloz6aiLZ_-SuX40RdaAys1_IRsMV_WwZKafAXPLEkaRjGM-3AYJmn8KziA-wmMgjxlI33JfsfpMTRVOg6hiXfLhj3IRodxOswGIRxGsM_yUQbZ2CzQpkKAkbQfMBNtYbqDUdDL0jgMegMWmSQMcHw6zoLwG8j7QdYbWHVVBkt2qU8tRRDHjiy5izn3hd4RcV8qJKRb2q4UWC8a3JPK1sDOxqXHZVdJRJTn61vaYwr0HbQm1xP1A0APEU4ELcvKllj5RAhecUoVsmnpavCxAazGKsXNIvlGYTYtRo_FQo9Frcfi3inoBthuTFfUn-Jd4RCfmCI2WHe3X835IXmb__vAFvjimJiX-S-abdCa3s7UjgYtU7Fbz9UXHP7huA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=APPLICATION+OF+IMPROVED+BP+NEURAL+NETWORK+USING+GENETIC+ALGORITHM+IN+FAULT+ASSESSMENT+OF+BEARING+IN+ELECTROMECHANICAL+SYSTEM&rft.jtitle=International+Journal+of+Mechatronics+%26+Applied+Mechanics&rft.date=2021&rft.issn=2559-4397&rft.eissn=2559-6497&rft.volume=1&rft.issue=10&rft_id=info:doi/10.17683%2Fijomam%2Fissue10%2Fv2.8&rft.externalDBID=n%2Fa&rft.externalDocID=10_17683_ijomam_issue10_v2_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2559-4397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2559-4397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2559-4397&client=summon |