APPLICATION OF IMPROVED BP NEURAL NETWORK USING GENETIC ALGORITHM IN FAULT ASSESSMENT OF BEARING IN ELECTROMECHANICAL SYSTEM

The research aims at the serious economic loss and life-threatening problems caused by mechanical and electrical system accidents and bearing failures. The fault detection and identification of bearings in mechanical and electrical systems are discussed. The structure, fault cause, vibration mechani...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Mechatronics & Applied Mechanics Vol. 1; no. 10; pp. 69 - 79
Main Author Zhang, Shuyue
Format Journal Article
LanguageEnglish
Published Bucharest Editura Cefin 2021
Subjects
Online AccessGet full text
ISSN2559-4397
2559-4400
2559-6497
2559-6497
DOI10.17683/ijomam/issue10/v2.8

Cover

Abstract The research aims at the serious economic loss and life-threatening problems caused by mechanical and electrical system accidents and bearing failures. The fault detection and identification of bearings in mechanical and electrical systems are discussed. The structure, fault cause, vibration mechanism, and characteristic frequency of rolling bearing are analyzed, and the noise of vibration signals is removed and eliminated in light of the characteristics of the initial fault signal of rolling bearing. Because of the shortcomings of the wavelet, wavelet packet transform is proposed to characterize the normal state of rolling bearing, rolling element fault, inner ring fault, and outer ring fault signal. Based on the characteristics of global optimization of GA (genetic algorithm), the algorithm falls into local optimal value following the defects of BP (backpropagation) neural network and uses GA to optimize the BP neural network algorithm for fault diagnosis of rolling bearings. According to the experimental results, when the evolution algebra of the fault diagnosis model GA-BP is 8 at the drive end, the optimal classification accuracy of the population reaches 98.83%. In this case, a rolling element fault in the test data is misclassified. When the evolution algebra of the GA-BP fault diagnosis model is 2 at the fan side, the overall optimal classification accuracy reaches 97.62% in total. Under this condition, a rolling element fault and an outer ring fault are misclassified in the test data. Through the comparison experiment with the traditional optimized BP neural network, it is found that the GA-BP neural network algorithm model is suitable for the fault classification of rolling bearings.
AbstractList The research aims at the serious economic loss and life-threatening problems caused by mechanical and electrical system accidents and bearing failures. The fault detection and identification of bearings in mechanical and electrical systems are discussed. The structure, fault cause, vibration mechanism, and characteristic frequency of rolling bearing are analyzed, and the noise of vibration signals is removed and eliminated in light of the characteristics of the initial fault signal of rolling bearing. Because of the shortcomings of the wavelet, wavelet packet transform is proposed to characterize the normal state of rolling bearing, rolling element fault, inner ring fault, and outer ring fault signal. Based on the characteristics of global optimization of GA (genetic algorithm), the algorithm falls into local optimal value following the defects of BP (backpropagation) neural network and uses GA to optimize the BP neural network algorithm for fault diagnosis of rolling bearings. According to the experimental results, when the evolution algebra of the fault diagnosis model GA-BP is 8 at the drive end, the optimal classification accuracy of the population reaches 98.83%. In this case, a rolling element fault in the test data is misclassified. When the evolution algebra of the GA-BP fault diagnosis model is 2 at the fan side, the overall optimal classification accuracy reaches 97.62% in total. Under this condition, a rolling element fault and an outer ring fault are misclassified in the test data. Through the comparison experiment with the traditional optimized BP neural network, it is found that the GA-BP neural network algorithm model is suitable for the fault classification of rolling bearings.
Author Zhang, Shuyue
Author_xml – sequence: 1
  givenname: Shuyue
  surname: Zhang
  fullname: Zhang, Shuyue
BookMark eNqNUMtuwjAQtCoqlVL-oAdLPVMc23n4GFIToualPFr1ZBljJBAQmjRUSP34JoUP6Gl3Z2dmV3MPBofqoAF4NNCzYVsOmW621V7up5umabWBpif87NyAITZNNrEoswfXnhJm34Fx02wRQpjRDrOH4MdN0zDw3CJIYpjMYRClWfLGX-AshTEvMzfsSvGeZK-wzIPYhz7v5sCDbugnWVAsIhjEcO6WYQHdPOd5HvG46J1m3M16QbfmIfeKLIm4t3Dj7lgI84-84NEDuF3LXaPH1zoC5ZwX3mISJn5PmyjDYc5EW0RSrFbSpFKypWNhyZQmS2WukKmWlCBb2kojE2NEV7ZUhlbE0jbrIGqQJRkB8-LbHo7y_C13O3GsN3tZn4WBxF-K4pKiuKYoTlg4ne7pojvW1Wermy-xrdr60L0qsMUs0yCE9ix6Yam6appar_9n_gsTLoB7
ContentType Journal Article
Copyright 2021. This work is published under https://ijomam.com/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under https://ijomam.com/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.17683/ijomam/issue10/v2.8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2559-6497
EndPage 79
ExternalDocumentID 10.17683/ijomam/issue10/v2.8
10_17683_ijomam_issue10_v2_8
GroupedDBID 8FE
8FG
AAYXX
ABJCF
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
L6V
M7S
P62
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
PUEGO
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ABDBF
ADTOC
EOJEC
ESX
OBODZ
UNPAY
ID FETCH-LOGICAL-c1898-e63a42cda54aa9b862a9ce3bc5d05cb4307a7ce052204d7ac1ec36e79e05413b3
IEDL.DBID UNPAY
ISSN 2559-4397
2559-4400
2559-6497
IngestDate Tue Aug 19 22:29:44 EDT 2025
Fri Jul 25 11:50:39 EDT 2025
Wed Oct 01 04:55:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1898-e63a42cda54aa9b862a9ce3bc5d05cb4307a7ce052204d7ac1ec36e79e05413b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.17683/ijomam/issue10/v2.8
PQID 2696513348
PQPubID 4464516
PageCount 11
ParticipantIDs unpaywall_primary_10_17683_ijomam_issue10_v2_8
proquest_journals_2696513348
crossref_primary_10_17683_ijomam_issue10_v2_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Bucharest
PublicationPlace_xml – name: Bucharest
PublicationTitle International Journal of Mechatronics & Applied Mechanics
PublicationYear 2021
Publisher Editura Cefin
Publisher_xml – name: Editura Cefin
SSID ssj0002945597
Score 1.7477655
Snippet The research aims at the serious economic loss and life-threatening problems caused by mechanical and electrical system accidents and bearing failures. The...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 69
SubjectTerms Back propagation networks
Bearings
Classification
Corrosion
Deep learning
Economic impact
Evolution
Failure
Fault detection
Fault diagnosis
Genetic algorithms
Global optimization
Industrial production
Machine learning
Methods
Neural networks
Roller bearings
Tomography
Vibration analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAXBALEloJ84JpuNnEc54BQdvF2UzYP5VHKKfIrEqjd3ZYWhMSPx7NNWrggTpYcaQ6T8czn8cx8CL2V1JciZNQJlRTwzGicqDOu0_lEm4CF3dSF3uE0o8uGnJwFZ3soG3phoKxy8Ik7R603CnLkE49GFLhICHu_vXSANQpeVwcKDdFTK-h3uxFjD9C-B5OxRmh_xrOivMu6eBEBCA2Mc3Z1IBr3_XQWdvuT5CRP43SSVFXDp-7k1Dtif8erexD68Ga9FT9_iPPzP-LR4gl63ANJHN_--adoz6yfoV9xUQy9wThf4CQtyvyUf8CzAme8KeOVXepPefkRA9_GMYbKtTqZ43h1nJdJvUxxkuFF3KxqHFfgamHWP0ia8RjqJuAzX_F5XeYpny_jDMYp4OpzVfP0OWoWvJ4vnZ5fwVFTFjHHUF8QT2kRECEiae82IlLGlyrQbqAkscdfhMq4FqK5RIdCTY3yqQkju2Vjn_RfoNF6szYvEQ59KqhkWneuIiaiUopOMGZ8l-nAwogxcgYtttvbMRotXD9A6-2Xr5sLcdHuDM1ufvdaNkaHg6rb_lB9a-9NYIyO7tT_X_IO_i3vFXrkQa3KLrVyiEbXVzfmtQUb1_JNb0G_AX1ny5Q
  priority: 102
  providerName: ProQuest
Title APPLICATION OF IMPROVED BP NEURAL NETWORK USING GENETIC ALGORITHM IN FAULT ASSESSMENT OF BEARING IN ELECTROMECHANICAL SYSTEM
URI https://www.proquest.com/docview/2696513348
https://doi.org/10.17683/ijomam/issue10/v2.8
UnpaywallVersion publishedVersion
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2559-6497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002945597
  issn: 2559-4397
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2559-6497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002945597
  issn: 2559-4397
  databaseCode: 8FG
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLe29gAXPgSIwah84EjaNHYc5-gWpy00H0oT2E6R7TjSYOsmaIdA_PHYbTIGEtI4xYqVJ-c9x-_n-P3eA-C1JEiKgBInUFLYY0bthI12nQbhWvs0aMau5Q7HCZmX-N2Jf3IA3nRcmNvn9wYJo9HZp8sLcTHajWLsjq69IT0EfeIb5N0D_TLJ2KmtH2eAsWN9600b79gnuzbBYdCy5v4l8k-v9Btq3tuur8T3b-L8_JbXiR6CuBvvPtjk83C7kUP1469Ujnd9oUfgQQs_IdvPl8fgQK-fgJ8syzpGMUwjuIizPP3A38JJBhNe5mxpLsXHNH8PbZWOGbTxbsViCtlyluaLYh7DRQIjVi4LyFZ2gbYVAqykCWc22sJ28yWfFnka8-mcJTYJA1ydrgoePwVlxIvp3GmrMjhqTEPqaIIE9lQtfCxEKM2OSIRKI6n82vWVxGbREIHSrgF2Lq4DocZaIaKD0NwyHlOiZ6C3vlzr5wAGiAgiaV03rsI6JFKKRlCqkUtr34CPI-B0Vqmu9sk3KrtpsXqs9nqsWj1W115Fj8BxZ7qq_RS_Vh4JiS1ig0338Macd5L34n8feAnuezbmZfeL5hj0Nl-2-pUBLRs5AIc0mg1Af8KTLB-0M_cXgNXkOA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKeygXBALEQgEf4JhuNnEc51Ch7DbbpJsvJdlSTsF2HKlVu7vQlqoSv43fhmebtHBBXHqy5EhzmIxn3oxn_BD6IKgtuMuo4UrB4ZpRGV6rTKO1SaMc5rYjE2aHk5SGc3J47BxvoF_9LAy0VfY-ce2om6WEGvnQoh4FLhLCPq2-GcAaBberPYUG76gVmr31E2PdYMdM3VzrFO5iL9rX__ujZU2DahIaHcuAIUfMY4aiNieWbLhDOPeERvjck8oW0mlMRwqiDwF3pTI1UDFJ43I5UtKmyvX0lo4AwtZyH6EtYhNPJ39b4yDNi7sqj-URgOzAcKdXA6J_N7-nYb49jA6zxE-GUVnOg5E5PLJ22d_x8R70bl8tVvzmmp-d_RH_pk_Rkw64Yv_W0p6hDbV4jn76ed7PIuNsiqMkL7KjYB-Pc5wG88KP9VJ9zooZBn6PAwydclU0wX58kBVRFSY4SvHUn8cV9ktw7cAtAJLGgQ99GvA5iINJVWRJMAn9FFSKyy9lFSQv0PxBNP0SbS6WC_UKYdemnArWNK0pifKoELzljCnbZI2jYcsAGb0W69Xtsx01pDug9frkdHnOz-u1YevNH1bNBminV3XdHeKL-t7kBmj3Tv3_Je_1v-W9R9thlcR1HKWzN-ixBX0y67LODtq8_H6l3mqgcyneddaE0deHNuDfSAsI1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKkYALAgFioYAPcEyTTZzEOSCU7ia76eZL-SjlFGzHkUDt7kJbqkr8Mn4dnt2khQvi0pMlR5rDy3jm2Z7xQ-gtdyzOXOporuAMrhml5nXS0DqLtNKmbjc2oHc4SZ15TQ6P7eMd9GvohYGyyiEmbgJ1uxJwRq6bjueAFgmheteXReTT8MP6mwYKUnDTOshpbF1kIa8u1fbt7H00Vf_6nWmGQTWZa73CgCbG1KOadCxGTNEymzDmccXumSekxYXdGrbgRC0A5gppKJJikNZlYiyF5UjXU1Mq-nNL2b2D7rrwijt0qYez6_Md0yNA1kHbTo0a5P2-c08RfEuPDrPET_SoLOtgbOhH5j79OzPe0N37F8s1u7pkJyd_ZL7wEXrYU1bsb33sMdqRyyfop5_nQxcyzkIcJXmRHQVTfJDjNKgLP1ZD9TErFhiUPWYYauSqaIL9eJYVUTVPcJTi0K_jCvslBHVQFQBLB4EPFRrwOYiDSVVkSTCZ-ykAistPZRUkT1F9Kzg_Q7vL1VI-R1hhzRxO27YzBJGewznrGKXSMmhrK8IyQtqAYrPePtjRwEYHUG--fF2dstNm49Jq8ofZ0BHaG6Bu-uV71tw42wjtX8P_X_Ze_NveG3RPuW0TR-niJXpgQoHM5jxnD-2ef7-QrxTDOeevN66E0efb9t3f6msGbw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELbYcti98NDuannKB46bNo0dxzmaktJC81Ca7MIpsh1H4lUQtCAQPx67TYBdaSX2FCtWRs6M4_kczzcDwJ4gSHCPEsuTgptjRmX5lbKtCuFSudSrurbhDocRGeT46MQ9WQI_Gy7M-_N7jYRR5-z8-opfdeaj6Nqde6dNP4Fl4mrk3QLLeZSwU1M_TgNjy_jW1zaes0_mbYJ9r2bN_Uvkn17pDWp-nk1u-OMDv7x853X6qyBsxrsINrloz6aiLZ_-SuX40RdaAys1_IRsMV_WwZKafAXPLEkaRjGM-3AYJmn8KziA-wmMgjxlI33JfsfpMTRVOg6hiXfLhj3IRodxOswGIRxGsM_yUQbZ2CzQpkKAkbQfMBNtYbqDUdDL0jgMegMWmSQMcHw6zoLwG8j7QdYbWHVVBkt2qU8tRRDHjiy5izn3hd4RcV8qJKRb2q4UWC8a3JPK1sDOxqXHZVdJRJTn61vaYwr0HbQm1xP1A0APEU4ELcvKllj5RAhecUoVsmnpavCxAazGKsXNIvlGYTYtRo_FQo9Frcfi3inoBthuTFfUn-Jd4RCfmCI2WHe3X835IXmb__vAFvjimJiX-S-abdCa3s7UjgYtU7Fbz9UXHP7huA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=APPLICATION+OF+IMPROVED+BP+NEURAL+NETWORK+USING+GENETIC+ALGORITHM+IN+FAULT+ASSESSMENT+OF+BEARING+IN+ELECTROMECHANICAL+SYSTEM&rft.jtitle=International+Journal+of+Mechatronics+%26+Applied+Mechanics&rft.date=2021&rft.issn=2559-4397&rft.eissn=2559-6497&rft.volume=1&rft.issue=10&rft_id=info:doi/10.17683%2Fijomam%2Fissue10%2Fv2.8&rft.externalDBID=n%2Fa&rft.externalDocID=10_17683_ijomam_issue10_v2_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2559-4397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2559-4397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2559-4397&client=summon