Defect Detection of Aluminum Profiles based on Improved Feature Pyramids
For the surface defects of aluminum profiles, there are problems of multi-scale, small object and irregular shape. This paper proposes a defects detection algorithm based on improved feature pyramid. This method compresses and saves the feature information extracted by the backbone networks, and cal...
        Saved in:
      
    
          | Published in | MATEC web of conferences Vol. 380; p. 1016 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article Conference Proceeding | 
| Language | English | 
| Published | 
        Les Ulis
          EDP Sciences
    
        2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2261-236X 2274-7214 2261-236X  | 
| DOI | 10.1051/matecconf/202338001016 | 
Cover
| Abstract | For the surface defects of aluminum profiles, there are problems of multi-scale, small object and irregular shape. This paper proposes a defects detection algorithm based on improved feature pyramid. This method compresses and saves the feature information extracted by the backbone networks, and calculates the similarity between deep and shallow features, so as to alleviate the phenomenon of loss of feature information and weakening of feature expression ability, thereby solving the problem of multi-scale and small object. At the same time, deformable convolution is introduced to enhance the feature extraction ability of the model and alleviate the detection problems caused by irregularly shaped defects. To verify the effectiveness of the proposed method, Faster R-CNN was used as the basic detection algorithm to conduct ablation experiments, and compared with the classical detection algorithm, the accuracy rate was as high as 72.8%. The experimental results show that the proposed method has a good performance on the task of aluminum profile defects detection, and is superior to the comparative detection algorithms. | 
    
|---|---|
| AbstractList | For the surface defects of aluminum profiles, there are problems of multi-scale, small object and irregular shape. This paper proposes a defects detection algorithm based on improved feature pyramid. This method compresses and saves the feature information extracted by the backbone networks, and calculates the similarity between deep and shallow features, so as to alleviate the phenomenon of loss of feature information and weakening of feature expression ability, thereby solving the problem of multi-scale and small object. At the same time, deformable convolution is introduced to enhance the feature extraction ability of the model and alleviate the detection problems caused by irregularly shaped defects. To verify the effectiveness of the proposed method, Faster R-CNN was used as the basic detection algorithm to conduct ablation experiments, and compared with the classical detection algorithm, the accuracy rate was as high as 72.8%. The experimental results show that the proposed method has a good performance on the task of aluminum profile defects detection, and is superior to the comparative detection algorithms. | 
    
| Author | Zhang, Yan Sha Pan, Feng Wang, Lin Wang, Jie  | 
    
| Author_xml | – sequence: 1 givenname: Jie surname: Wang fullname: Wang, Jie – sequence: 2 givenname: Yan Sha surname: Zhang fullname: Zhang, Yan Sha – sequence: 3 givenname: Feng surname: Pan fullname: Pan, Feng – sequence: 4 givenname: Lin surname: Wang fullname: Wang, Lin  | 
    
| BookMark | eNqNkFtLAzEQhYMoeOtfkAWfa3PbJPsoVm1BsA8KvoUkO5Etu5ua7Cr996ZWpI_CwAxnznww5xwd96EHhK4IviG4JLPODOBc6P2MYsqYwphgIo7QGaWCTCkTb8cH8ymapLTG2cQqiSt5hhZz8OCGYg6ZMzShL4Ivbtuxa_qxK1Yx-KaFVFiToC7ydtltYvjM8wOYYYxQrLbRdE2dLtGJN22CyW-_QK8P9y93i-nT8-Py7vZp6oiqxLSqgUkrjSXAuHSE1CX3zBPDa2tAll4p7p3DzBthibIi65w6KYkFzgxnF2i559bBrPUmNp2JWx1Mo3-EEN-1iUPjWtB16WuoSlE6WnLMmOXSli4XzWShdiy5Z439xmy_TNv-AQnWu3z1X776MN98eb2_zGl8jJAGvQ5j7PPjmioslaoqjLNL7F0uhpQi-P_ivwGw4pAK | 
    
| Cites_doi | 10.1109/ICCV.2017.324 10.1155/2021/4795396 10.1109/CVPR.2017.106 10.1109/ICCV.2017.89 10.1007/978-3-319-46448-0_2 10.3390/app112411701 10.1109/CVPR42600.2020.01261 10.1109/CVPR.2014.81 10.1109/CVPR.2016.91 10.1109/CVPR.2018.00644 10.1109/CVPR.2016.90  | 
    
| ContentType | Journal Article Conference Proceeding  | 
    
| Copyright | 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 7SP 7SR 7TB 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FR3 HCIFZ JG9 KB. KR7 L6V L7M M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS ADTOC UNPAY DOA  | 
    
| DOI | 10.1051/matecconf/202338001016 | 
    
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest MSED ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database ProQuest SciTech Collection Materials Research Database Materials Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall Directory of open access journals (DOAJ)  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ProQuest Materials Science Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2261-236X | 
    
| ExternalDocumentID | oai_doaj_org_article_d5fde9565c254033b47b5cb5c2b18684 10.1051/matecconf/202338001016 10_1051_matecconf_202338001016  | 
    
| Genre | Conference Proceeding | 
    
| GroupedDBID | 4.4 5VS 8FE 8FG AAFWJ AAOGA AAYXX ABJCF ACACO ACIWK ADBBV ADMLS AFKRA AFPKN AGQPQ ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I EBS EJD GI~ GROUPED_DOAJ HCIFZ IPNFZ KB. KQ8 L6V M7S M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC PTHSS PUEGO RIG RNS 7SP 7SR 7TB 8BQ 8FD ABUWG AZQEC DWQXO FR3 JG9 KR7 L7M PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c1896-9de37b7ab1e347c11d54f3f1a4dbae75f884fcc03fa6b18b64db42c771be43a43 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2261-236X 2274-7214  | 
    
| IngestDate | Tue Oct 14 19:06:23 EDT 2025 Sun Sep 07 10:58:22 EDT 2025 Fri Jul 25 11:51:45 EDT 2025 Wed Oct 01 03:12:21 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c1896-9de37b7ab1e347c11d54f3f1a4dbae75f884fcc03fa6b18b64db42c771be43a43 | 
    
| Notes | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2807889900?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2807889900 | 
    
| PQPubID | 2040549 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d5fde9565c254033b47b5cb5c2b18684 unpaywall_primary_10_1051_matecconf_202338001016 proquest_journals_2807889900 crossref_primary_10_1051_matecconf_202338001016  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-00-00 20230101 2023-01-01  | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – year: 2023 text: 2023-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Les Ulis | 
    
| PublicationPlace_xml | – name: Les Ulis | 
    
| PublicationTitle | MATEC web of conferences | 
    
| PublicationYear | 2023 | 
    
| Publisher | EDP Sciences | 
    
| Publisher_xml | – name: EDP Sciences | 
    
| References | R2 R3 R5 R7 Wang (R6) 2020; 1544 R8 R9 Liao (R4) 2021; 11 R10 R12 R11 R14 R13 R15 R1  | 
    
| References_xml | – ident: R14 doi: 10.1109/ICCV.2017.324 – ident: R5 doi: 10.1155/2021/4795396 – ident: R9 doi: 10.1109/CVPR.2017.106 – ident: R10 doi: 10.1109/ICCV.2017.89 – ident: R2 doi: 10.1007/978-3-319-46448-0_2 – volume: 11 start-page: 11701 issue: 24 year: 2021 ident: R4 publication-title: Applied Sciences doi: 10.3390/app112411701 – ident: R7 – volume: 1544 start-page: 012074 issue: 1 year: 2020 ident: R6 publication-title: Journal of Physics: Conference Series. IOP Publishing – ident: R11 doi: 10.1109/CVPR42600.2020.01261 – ident: R1 doi: 10.1109/CVPR.2014.81 – ident: R3 doi: 10.1109/CVPR.2016.91 – ident: R13 doi: 10.1109/CVPR.2018.00644 – ident: R12 doi: 10.1109/CVPR.2016.90 – ident: R15 – ident: R8  | 
    
| SSID | ssj0001397097 | 
    
| Score | 2.2275178 | 
    
| Snippet | For the surface defects of aluminum profiles, there are problems of multi-scale, small object and irregular shape. This paper proposes a defects detection... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 1016 | 
    
| SubjectTerms | Ablation Algorithms Aluminum aluminum profile defects detection Computer networks deformable convolution networks faster r-cnn Feature extraction feature pyramid networks Formability Pyramids Surface defects  | 
    
| SummonAdditionalLinks | – databaseName: Directory of open access journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6yi3oQf-J0Sg5ey5ombdrjdI4hKDs42K3kJ0y2bmwrsv_el6Yb3UkPQg8lKeHxvbb5XvLyPYSeImKoNpkNbMqdqHaaBBBnsYBJSZw8iVWRO-D8_pEMx-xtEk8apb5cTpiXB_bAdXVsYSygHQpCmZBSybiMFVyRdErvlRJomGaNYOqr5jVhxndHgmPSBf4H1i4K68J9iMu8uNrBbFSJ9h8wzeOyWIrtt5jNGpPO4Byd1WwR97yVF-jIFJfotKEheIWGfeMyMnDfbKqsqgIvLO7BL2dalHM88iW519jNVhpDr19FgHtH_sqVwaPtSsynen2NxoPXz5dhUJdHCBRJsyTItKFcciEBbsYVITpmlloimJbC8NgC5lapkFqRAFYygXYWKc6JNIwKRm9Qq1gU5hZhZXSWRES6fWHGtZGJEoZllNqQS0VtG3V3MOVLr4KRV7vXMcn3wOZNYNvo2aG5f9qpWFcN4Nu89m3-m2_bqLPzRV5_WuvcyfekECWGYRuFe__80ay7_zDrHp24Mf1CTAe1NqvSPAA12cjH6i38ATih4BA priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BOSAOsLxEEbvygWsgjh07OXYXULUS0AOVyinyU0JAWrWNEPx6xklatUgrsVIOlvNyZuzMN_b4G4DzhDpmXe4jn8lAqp2JCP0sHnGtaaAn8SYJG5xv70R_yP-O0lHrKIa9MGvr9ym9RNiGLxmXPnjp6E41nGibsCVSxN4d2BreDXqPIYNcmEhJmBjV5RBkmFC-2BL8zwetWaOatH8NaW5X5US9v6mXlxWjc7MH94vmNrEmzxfVXF-Yjy9Mjt__nh-w2-JP0ms6zD5suPIAdlZYCQ-hf-VCjAe5cvM6TqskY096-BN7KqtXMmiSfM9IsH-W4NlmXgLLAU5WU0cG71P1-mRnRzC8uX7404_ahAuRoVkuotw6JrVUGhXIpaHUptwzTxW3WjmZetSiNyZmXglNMy2wnidGSqodZ4qzY-iU49KdADHO5iKhOqw0c2mdFkY5njPmY6kN8124XAi-mDS8GkW9Hp7SYimjYlVGXfgd9LO8OvBi1xUo3qIdZoVNPfY8BKkGHd-YMc2lTg0eiQ55AXgXzhbaLdrBOisCIVCGfmccdyFeavybzTr9_1vOoDOfVu4nopm5_tV24U9xO-8- priority: 102 providerName: Unpaywall  | 
    
| Title | Defect Detection of Aluminum Profiles based on Improved Feature Pyramids | 
    
| URI | https://www.proquest.com/docview/2807889900 https://doi.org/10.1051/matecconf/202338001016 https://doaj.org/article/d5fde9565c254033b47b5cb5c2b18684  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 380 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2261-236X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001397097 issn: 2274-7214 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ - Directory of Open Access Journals customDbUrl: eissn: 2261-236X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001397097 issn: 2274-7214 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2261-236X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001397097 issn: 2274-7214 databaseCode: ADMLS dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAHI databaseName: EDP Open customDbUrl: eissn: 2261-236X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001397097 issn: 2274-7214 databaseCode: GI~ dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.edp-open.org/ providerName: EDP – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2261-236X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001397097 issn: 2274-7214 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2261-236X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001397097 issn: 2274-7214 databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2261-236X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001397097 issn: 2274-7214 databaseCode: 8FG dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB4S59D21EdK3aZGh16FtQ9ppUMoSRPHLdSYUkN6EvssgURy_CDk0t_eGVmynUspCCFWq0WaWe08duYbgE-ceeF8EeKQKwLVzrMY7SwZS2MYwZMEyynB-fskG8_kt-v0-gAmXS4MhVV2a2KzULvako98SKgtORoHSfJ5fh9T1SjaXe1KaOi2tII7bSDGDuGIEzJWD47OLyfTHzuvC4rfpKm4wjkFInImu7ThlA1RR8QvqqtALgG03TYAbE8kVgPs_0Qbfbau5vrxQd_e7gmm0Us43qXsRdOtMHoFB756DS_20AbfwPjCU-xGdOFXTfxVFdUhOsPF6aZa39HDhNG0jEiuuQjvbvwNeE1q4nqB4z8u9N2NWx7DbHT588s4bgspxJblRRYXzgtllDbIGKksYy6VQQSmpTPaqzQgd4K1iQg6Myw3GbZLbpVixkuhpXgLvaqu_DuIrHdFxpmhHWSpnDeZ1V4WQoREGStCH4Ydscr5Bi-jbPa5U1ZuyVvuk7cP50TTbW_Cu24a6sXvsv19SpcGnFGofFo0aBMhjFQmtXhwQ3j_sg8nHUfK9idclrsp04dky6X_fK33_x7xAzyn3htnzAn0Vou1_4jqycoM4DAfXQ3amTdojHw8X339g22zyfTs11_tkudX | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lA48SgiUMAHOFrxPuy1DxWipFVK26hCrdSb2Seq1NohD1X5c_w2Zhw7SS-ISyUfrLV3tZqd3XnszDcAnzjzwvkixCFXBKqdZzHaWTKWxjCCJwmWU4Lz-SgbXsnv1-n1FvzpcmEorLI7E5uD2tWWfOR9Qm3J0ThIki_j3zFVjaLb1a6Ehm5LK7iDBmKsTew49Yt7NOGmBycDXO_PnB8fXX4bxm2VgdiyvMjiwnmhjNIGZy2VZcylMojAtHRGe5UGnHqwNhFBZ4blJsN2ya1SzHgptBQ47hPYkUIWaPztHB6NLn6svTwo7pOmwgvnFPjImezSlFPWR50UKVhXgVwQaCsuAd8eSMimkMAD7Xd3Xo314l7f3m4IwuPnsLdOEYwuVsLvBWz56iU820A3fAXDgadYkWjgZ028VxXVIfqKh-FNNb-jzoQJNY1IjroIvy79G_hOaul8guMvJvruxk334OpRSPoatqu68m8gst4VGWeGbqylct5kVntZCBESZawIPeh3xCrHS3yOsrlXT1m5Im-5Sd4eHBJNV38TvnbTUE9-le12LV0akINR2bVoQCdCGKlMavHhhuoLyB7sdytStpt-Wq5ZtAfJapX-c1pv_z3iR9gdXp6flWcno9N38JR6Lh1B-7A9m8z9e1SNZuZDy38R_Hxslv8L3QQgwg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BOSAOsLxEEbvygWsgjh07OXYXULUS0AOVyinyU0JAWrWNEPx6xklatUgrsVIOlvNyZuzMN_b4G4DzhDpmXe4jn8lAqp2JCP0sHnGtaaAn8SYJG5xv70R_yP-O0lHrKIa9MGvr9ym9RNiGLxmXPnjp6E41nGibsCVSxN4d2BreDXqPIYNcmEhJmBjV5RBkmFC-2BL8zwetWaOatH8NaW5X5US9v6mXlxWjc7MH94vmNrEmzxfVXF-Yjy9Mjt__nh-w2-JP0ms6zD5suPIAdlZYCQ-hf-VCjAe5cvM6TqskY096-BN7KqtXMmiSfM9IsH-W4NlmXgLLAU5WU0cG71P1-mRnRzC8uX7404_ahAuRoVkuotw6JrVUGhXIpaHUptwzTxW3WjmZetSiNyZmXglNMy2wnidGSqodZ4qzY-iU49KdADHO5iKhOqw0c2mdFkY5njPmY6kN8124XAi-mDS8GkW9Hp7SYimjYlVGXfgd9LO8OvBi1xUo3qIdZoVNPfY8BKkGHd-YMc2lTg0eiQ55AXgXzhbaLdrBOisCIVCGfmccdyFeavybzTr9_1vOoDOfVu4nopm5_tV24U9xO-8- | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=MATEC+web+of+conferences&rft.atitle=Defect+Detection+of+Aluminum+Profiles+based+on+Improved+Feature+Pyramids&rft.au=Wang%2C+Jie&rft.au=Yan+Sha+Zhang&rft.au=Pan%2C+Feng&rft.au=Wang%2C+Lin&rft.date=2023-01-01&rft.pub=EDP+Sciences&rft.issn=2274-7214&rft.eissn=2261-236X&rft.volume=380&rft_id=info:doi/10.1051%2Fmatecconf%2F202338001016 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2261-236X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2261-236X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2261-236X&client=summon |