Minimizing Makespan in a Permutation Flow Shop Environment: Comparison of Scatter Search, Genetic Algorithm and Greedy Randomized Adaptive Search Procedures
Solving scheduling problems enables more efficient use of production capacity. It involves defining the sequence of operations, determining the capacity of resources, and balancing workloads. Different methods, especially metaheuristics, have been used to solve these problems. This study presents th...
        Saved in:
      
    
          | Published in | Ege Akademik Bakis (Ege Academic Review) Vol. 23; no. 2; pp. 237 - 246 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Izmir
          Ege University Faculty of Economics and Administrative Sciences
    
        01.05.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1303-099X | 
| DOI | 10.21121/eab.1246770 | 
Cover
| Abstract | Solving scheduling problems enables more efficient use of production capacity. It involves defining the sequence of operations, determining the capacity of resources, and balancing workloads. Different methods, especially metaheuristics, have been used to solve these problems. This study presents the application of Scatter Search (SS), Genetic Algorithm (GA), and Greedy Randomized Adaptive Search Procedures (GRASP) for minimizing makespan in a permutation flow shop environment. In this study, the performances of these methods are compared through various test problems in the literature and a real-life problem of a company operating in the automotive sector. Study comprises 48 jobs that must be planned within a day for eight consecutive operations. In cellular manufacturing, the sequence in which each job is processed in eight operations is the same. In solving permutation flow shop scheduling problems (PFSP), one of the NP-hard problems, meta-heuristic methods are widely applied due to their successful results. From this point of view, SS, GA, and GRASP are employed in this study, and their performances are compared. | 
    
|---|---|
| AbstractList | Solving scheduling problems enables more efficient use of production capacity. It involves defining the sequence of operations, determining the capacity of resources, and balancing workloads. Different methods, especially metaheuristics, have been used to solve these problems. This study presents the application of Scatter Search (SS), Genetic Algorithm (GA), and Greedy Randomized Adaptive Search Procedures (GRASP) for minimizing makespan in a permutation flow shop environment. In this study, the performances of these methods are compared through various test problems in the literature and a real-life problem of a company operating in the automotive sector. Study comprises 48 jobs that must be planned within a day for eight consecutive operations. In cellular manufacturing, the sequence in which each job is processed in eight operations is the same. In solving permutation flow shop scheduling problems (PFSP), one of the NP-hard problems, meta-heuristic methods are widely applied due to their successful results. From this point of view, SS, GA, and GRASP are employed in this study, and their performances are compared. | 
    
| Author | Demİrcan Keskİn, Fatma Kocamaz, Murat Çİçeklİ, Ural Gökay  | 
    
| Author_xml | – sequence: 1 givenname: Ural surname: Çİçeklİ middlename: Gökay fullname: Çİçeklİ, Ural Gökay – sequence: 2 givenname: Fatma surname: Demİrcan Keskİn fullname: Demİrcan Keskİn, Fatma – sequence: 3 givenname: Murat surname: Kocamaz fullname: Kocamaz, Murat  | 
    
| BookMark | eNotkMtOwzAQRb0AieeODxiJLSl-NQ92VUULEghEWbCLXHvSuiR2cJyi8i18LAE6m5nFmZmrc0IOnHdIyAWjI84YZ9eoliPGZZpl9IAcM0FFQovi7Yicd92G_lZGc54dk-9H62xjv6xbwaN6x65VDqwDBc8Ymj6qaL2DWe0_YbH2Ldy6rQ3eNejiDUx906pgu4HwFSy0ihEDLFAFvb6COTqMVsOkXvlg47oB5QzMA6LZwcsw--EvGpgY1Ua7xf0iPAev0fQBuzNyWKm6w_N9PyWvs9vX6V3y8DS_n04eEs3yPCbjpZaZFsi00HnFpOQaxzItjE6rotCpqTSlVY6yGJtxWi0NF0tZoUTJCiaMOCXJ_9netWr3qeq6bINtVNiVjJZ_QstBaLkXOvCX_3wb_EePXSw3vg9uSFjynIm0EJxT8QOHI3wm | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright Ege University Faculty of Economics and Administrative Sciences Apr 2023 | 
    
| Copyright_xml | – notice: Copyright Ege University Faculty of Economics and Administrative Sciences Apr 2023 | 
    
| DBID | 3V. 7WY 7WZ 7XB 87Z 8FK 8FL 8G5 ABUWG AFKRA AZQEC BENPR BEZIV CCPQU DWQXO EDSIH FRNLG F~G GNUQQ GUQSH K60 K6~ L.- M0C M2O MBDVC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY  | 
    
| DOI | 10.21121/eab.1246770 | 
    
| DatabaseName | ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest One Community College ProQuest Central Turkey Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global (OCUL) ProQuest Research library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea Turkey Database ProQuest Research Library ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | ABI/INFORM Global (Corporate) | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Economics | 
    
| EndPage | 246 | 
    
| ExternalDocumentID | oai:dergipark.org.tr:article/1246770 | 
    
| GroupedDBID | 29G 2WC 3V. 5GY 7WY 7XB 8FK 8FL 8G5 8R4 8R5 8VB ABUWG ACIHN AEAQA AFKRA AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BEZIV BPHCQ CCPQU DWQXO E3Z EBU EDSIH EOH EOJEC FRNLG GNUQQ GUQSH K1G K60 K6~ L.- M0C M2O MBDVC OBODZ OK1 OVT PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS PROAC Q2X Q9U QWB TH9 ZL0 ~8M ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c188t-5bc47c3e1c3c8f1442ce5469dc6f99c6dfc00f8e495d56fbd23b4fe4e41913d3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1303-099X | 
    
| IngestDate | Thu Aug 28 11:01:43 EDT 2025 Mon Jun 30 03:12:29 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c188t-5bc47c3e1c3c8f1442ce5469dc6f99c6dfc00f8e495d56fbd23b4fe4e41913d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://dergipark.org.tr/tr/pub/eab/issue/76151/1246770 | 
    
| PQID | 2813693220 | 
    
| PQPubID | 136110 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | unpaywall_primary_10_21121_eab_1246770 proquest_journals_2813693220  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-05-01 | 
    
| PublicationDateYYYYMMDD | 2023-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Izmir | 
    
| PublicationPlace_xml | – name: Izmir | 
    
| PublicationTitle | Ege Akademik Bakis (Ege Academic Review) | 
    
| PublicationYear | 2023 | 
    
| Publisher | Ege University Faculty of Economics and Administrative Sciences | 
    
| Publisher_xml | – name: Ege University Faculty of Economics and Administrative Sciences | 
    
| SSID | ssj0000070827 | 
    
| Score | 2.220362 | 
    
| Snippet | Solving scheduling problems enables more efficient use of production capacity. It involves defining the sequence of operations, determining the capacity of... | 
    
| SourceID | unpaywall proquest  | 
    
| SourceType | Open Access Repository Aggregation Database  | 
    
| StartPage | 237 | 
    
| SubjectTerms | Genetic algorithms Heuristic Optimization algorithms Scheduling  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9tAEF1BOMClailVobSaA-LEgr1e2-tKFUpRIoSUCAGVcrP2EyKC7ZZECH5Lfyyz_ghw4eaL19aMPTNvd-Y9QvaEyQwzNqQqjSLKEyupyJiiWnCN6UenrqZrGo2T0z_8bBJPVsi4m4XxbZVdTKwDtSm13yM_YiKMEiw2WHBc_aVeNcqfrnYSGrKVVjC_aoqxVbLGPDNWj6z9HozPL5a7Lp7dRtQ6rj52UyyPJk03POIgFh5ZqQ4x4SVpGrypONcXRSUfH-Rs9ir5DD-SD23VCP3GzZ_Iii02yXo3VHz_mfwfTYvp3fQJExGM5K3FOFHAtAAJ5xh6F815Owxn5QNc3pQVDF7m237CyVKLEEoHl7qm3ISmEfkAPDE1Phb6s2u0x_zmDmRhwPfrmEe4wGt8hSdroG9k5WNneyPUIwhmgXB-i1wNB1cnp7QVXqA6FGJOY6V5qiMb6kgLh5CLaRsjjjY6cVmmE-N0EDhhEVyZOHHKsEhxZ7nliP4iE30hvaIs7FcCToQ2wDU4sxk3zGVKSBWnWuLigstwm-x2Vs7bn-c-f3H1NtlfWj6vGvqNHGFL7a0cvZW33tp5f51vZMPLxDeNirukN_-3sN-xmJirH-0X8gysUsw- priority: 102 providerName: ProQuest  | 
    
| Title | Minimizing Makespan in a Permutation Flow Shop Environment: Comparison of Scatter Search, Genetic Algorithm and Greedy Randomized Adaptive Search Procedures | 
    
| URI | https://www.proquest.com/docview/2813693220 https://dergipark.org.tr/tr/pub/eab/issue/76151/1246770  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central issn: 1303-099X databaseCode: BENPR dateStart: 20091001 customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.proquest.com/central omitProxy: true ssIdentifier: ssj0000070827 providerName: ProQuest – providerCode: PRVPQU databaseName: Turkey Database (Proquest) issn: 1303-099X databaseCode: EDSIH dateStart: 20091001 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/turkey omitProxy: false ssIdentifier: ssj0000070827 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF5V9qG9tKnaqmmTaA5RT8UYWGDJzU1tOZVsWXEiuSe0zwTZAURBUfJb8mM7CyR9nKpKSHBgdkfMMjPf7jwIOWYqUb7SniPiIHBopLnDEl84klGJ5kfGpi3XtFhG80v6bRNu-q0LmwujdHWVlbza2lP8UV25eCFjrubCbTlxY2uDXTRLURwjVh9GITrhAzK8XK4m31t4ZSOEkmTThbkjwPE9Sz7qSf5wJZ83ecnvbvlu95tVmb0im0d-umCS7aipxUje_1Wq8T8Y3iMve08TJt3SeE2e6fwNeVhkeXaT3aPBggXfatQnOWQ5cFihim66c3mY7YpbWF8XJUx_5cGdwOlTz0IoDKxlW5oTuoDlz2ALWONUMNldFVVWX98AzxXYuB51B-f4XOC8WsFE8dLq2J4Q2lQF1SDsf0suZtOL07nTN2hwpMdY7YRC0lgG2pOBZAahmS91iHhbycgkiYyUkeOxYRpBmAojI5QfCGo01RRRYqCCd2SQF7l-T8AwT49xDOrrhCrfJIJxEcaS4-CMcm-fHDwKLe1_sh-pz7wgQv_TH--TT0-CTMuuTEeK8KYVfoqiSPvP_-FfX_xIXtjG8l1o4wEZ1FWjD9H9qMURGX6ZLlfneJ9-XZ_Nj_ql9xO2UeD7 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9hAuiKcoFJgDcMLU3l3ba6QKhZIopU1UtUHKzVrvo41IbdMkitLfwl_hvzHrRwoXbr354rG1Mzsz3-7MfIS8FTrRVJvAy2LGPB4Z6YmEZp4SXGH4UbGtxjUNR9HgO_82CSdb5HfbC-PKKlufWDlqXSh3Rr5PRcAiTDao_7n86TnWKHe72lJoyIZaQR9UI8aaxo5js14hhJsfHH1Ffb-jtN8bHw68hmXAU4EQCy_MFI8VM4FiSljEF1SZEEGjVpFNEhVpq3zfCoNIQoeRzTRlGbeGG45Qh2mGYu-RHc54gthv50tvdHq2OeRxw3RERRvrQoWH2dikLr5H2EWDfSOzjxhfozj2_0lwO8u8lOuVnM3-inX9h-RBk6RCt7aqR2TL5I9Jp-1hnj8hv4bTfHo1vcG4B0P5w6BbymGag4RT9PTL-nof-rNiBeeXRQm923a6T3C4oT6EwsK5qiZ8Ql33_AHcHGz8LHRnF7j8i8srkLkGVx6k13CGz_gLN0ZDV8vSuermRag6HvTy2syfkvFdaOAZ2c6L3DwnYEVgfJTBqUm4pjbJhMzCWEkULrgMdsleu8pps1fn6a1l7ZL3m5VPy3raR4ooqdJWitpKG229-L-cN6QzGA9P0pOj0fFLct8x1Nc1kntke3G9NK8wj1lkrxtrAZLesX3-AePxCe8 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbQcmgvhaqtCgU0B8Sp2WwcJ3G4rRArhLQI8ZC2p8hPiHZJojQRgt_Cj2WcBGh7qpByyCFjjzLOzHzxN2NC9rlONdUm8GQShh6LjfB4SqWnOFMYflRiu3ZN87P45JqdLqLF8OvC1cJoU9_klaiXbhd_3NQ-XqiYb4T0O038xMVgH8NSnCSI1dfjCJPwEVm_Pjuf_urglWMIpemip7kjwKGBEx8PIn-lkh_aohIP92K1-iOqzDbI4kWfnkyyHLeNHKvHf1o1vkPhTfJpyDRh2i-Nz2TNFF_I0zwv8rv8EQMWzMXSoD8pIC9AwDm66Lbfl4fZqryHy9uyguO3OrhDOHo9sxBKC5eqa80JPWH5J7gG1jgVTFc3ZZ03t3cgCg2O16Mf4ALvS5zXaJhqUTkfOwhCV6qgW4T9X8nV7Pjq6MQbDmjwVMB540VSsUSFJlCh4hahGVUmQrytVWzTVMXaqsnEcoMgTEexlZqGklnDDEOUGOrwGxkVZWG-E7A8MBMcg1GTMk1tKrmQUaIEDs6ZCLbIzovRsuEj-51RHoQx5p90skUOXg2ZVX2bjgzhTWf8DE2RDa9_-38f_EE-uoPle2rjDhk1dWt2Mf1o5N6w1J4Bwr3d0Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimizing+Makespan+in+a+Permutation+Flow+Shop+Environment%3A+Comparison+of+Scatter+Search%2C+Genetic+Algorithm+and+Greedy+Randomized+Adaptive+Search+Procedures&rft.jtitle=Ege+akademik+bak%C4%B1s&rft.au=%C3%87%C4%B0%C3%A7ekl%C4%B0%2C+Ural+G%C3%B6kay&rft.au=Dem%C4%B0rcan+Kesk%C4%B0n%2C+Fatma&rft.au=Kocamaz%2C+Murat&rft.date=2023-05-01&rft.pub=Ege+University+Faculty+of+Economics+and+Administrative+Sciences&rft.issn=1303-099X&rft.volume=23&rft.issue=2&rft.spage=237&rft.epage=246&rft_id=info:doi/10.21121%2Feab.1246770 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1303-099X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1303-099X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1303-099X&client=summon |