Economic-based ACO Algorithm for Data Intensive Grid Scheduling
The scope of grid computing is rapidly growing in distributed heterogeneous environments for the need to utilize and share large-scale resources to solve complex scientific problems. Economic models are effective in collaborating large-scale heterogeneous data and computational resources that are ty...
        Saved in:
      
    
          | Published in | Asian journal of scientific research Vol. 6; no. 4; p. 789 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        2013
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1992-1454 2077-2076 2077-2076  | 
| DOI | 10.3923/ajsr.2013.789.796 | 
Cover
| Abstract | The scope of grid computing is rapidly growing in distributed heterogeneous environments for the need to utilize and share large-scale resources to solve complex scientific problems. Economic models are effective in collaborating large-scale heterogeneous data and computational resources that are typically owned by different organizations with diverse interests. Scheduling is the most crucial task to achieve high performance in both computation and data grids. To utilize the grid efficiently for both resource providers and consumers, an efficient job scheduling algorithm is required. The proposed algorithm allows resource providers and consumers to take autonomous scheduling decisions and that both parties can derive sufficient incentives based on their economic interests. It is based on the general adaptive scheduling heuristic which employs a Quality of Service (QoS) guided component that emphasizes more on reliability. The algorithm was successfully tested in simulation environment. Experiments showed that the proposed economic and ant heuristic method was able to significantly improve performance by 10-25% even in unreliable network conditions. | 
    
|---|---|
| AbstractList | The scope of grid computing is rapidly growing in distributed heterogeneous environments for the need to utilize and share large-scale resources to solve complex scientific problems. Economic models are effective in collaborating large-scale heterogeneous data and computational resources that are typically owned by different organizations with diverse interests. Scheduling is the most crucial task to achieve high performance in both computation and data grids. To utilize the grid efficiently for both resource providers and consumers, an efficient job scheduling algorithm is required. The proposed algorithm allows resource providers and consumers to take autonomous scheduling decisions and that both parties can derive sufficient incentives based on their economic interests. It is based on the general adaptive scheduling heuristic which employs a Quality of Service (QoS) guided component that emphasizes more on reliability. The algorithm was successfully tested in simulation environment. Experiments showed that the proposed economic and ant heuristic method was able to significantly improve performance by 10-25% even in unreliable network conditions. | 
    
| Author | Mehata, K M Aranganathan, S  | 
    
| Author_xml | – sequence: 1 givenname: S surname: Aranganathan fullname: Aranganathan, S – sequence: 2 givenname: K surname: Mehata middlename: M fullname: Mehata, K M  | 
    
| BookMark | eNotkE1Lw0AQhhepYK39Ad5y9JK4X9nsnqTUWguFHtTzMtnstinJJmYTpf_ehDqHGRh4Xl6eezTzjbcIPRKcMEXZM5xDl1BMWJJJlWRK3KA5xVkWj0vM0JwoRWPCU36HliGc8ThMpRmRc_SyMY1v6tLEOQRbRKv1IVpVx6Yr-1MduaaLXqGHaOd760P5Y6NtVxbRhznZYqhKf3xAtw6qYJf_d4G-3jaf6_d4f9ju1qt9bIiUIgbHrUipyIRxKQOguaJFniviijyzjhvp6NiPcIOlAA6OUWA4F5grZ8YvWyB6zR18C5dfqCrddmUN3UUTrCcLerKgJwt6tKBHCyP0dIXarvkebOh1XQZjqwq8bYagCZ9AwqRkf07fX_g | 
    
| ContentType | Journal Article | 
    
| DBID | 7SN C1K ADTOC UNPAY  | 
    
| DOI | 10.3923/ajsr.2013.789.796 | 
    
| DatabaseName | Ecology Abstracts Environmental Sciences and Pollution Management Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | Ecology Abstracts Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | Ecology Abstracts | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| EISSN | 2077-2076 | 
    
| EndPage | 789 | 
    
| ExternalDocumentID | 10.3923/ajsr.2013.789.796 | 
    
| GroupedDBID | 23N 2WC 7SN ALMA_UNASSIGNED_HOLDINGS C1K DN1 E3Z GX1 LJA OK1 P2P TR2 ADTOC C1A UNPAY  | 
    
| ID | FETCH-LOGICAL-c1886-af4e652676cf53aa2b92dbb91fdb7ef4c8f245414c086a4af32a30b6049fc14c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1992-1454 2077-2076  | 
    
| IngestDate | Wed Oct 01 15:33:01 EDT 2025 Mon Oct 06 17:27:49 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c1886-af4e652676cf53aa2b92dbb91fdb7ef4c8f245414c086a4af32a30b6049fc14c3 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://scialert.net/qredirect.php?doi=ajsr.2013.789.796&linkid=pdf | 
    
| PQID | 1439231388 | 
    
| PQPubID | 23462 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | unpaywall_primary_10_3923_ajsr_2013_789_796 proquest_miscellaneous_1439231388  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-00-00 | 
    
| PublicationDateYYYYMMDD | 2013-01-01 | 
    
| PublicationDate_xml | – year: 2013 text: 2013-00-00  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Asian journal of scientific research | 
    
| PublicationYear | 2013 | 
    
| SSID | ssj0000395718 | 
    
| Score | 1.8558651 | 
    
| Snippet | The scope of grid computing is rapidly growing in distributed heterogeneous environments for the need to utilize and share large-scale resources to solve... | 
    
| SourceID | unpaywall proquest  | 
    
| SourceType | Open Access Repository Aggregation Database  | 
    
| StartPage | 789 | 
    
| SubjectTerms | Formicidae | 
    
| Title | Economic-based ACO Algorithm for Data Intensive Grid Scheduling | 
    
| URI | https://www.proquest.com/docview/1439231388 https://scialert.net/qredirect.php?doi=ajsr.2013.789.796&linkid=pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 6 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2077-2076 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000395718 issn: 2077-2076 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BcmgvpfQhKBS5EkJFVZaN7djOAVWr5aVK0ErtSttTZMc2BbbZJZsVor--4ySLSnuqOOahKBmPM9_nGX8DsCOtiannPsp71kU8sTIyzOOh00ppI1NVd4k4OxenQ_5plIyWYLDYCzMLC8WurGpiflO65sdeK0XgHD_QV7Mg4hmzrlRpV6Zit24xYA-m1i_DikgQkHdgZXj-pf-9zienNIp53QuN9qREn5CiyW0iLmD7_zzuAc58Mi-m-u5Wj8d_hJzjVbCLl20qTa6788p0819_6Tg-8muew7MWkpJ-40NrsOSKF7DWTvoZed8qU--9hI-LbcxRCH6W9AefSX98MSkvqx8_CcJfcqgrTe7L4slJeWnJV_QLGwreL17B8Pjo2-A0ajswRHmslIi0504kVEiR-4RpTU1KrTFp7IMqs-e58pSHRuI5MiPNtWdUs54RSDt8jmfZa-gUk8KtA7HIPRGbSIyImnvllJWMOuSnPZmmxtgNeLewfIYeHtIWunCT-QzJSRirmCm1AR_uhySbNmocGbKYcD0LxsyCMTM0ZobGfPNfd2_CU1p3ugirK1vQqcq5e4t4ozLbsHwyirdbr_oNfrjU2Q | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5UAvUKBVebRyJYSoqiwb27GdA6pW2wJC4iHRlegpsmObAkt2yWaF2l_fcZJFfZyqHvNQlIzHme_zjL8B2JHWxNRzH-U96yKeWBkZ5vHQaaW0kamqu0ScnonjIT-5Sq4WYDDfCzMNC8WurGpi_lC65sdeK0XgHD_Qt9Mg4hmzrlRpV6Zit24xYA8m1j-DRZEgIO_A4vDsov-1zienNIp53QuN9qREn5CiyW0iLmD7fz3uN5y5NCsm-vujHo1-CTmHK2DnL9tUmtx1Z5Xp5j_-0HH8z695AcstJCX9xodWYcEVa7DaTvop2WuVqd-vw8f5NuYoBD9L-oNz0h9dj8ub6ts9QfhLPulKk6eyeHJU3lhyiX5hQ8H79UsYHn7-MjiO2g4MUR4rJSLtuRMJFVLkPmFaU5NSa0wa-6DK7HmuPOWhkXiOzEhz7RnVrGcE0g6f41n2CjrFuHCvgVjknohNJEZEzb1yykpGHfLTnkxTY-wGvJtbPkMPD2kLXbjxbIrkJIxVzJTagA9PQ5JNGjWODFlMuJ4FY2bBmBkaM0Njbv7T3VvwnNadLsLqyjZ0qnLm3iDeqMzb1p9-Aocf0-g | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Economic-based+ACO+Algorithm+for+Data+Intensive+Grid+Scheduling&rft.jtitle=Asian+journal+of+scientific+research&rft.au=Aranganathan%2C+S&rft.au=Mehata%2C+K+M&rft.date=2013&rft.issn=1992-1454&rft.eissn=2077-2076&rft.volume=6&rft.issue=4&rft.spage=789&rft.epage=789&rft_id=info:doi/10.3923%2Fajsr.2013.789.796&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1992-1454&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1992-1454&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1992-1454&client=summon |