Solution Methods for Classification Problems with Categorical Attributes

The article considers various methods for classification of a set of objects into two classes when all the attributes are categorical (nominal or factor attributes), i.e., describe the membership of an object in a category. Some methods are a simple generalization of classical methods (Bayesian algo...

Full description

Saved in:
Bibliographic Details
Published inComputational mathematics and modeling Vol. 26; no. 3; pp. 408 - 428
Main Author D’yakonov, A. G.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2015
Subjects
Online AccessGet full text
ISSN1046-283X
1573-837X
DOI10.1007/s10598-015-9281-2

Cover

Abstract The article considers various methods for classification of a set of objects into two classes when all the attributes are categorical (nominal or factor attributes), i.e., describe the membership of an object in a category. Some methods are a simple generalization of classical methods (Bayesian algorithms, singular decomposition methods), others are fundamentally novel. An efficient technique is proposed for encoding categorical attributes by real numbers, which makes it possible to apply classical machine-learning methods (e.g., the random forest). A generalization of the k nearest neighbors (kNN) algorithm and Zhuravlev’s estimate calculation algorithm (AEC) achieve best performance on real-life data. All methods have been tested on an applied problem involving construction of a recommender system for a security service.
AbstractList The article considers various methods for classification of a set of objects into two classes when all the attributes are categorical (nominal or factor attributes), i.e., describe the membership of an object in a category. Some methods are a simple generalization of classical methods (Bayesian algorithms, singular decomposition methods), others are fundamentally novel. An efficient technique is proposed for encoding categorical attributes by real numbers, which makes it possible to apply classical machine-learning methods (e.g., the random forest). A generalization of the k nearest neighbors (kNN) algorithm and Zhuravlev’s estimate calculation algorithm (AEC) achieve best performance on real-life data. All methods have been tested on an applied problem involving construction of a recommender system for a security service.
Author D’yakonov, A. G.
Author_xml – sequence: 1
  givenname: A. G.
  surname: D’yakonov
  fullname: D’yakonov, A. G.
  email: djakonov@mail.ru
  organization: Faculty of Computational Mathematics and Cybernetics, Moscow State University
BookMark eNp9kMFKAzEQhoNUsK0-gLd9gWgm2d0kx7KoLVQUVOgtJNmk3bLdSJIivr1b69nTDPz_NwzfDE2GMDiEboHcASH8PgGppMAEKiypAEwv0BQqzrBgfDMZd1LWmAq2uUKzlPaEEEEZmaLlW-iPuQtD8ezyLrSp8CEWTa9T6nxn9W_0GoPp3SEVX13eFY3ObhviGPbFIufYmWN26Rpdet0nd_M35-jj8eG9WeL1y9OqWayxBSEoZrwEY2zra8lERWrrgGvbCiO1EJJ7VnsrvRUcSme1qUzJHQHLNXBZtVqwOYLzXRtDStF59Rm7g47fCog6qVBnFWpUoU4qFB0ZembS2B22Lqp9OMZhfPMf6AePvmSu
Cites_doi 10.1007/978-3-642-32115-3_51
10.1145/1390156.1390208
10.1023/A:1010933404324
10.1109/MC.2009.263
10.1137/07070111X
10.4169/amer.math.monthly.119.10.838
10.1145/2168752.2168771
10.1016/j.patrec.2005.10.010
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Copyright_xml – notice: Springer Science+Business Media New York 2015
DBID AAYXX
CITATION
DOI 10.1007/s10598-015-9281-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1573-837X
EndPage 428
ExternalDocumentID 10_1007_s10598_015_9281_2
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29F
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z83
Z8W
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ID FETCH-LOGICAL-c1882-3741bbcdf6938506ce17acd8b9a8897f36fc9fc8714ecab5b47e01c7a1795da83
IEDL.DBID U2A
ISSN 1046-283X
IngestDate Wed Oct 01 03:37:00 EDT 2025
Fri Feb 21 02:36:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords categorical attribute
factor attribute
singular decomposition
nominal attribute
classification
category
factor
machine learning
encoding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1882-3741bbcdf6938506ce17acd8b9a8897f36fc9fc8714ecab5b47e01c7a1795da83
PageCount 21
ParticipantIDs crossref_primary_10_1007_s10598_015_9281_2
springer_journals_10_1007_s10598_015_9281_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150700
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 7
  year: 2015
  text: 20150700
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computational mathematics and modeling
PublicationTitleAbbrev Comput Math Model
PublicationYear 2015
Publisher Springer US
Publisher_xml – name: Springer US
References Amazon.com — Employee Access Challenge, international competition on data analysis [http://www.kaggle.com/c/amazon-employee-access-challenge].
FawcettTAn introduction to ROC analysisPattern Recognition Letters20062786186810.1016/j.patrec.2005.10.010
A. D’yakonov, “A blending of simple algorithms for topical classification,” in: Rough Sets and Current Trends in Computing, Lecture Notes in Computer Science, 7413/2012, 432–438 (2012) [http://www.springerlink.com/content/73g4kl50m6112420/].
GolubGHVan LoanCFMatrix Computations19963BaltimoreThe Johns Hopkins University Press0865.65009
Yu. I. Zhuravlev, “An algebraic approach to recognition or classification problems,” Probl. Kibernet., No. 33, 5–68 (1978).
MartinCDPorterMA“The extraordinary SVD”American Mathematical Monthly20121191083885110.4169/amer.math.monthly.119.10.8381261.150122999587
WikiMart Olympiad – data analysis competition http://olymp.wikimart.ru.
The R Project for Statistical Computing [http://cran.r-project.org].
D’yakonovAGA theory of systems of equivalences for the descriptions of algebraic closures of the generalized estimate calculation modelZh. Vychisl. Matem. i Mat. Fiz.20105023884001224.681152681163
KorenYBellRMVolinskyC“Matrix factorization techniques for recommender systems”IEEE Computer2009428303710.1109/MC.2009.263
C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan, “A dual coordinate descent method for large-scale linear SVM,” ICML (2008).
G. Strang, Linear Algebra and Its Applications, fourth edition, Thomson Brooks/Cole (2005).
ManningKDRaghavanPSchutzeHAn Introduction to Information Retrieval [Russian translation]2011MoscowI. D. Vil’yams Publ
RendleS“Factorization machines with libFM,”ACM Trans. Intell. Syst. Technol.20123357:157:2210.1145/2168752.2168771
K. V. Vorontsov, Machine Learning [in Russian] [http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf].
Library scikit-learn for Python [https://github.com/scikit-learn/scikit-learn].
KoldaTGBaderBW“Tensor decompositions and applications”SIAM Review200951345550010.1137/07070111X1173.650292535056
A Library for Large Linear Classification [http://www.csie.ntu.edu.tw/~cjlin/liblinear/].
BreimanL“Random forests”Machine Learning200145153210.1023/A:10109334043241007.68152
A. G. D’yakonov, “Two recommendation algorithms based on deformed linear combinations,” Proc. of ECML-PKDD 2011 Discovery Challenge Workshop (2011), pp 21–28.
A. G. D’yakonov, “Predicting supermarket customer behavior by weighted schemes that estimate probabilities and densities,” Biznes-informatika (2014) (in press).
S. Funk, “Netflix update: Try this at home,” [http://sifter.org/~simon/journal/20061211.html].
T Fawcett (9281_CR6) 2006; 27
Y Koren (9281_CR3) 2009; 42
S Rendle (9281_CR22) 2012; 3
9281_CR19
L Breiman (9281_CR20) 2001; 45
9281_CR16
9281_CR17
9281_CR18
9281_CR4
9281_CR5
9281_CR12
9281_CR13
9281_CR14
9281_CR8
KD Manning (9281_CR15) 2011
AG D’yakonov (9281_CR7) 2010; 50
CD Martin (9281_CR9) 2012; 119
9281_CR21
GH Golub (9281_CR10) 1996
TG Kolda (9281_CR11) 2009; 51
9281_CR1
9281_CR2
References_xml – reference: A. D’yakonov, “A blending of simple algorithms for topical classification,” in: Rough Sets and Current Trends in Computing, Lecture Notes in Computer Science, 7413/2012, 432–438 (2012) [http://www.springerlink.com/content/73g4kl50m6112420/].
– reference: A Library for Large Linear Classification [http://www.csie.ntu.edu.tw/~cjlin/liblinear/].
– reference: KorenYBellRMVolinskyC“Matrix factorization techniques for recommender systems”IEEE Computer2009428303710.1109/MC.2009.263
– reference: Amazon.com — Employee Access Challenge, international competition on data analysis [http://www.kaggle.com/c/amazon-employee-access-challenge].
– reference: G. Strang, Linear Algebra and Its Applications, fourth edition, Thomson Brooks/Cole (2005).
– reference: C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan, “A dual coordinate descent method for large-scale linear SVM,” ICML (2008).
– reference: RendleS“Factorization machines with libFM,”ACM Trans. Intell. Syst. Technol.20123357:157:2210.1145/2168752.2168771
– reference: The R Project for Statistical Computing [http://cran.r-project.org].
– reference: KoldaTGBaderBW“Tensor decompositions and applications”SIAM Review200951345550010.1137/07070111X1173.650292535056
– reference: MartinCDPorterMA“The extraordinary SVD”American Mathematical Monthly20121191083885110.4169/amer.math.monthly.119.10.8381261.150122999587
– reference: ManningKDRaghavanPSchutzeHAn Introduction to Information Retrieval [Russian translation]2011MoscowI. D. Vil’yams Publ
– reference: FawcettTAn introduction to ROC analysisPattern Recognition Letters20062786186810.1016/j.patrec.2005.10.010
– reference: D’yakonovAGA theory of systems of equivalences for the descriptions of algebraic closures of the generalized estimate calculation modelZh. Vychisl. Matem. i Mat. Fiz.20105023884001224.681152681163
– reference: Yu. I. Zhuravlev, “An algebraic approach to recognition or classification problems,” Probl. Kibernet., No. 33, 5–68 (1978).
– reference: K. V. Vorontsov, Machine Learning [in Russian] [http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf].
– reference: BreimanL“Random forests”Machine Learning200145153210.1023/A:10109334043241007.68152
– reference: WikiMart Olympiad – data analysis competition http://olymp.wikimart.ru.
– reference: GolubGHVan LoanCFMatrix Computations19963BaltimoreThe Johns Hopkins University Press0865.65009
– reference: Library scikit-learn for Python [https://github.com/scikit-learn/scikit-learn].
– reference: A. G. D’yakonov, “Two recommendation algorithms based on deformed linear combinations,” Proc. of ECML-PKDD 2011 Discovery Challenge Workshop (2011), pp 21–28.
– reference: S. Funk, “Netflix update: Try this at home,” [http://sifter.org/~simon/journal/20061211.html].
– reference: A. G. D’yakonov, “Predicting supermarket customer behavior by weighted schemes that estimate probabilities and densities,” Biznes-informatika (2014) (in press).
– ident: 9281_CR14
  doi: 10.1007/978-3-642-32115-3_51
– ident: 9281_CR18
– ident: 9281_CR17
– ident: 9281_CR19
– ident: 9281_CR13
  doi: 10.1145/1390156.1390208
– ident: 9281_CR16
– ident: 9281_CR1
– ident: 9281_CR21
– ident: 9281_CR2
– ident: 9281_CR12
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 9281_CR20
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 42
  start-page: 30
  issue: 8
  year: 2009
  ident: 9281_CR3
  publication-title: IEEE Computer
  doi: 10.1109/MC.2009.263
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 9281_CR11
  publication-title: SIAM Review
  doi: 10.1137/07070111X
– volume-title: An Introduction to Information Retrieval [Russian translation]
  year: 2011
  ident: 9281_CR15
– volume-title: Matrix Computations
  year: 1996
  ident: 9281_CR10
– ident: 9281_CR8
– ident: 9281_CR4
– ident: 9281_CR5
– volume: 50
  start-page: 388
  issue: 2
  year: 2010
  ident: 9281_CR7
  publication-title: Zh. Vychisl. Matem. i Mat. Fiz.
– volume: 119
  start-page: 838
  issue: 10
  year: 2012
  ident: 9281_CR9
  publication-title: American Mathematical Monthly
  doi: 10.4169/amer.math.monthly.119.10.838
– volume: 3
  start-page: 57:1
  issue: 3
  year: 2012
  ident: 9281_CR22
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/2168752.2168771
– volume: 27
  start-page: 861
  year: 2006
  ident: 9281_CR6
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2005.10.010
SSID ssj0008230
Score 1.9638661
Snippet The article considers various methods for classification of a set of objects into two classes when all the attributes are categorical (nominal or factor...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 408
SubjectTerms Applications of Mathematics
Computational Mathematics and Numerical Analysis
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Optimization
Title Solution Methods for Classification Problems with Categorical Attributes
URI https://link.springer.com/article/10.1007/s10598-015-9281-2
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-837X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008230
  issn: 1046-283X
  databaseCode: AFBBN
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-837X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008230
  issn: 1046-283X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-837X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008230
  issn: 1046-283X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdoGBRwFRHpUHJpClPOw4HqOqpQIVMVCpTJHt2GNBpP3_nJO4UAkGdsvDdz7fZ9_ddwC3yPFN5GREuVIMHyhxRWWUWcoczyMtmI0i3-A8f85mC_a45Muuj7sO1e4hJdnc1D-a3bhvB4s5lUkeU7x3-9yreeEhXiTF9vr1maNWgiCjGDuXIZX52xa7wWg3E9oEmOkxHHbMkBStKU9gz64GcBSmLpDOCQdwMN8qrdanMAv_WmTezIKuCbJQ0oy69EVADe7kpZ0aUxP_60rGXhyilQYhxbqdeGXrM1hMJ6_jGe2mI1ATe1qcIhfQ2lQuk6mXnTM2FspUuZYqz6VwaeaMdAYfRMwapblmwqJhhEIX5JXK03Pord5X9gJIplKHTACZhdAMnVQmVuBGNnZRhUBlQ7gLMJUfrQhG-S137DEtEdPSY1omQ7gPQJadP9R_r7781-or2E-89Zpy2WvorT839gZJwVqPoF88vD1NRs1h-AIveq-e
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TwMxDLZQOwADhQKiPDMwgVLdI_fIWFUtB32IoZXKdEpyuQWpIO668Otx7lEogqF7FEVObH-O7c8At4jxlZVyi3pCMAxQ7IRyy9eUpV5oyYBpyzINzpOpH83Z08JbVH3cWV3tXqckC0v9o9nNM-1gtke5E9oU7W6TYXziNKDZe3gZDdYG2OSOShICn6L3XNTJzL822XRHm7nQwsUMWzCrD1dWlrx2V7nsqs9fvI1bnv4QDirISXrlGzmCHb1sQ6se50Aq7W7D_mRN4ZodQ1R_mJFJMWQ6IwhvSTFD01QXFRdKnstxNBkx37mkb1gnSs4R0svLUVo6O4H5cDDrR7Qau0CVbfC2iyBDSpWkPncNn53SdiBUEkouwpAHqeuniqcKIy2mlZCeZIHGGw8E6raXiNA9hcbybanPgPjCTRFiIGQJJEPt544OcCNtp1aCYvA7cFdLP34v2TXibx5lI7EYJRYbicVOB-5r0caVomX_rz7favUN7EazyTgeP05HF7DnmHsqanIvoZF_rPQVIo9cXlcv7QvamM3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hIiEYeBQQ5emBCWQ1DzuJx6oQlUerDlTqFtmOPYaKhP_POY9CJRjYLQ93Pt9n3933AdwixteeFR7lUjJ8oPg5FV5kKLM88VTMjOe5AefpLJos2POSL1ud07Lrdu9Kks1Mg2NpKqrhKrfDH4Nv3I2G-ZyKIPEp3sHbzPEk4IFeBKP1VeyqSA0dQUQxjy67suZvW2wmps2qaJ1s0kPYb1EiGTVuPYItU_ThoFNgIG1A9mFvumZdLY9h0v1xkWmtC10SRKSklr10DUG1D8i8UZApifuBJWNHFNHQhJBR1ahfmfIEFunj23hCW6UEqn0HkUPEBUrp3EYidBR02vix1HmihEwSEdswslpYjY8jZrRUXLHYoJNiieHIc5mEp9Ar3gtzBiSSoUVUgCgjVgwDVgQmxo2Mb70cDRUN4K4zU7ZqCDGyb-pjZ9MMbZo5m2bBAO47Q2ZtbJR_rz7_1-ob2Jk_pNnr0-zlAnYD58i6i_YSetXHp7lCrFCp6_o8fAGl57Uy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+Methods+for+Classification+Problems+with+Categorical+Attributes&rft.jtitle=Computational+mathematics+and+modeling&rft.au=D%E2%80%99yakonov%2C+A.+G.&rft.date=2015-07-01&rft.issn=1046-283X&rft.eissn=1573-837X&rft.volume=26&rft.issue=3&rft.spage=408&rft.epage=428&rft_id=info:doi/10.1007%2Fs10598-015-9281-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10598_015_9281_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-283X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-283X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-283X&client=summon