Pathological voice detection using optimized deep residual neural network and explainable artificial intelligence
Voice disorders affect individuals’ vocal quality and communication abilities, which pose significant challenges for both individuals and healthcare providers. The accurate and timely detection of voice disorders is crucial in facilitating early intervention and effective treatment. This study propo...
Saved in:
| Published in | Multimedia tools and applications Vol. 84; no. 19; pp. 21863 - 21889 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.06.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1573-7721 1380-7501 1573-7721 |
| DOI | 10.1007/s11042-024-20348-y |
Cover
| Abstract | Voice disorders affect individuals’ vocal quality and communication abilities, which pose significant challenges for both individuals and healthcare providers. The accurate and timely detection of voice disorders is crucial in facilitating early intervention and effective treatment. This study proposes a new noninvasive approach for voice disorder detection based on an optimized deep residual neural network. Input speech samples are transformed into mel-spectrogram time-frequency images and applied to train the ResNet-50 transfer learning model. The spectrogram time-frequency representation effectively captures intricate patterns and features that might indicate the presence of voice disorders exploiting local and global characteristics. Four hyperparameters of the ResNet-50 model are optimized using the snake optimization algorithm, which delivers an optimum residual deep transfer learning (DTL) model with an enhanced voice pathology detection rate. The proposed snake-optimized ResNet-50 model is evaluated on four popular voice pathology datasets: AVPD, SVD, PdA and VOICED. The results demonstrate the efficacy of the optimized ResNet-50 framework in accurately classifying healthy and pathological voice samples with 98.13% accuracy. Comparisons with recent machine learning and deep learning models reveal the superiority of the proposed approach in terms of F1-score, sensitivity, specificity and accuracy. Finally, Gradient-weighted class activation mapping (Grad-CAM) explainable artificial intelligence (XAI) is utilized for visualizing and interpreting the decision-making process. |
|---|---|
| AbstractList | Voice disorders affect individuals’ vocal quality and communication abilities, which pose significant challenges for both individuals and healthcare providers. The accurate and timely detection of voice disorders is crucial in facilitating early intervention and effective treatment. This study proposes a new noninvasive approach for voice disorder detection based on an optimized deep residual neural network. Input speech samples are transformed into mel-spectrogram time-frequency images and applied to train the ResNet-50 transfer learning model. The spectrogram time-frequency representation effectively captures intricate patterns and features that might indicate the presence of voice disorders exploiting local and global characteristics. Four hyperparameters of the ResNet-50 model are optimized using the snake optimization algorithm, which delivers an optimum residual deep transfer learning (DTL) model with an enhanced voice pathology detection rate. The proposed snake-optimized ResNet-50 model is evaluated on four popular voice pathology datasets: AVPD, SVD, PdA and VOICED. The results demonstrate the efficacy of the optimized ResNet-50 framework in accurately classifying healthy and pathological voice samples with 98.13% accuracy. Comparisons with recent machine learning and deep learning models reveal the superiority of the proposed approach in terms of F1-score, sensitivity, specificity and accuracy. Finally, Gradient-weighted class activation mapping (Grad-CAM) explainable artificial intelligence (XAI) is utilized for visualizing and interpreting the decision-making process. |
| Author | Jegan, Roohum Jayagowri, R. |
| Author_xml | – sequence: 1 givenname: Roohum orcidid: 0000-0001-9426-7336 surname: Jegan fullname: Jegan, Roohum email: roohumjegan@gmail.com organization: Department of Electronics and Communication Engineering, BMS College of Engineering, Department of Artificial Intelligence and Data Science, SIES Graduate School of Technology – sequence: 2 givenname: R. surname: Jayagowri fullname: Jayagowri, R. organization: Department of Electronics and Communication Engineering, BMS College of Engineering |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7CKxDrgR5ykS1TxkirBAtaWH5PgktqpnQDh6wkECVasZqQ59450FmjmvAOETgk-JxgXF5EQnNEU0yylmGVlOhygOeEFS4uCktmf_QgtYtxiTHJOsznaP8ju2Te-tlo2yau3GhIDHejOepf00bo68W1nd_YDzHiBNgkQrelH2kEfvkf35sNLIp1J4L1tpHVSNZDI0NnKajsi1nXQNLYGp-EYHVayiXDyM5fo6frqcX2bbu5v7taXm1STshjS3HBDeV4xovgqZ6YilCoiNSvKimdSYV0qriUxiitCK4ZXihgspeRSq4wRtkRnU28b_L6H2Imt74MbXwpGaY5pUfJ8pOhE6eBjDFCJNtidDIMgWHypFZNaMaoV32rFMIbYFIoj7GoIv9X_pD4BkRSBiA |
| Cites_doi | 10.1007/s12559-024-10254-8 10.1016/j.apacoust.2020.107854 10.1016/j.bspc.2021.102973 10.1016/j.knosys.2022.108320 10.1155/2017/8783751 10.1007/s13042-018-0811-z 10.1007/s11042-023-14913-0 10.3390/biology11030469 10.1016/j.csite.2022.102504 10.1016/j.neucom.2015.02.085 10.1016/j.smhl.2021.100233 10.1016/j.cmpbup.2022.100074 10.1007/s11042-023-16351-4 10.3390/math10132351 10.1016/j.compeleceng.2018.04.008 10.1109/EMBC.2018.8513222 10.1007/s11831-022-09853-1 10.1038/s41598-023-34461-9 10.1016/j.bspc.2022.103771 10.1016/j.enconman.2023.117373 10.1109/ACCESS.2024.3371713 10.1007/s10772-022-09969-6 10.3390/s22176634 10.3390/math10030464 10.1109/ACCESS.2020.2986171 10.1016/j.engappai.2024.108047 10.1002/ohn.636 10.1007/s00521-022-07587-6 10.21437/Interspeech.2018-1351 10.1016/j.bspc.2023.105159 10.1016/j.jvoice.2023.09.024 10.1007/s11042-023-14734-1 10.3390/diagnostics12112758 10.1109/CVPR.2016.90 10.1016/j.media.2022.102470 10.1016/j.jvoice.2022.03.021 10.1109/IWOBI.2017.7985525 10.1016/j.compositesb.2021.109160 10.1007/s11783-023-1677-1 10.1007/s11042-021-11011-x 10.1016/j.neucom.2022.04.083 10.1016/j.bspc.2011.03.010 10.1109/JSEN.2021.3049277 10.3390/app10113723 10.1007/s00521-023-08340-3 10.1016/j.eswa.2023.119790 10.3109/14015439.2010.528788 10.1093/ije/dyv096.489 10.1007/s12652-022-03781-5 10.1007/s00500-023-09062-3 10.1002/lary.24740 10.1016/j.bspc.2024.106014 10.1007/s10462-022-10328-9 10.1109/ICCV.2017.74 10.1109/ACCESS.2021.3090317 10.21437/Interspeech.2017-416 10.1155/2021/6635964 10.1109/SAMI50585.2021.9378656 10.1016/j.inffus.2023.101805 10.1515/jisys-2022-0058 10.1016/j.cosrev.2023.100559 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s11042-024-20348-y |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 21889 |
| ExternalDocumentID | 10_1007_s11042_024_20348_y |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABRTQ CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c187y-6d5d256f31b5963df122b1ac378f54ab0c8b5ca1db5b12f309b1d0aaa5acb4313 |
| IEDL.DBID | AGYKE |
| ISSN | 1573-7721 1380-7501 |
| IngestDate | Sat Aug 23 13:28:23 EDT 2025 Wed Oct 01 06:01:05 EDT 2025 Wed Jul 02 02:44:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Keywords | Speech pathology detection Snake optimization Voice disorder detection Voice pathology detection Explainable artificial intelligence Optimized deep learning Deep residual network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c187y-6d5d256f31b5963df122b1ac378f54ab0c8b5ca1db5b12f309b1d0aaa5acb4313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9426-7336 |
| PQID | 3226027856 |
| PQPubID | 54626 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_3226027856 crossref_primary_10_1007_s11042_024_20348_y springer_journals_10_1007_s11042_024_20348_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250600 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | 20348_CR46 20348_CR43 S Adige (20348_CR42) 2023; 35 NQ Abdulmajeed (20348_CR1) 2022; 31 GK Birajdar (20348_CR14) 2022; 14 20348_CR40 NP Narendra (20348_CR11) 2020; 8 20348_CR49 HMA Mohammed (20348_CR20) 2023; 223 K Lin (20348_CR39) 2023; 17 S Kaur (20348_CR50) 2023; 30 FA Hashim (20348_CR26) 2022; 242 SP Kumar (20348_CR12) 2023; 86 20348_CR7 M Nssibi (20348_CR51) 2023; 49 20348_CR9 U Cesari (20348_CR30) 2018; 68 S Kaul (20348_CR52) 2022; 81 MS Chinchu (20348_CR35) 2022; 78 S Tirronen (20348_CR16) 2022 20348_CR34 X Peng (20348_CR33) 2023; 13 20348_CR32 JD Arias-Londoño (20348_CR29) 2011; 36 A Banharnsakun (20348_CR53) 2019; 10 K Wahengbam (20348_CR36) 2021; 21 20348_CR2 20348_CR38 A Pandey (20348_CR41) 2022; 34 20348_CR3 JB Lee (20348_CR10) 2024; 91 20348_CR37 I Sindhu (20348_CR5) 2024; 12 Y Dai (20348_CR47) 2022; 40 20348_CR24 20348_CR21 20348_CR22 T Mesallam (20348_CR27) 2017; 2017 20348_CR61 20348_CR62 J Mekyska (20348_CR58) 2015; 167 T Dokeroglu (20348_CR45) 2022; 494 20348_CR28 20348_CR25 F Belabbes (20348_CR48) 2023; 292 MK Arjmandi (20348_CR8) 2012; 7 S Souli (20348_CR31) 2021; 177 20348_CR60 G Muhammad (20348_CR63) 2021; 9 G Gidaye (20348_CR18) 2022; 25 20348_CR13 20348_CR57 H Ding (20348_CR23) 2021; 70 20348_CR55 BHM van der Velden (20348_CR54) 2022; 79 S Bhattacharjee (20348_CR17) 2022; 23 M Ur Rehman (20348_CR4) 2024; 133 20348_CR19 20348_CR15 20348_CR59 S Meister (20348_CR56) 2021; 224 JS Pan (20348_CR44) 2022; 56 N Bhattacharyya (20348_CR6) 2014; 124 |
| References_xml | – ident: 20348_CR19 doi: 10.1007/s12559-024-10254-8 – volume: 177 year: 2021 ident: 20348_CR31 publication-title: Appl Acoust doi: 10.1016/j.apacoust.2020.107854 – volume: 70 year: 2021 ident: 20348_CR23 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102973 – volume: 242 year: 2022 ident: 20348_CR26 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.108320 – volume: 2017 start-page: 1 year: 2017 ident: 20348_CR27 publication-title: J Healthc Eng doi: 10.1155/2017/8783751 – volume: 10 start-page: 1301 year: 2019 ident: 20348_CR53 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-018-0811-z – ident: 20348_CR59 – ident: 20348_CR3 doi: 10.1007/s11042-023-14913-0 – ident: 20348_CR2 doi: 10.3390/biology11030469 – volume: 40 year: 2022 ident: 20348_CR47 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2022.102504 – volume: 167 start-page: 94 year: 2015 ident: 20348_CR58 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.085 – volume: 23 year: 2022 ident: 20348_CR17 publication-title: Smart Health doi: 10.1016/j.smhl.2021.100233 – ident: 20348_CR21 doi: 10.1016/j.cmpbup.2022.100074 – ident: 20348_CR38 doi: 10.1007/s11042-023-16351-4 – ident: 20348_CR46 doi: 10.3390/math10132351 – volume: 68 start-page: 310 year: 2018 ident: 20348_CR30 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2018.04.008 – ident: 20348_CR61 doi: 10.1109/EMBC.2018.8513222 – volume: 30 start-page: 1863 year: 2023 ident: 20348_CR50 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-022-09853-1 – volume: 13 start-page: 1 year: 2023 ident: 20348_CR33 publication-title: Sci Rep doi: 10.1038/s41598-023-34461-9 – volume: 78 year: 2022 ident: 20348_CR35 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103771 – volume: 292 year: 2023 ident: 20348_CR48 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2023.117373 – volume: 12 start-page: 49667 year: 2024 ident: 20348_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3371713 – volume: 25 start-page: 527 issue: 2 year: 2022 ident: 20348_CR18 publication-title: Int J Speech Technol doi: 10.1007/s10772-022-09969-6 – ident: 20348_CR37 doi: 10.3390/s22176634 – ident: 20348_CR43 doi: 10.3390/math10030464 – volume: 8 start-page: 67745 year: 2020 ident: 20348_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986171 – volume: 133 year: 2024 ident: 20348_CR4 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2024.108047 – ident: 20348_CR13 doi: 10.1002/ohn.636 – volume: 34 start-page: 21049 year: 2022 ident: 20348_CR41 publication-title: Neural Comput & Applic doi: 10.1007/s00521-022-07587-6 – ident: 20348_CR62 doi: 10.21437/Interspeech.2018-1351 – volume: 86 year: 2023 ident: 20348_CR12 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.105159 – ident: 20348_CR34 doi: 10.1016/j.jvoice.2023.09.024 – ident: 20348_CR25 doi: 10.1007/s11042-023-14734-1 – ident: 20348_CR15 doi: 10.3390/diagnostics12112758 – ident: 20348_CR40 doi: 10.1109/CVPR.2016.90 – volume: 79 year: 2022 ident: 20348_CR54 publication-title: Med Image Anal doi: 10.1016/j.media.2022.102470 – ident: 20348_CR28 – year: 2022 ident: 20348_CR16 publication-title: J Voice doi: 10.1016/j.jvoice.2022.03.021 – ident: 20348_CR24 doi: 10.1109/IWOBI.2017.7985525 – volume: 224 year: 2021 ident: 20348_CR56 publication-title: Compos Part B: Eng doi: 10.1016/j.compositesb.2021.109160 – volume: 17 start-page: 77 year: 2023 ident: 20348_CR39 publication-title: Front Environ Sci Eng doi: 10.1007/s11783-023-1677-1 – volume: 81 start-page: 26779 year: 2022 ident: 20348_CR52 publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-11011-x – volume: 494 start-page: 269 year: 2022 ident: 20348_CR45 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.04.083 – volume: 7 start-page: 3 issue: 1 year: 2012 ident: 20348_CR8 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2011.03.010 – volume: 21 start-page: 8100 issue: 6 year: 2021 ident: 20348_CR36 publication-title: IEEE Sensors J doi: 10.1109/JSEN.2021.3049277 – ident: 20348_CR60 doi: 10.3390/app10113723 – volume: 35 start-page: 1 year: 2023 ident: 20348_CR42 publication-title: Neural Comput & Applic doi: 10.1007/s00521-023-08340-3 – volume: 223 year: 2023 ident: 20348_CR20 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.119790 – volume: 36 start-page: 60 issue: 2 year: 2011 ident: 20348_CR29 publication-title: Logopedics Phoniatrics Vocology doi: 10.3109/14015439.2010.528788 – ident: 20348_CR7 doi: 10.1093/ije/dyv096.489 – volume: 14 start-page: 13237 year: 2022 ident: 20348_CR14 publication-title: J Ambient Intell Humanized Comput doi: 10.1007/s12652-022-03781-5 – ident: 20348_CR49 doi: 10.1007/s00500-023-09062-3 – volume: 124 start-page: 2359 issue: 10 year: 2014 ident: 20348_CR6 publication-title: The Laryngoscope doi: 10.1002/lary.24740 – volume: 91 year: 2024 ident: 20348_CR10 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2024.106014 – volume: 56 start-page: 6101 issue: 7 year: 2022 ident: 20348_CR44 publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10328-9 – ident: 20348_CR57 doi: 10.1109/ICCV.2017.74 – volume: 9 start-page: 89198 year: 2021 ident: 20348_CR63 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3090317 – ident: 20348_CR9 doi: 10.21437/Interspeech.2017-416 – ident: 20348_CR32 doi: 10.1155/2021/6635964 – ident: 20348_CR22 doi: 10.1109/SAMI50585.2021.9378656 – ident: 20348_CR55 doi: 10.1016/j.inffus.2023.101805 – volume: 31 start-page: 855 issue: 1 year: 2022 ident: 20348_CR1 publication-title: J Intell Syst doi: 10.1515/jisys-2022-0058 – volume: 49 year: 2023 ident: 20348_CR51 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2023.100559 |
| SSID | ssj0016524 |
| Score | 2.391768 |
| Snippet | Voice disorders affect individuals’ vocal quality and communication abilities, which pose significant challenges for both individuals and healthcare providers.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 21863 |
| SubjectTerms | 1239: Emerging Trends and Applications of Deep Learning for Biomedical Data Analysis Accuracy Algorithms Artificial intelligence Artificial neural networks Classification Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Disorders Effectiveness Explainable artificial intelligence Machine learning Multimedia Information Systems Neural networks Optimization Pathology Special Purpose and Application-Based Systems Speech disorders Speech therapy Time-frequency analysis Visualization Voice |
| Title | Pathological voice detection using optimized deep residual neural network and explainable artificial intelligence |
| URI | https://link.springer.com/article/10.1007/s11042-024-20348-y https://www.proquest.com/docview/3226027856 |
| Volume | 84 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAG1EolQc2SIWdODVjiygIBGKgUpkiP2KEgLTQgCi_nrOb0IJgYIoiO5F1b_vuPgPsKcPCWByxIHTwj5FmHHVOyECqI4s7jBYG5e5o4PIqPutF533eL5rCRmW1e5mS9JZ62uxGXSsJ-hTkbBiJYDwPVY-3VYFq-_T24uQrexBzFhUNMr9_-d0JTSPLH8lQ72O6y9ArVzcpLXlovuaqqT9-ADf-d_krsFQEnaQ9kZJVmEuzNVguL3QghX6vweIMOuE6PF_L_Ms2krcBmhRi0tzXbmXEFczfkQFanKf7j9TgSDokuHf3zV3EwWT6hy8yJzIzJH0fPhatWsTJ6wS6gtzPYIJuQK97cnN8FhQ3NASaitY4iA03GDPZkCqOmmwsZUxRqcOWsDyS6lALxbWkRnFFmUV5UNQcSim51ApDl3ATKtkgS7eA4Bu3IqUy5jYKhRQs5FpJih7WUmt0DfZLliXDCRBHMoVcdrRNkLaJp20yrkG95GpSKOUoQdsVu0Qrj2twUDJpOvz337b_N30HFpi7Jdif1dShkr-8prsYuuSqgZLa7XSuGoXENmC-x9qf37DreA |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RPKgHP1AjitqDN11Cu3WUIzESVCAeIOG2tOtqSHSgTCP-9b6WTdDowdOytNuhv76P9r33ewDnSjM_FA3m-Zb-MYgZR5kT0pOqYfCEUUen3F4NdHthexDcDvkwLwqbFtnuRUjSaepFsRu1pSRoUxBZPxDebBXWLIGVZcwfsOZX7CDkLMjLY37_7rsJWviVP0KhzsK0dmArdw1Jc47lLqwkaRm2i7YLJJfCMmwucQjuwfO9zL40GHkbo-ATnWQuwyolNq39gYxRLzyNPhKNI8mE4AnblWARS2bpHi4VnMhUk-R98pgXVBG7q-YEE2S0xNy5D4PWdf-q7eV9FLyYivrMCzXX6NkYnyqO8qYNZUxRGft1YXggVS0WiseSasUVZQZRU1TXpJRcxgodDP8ASuk4TQ6B4Bs3IqEy5CbwhRTM57GSFO2goUbHFbgoljaazOkyogUxsgUiQiAiB0Q0q0C1WP0oF51phBomtOFQHlbgskBkMfz3347-N_0M1tv9bifq3PTujmGD2b6-7nalCqXs5TU5QWcjU6dub30C607Owg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RTIwe_ECNKGoP3nTBdusoR6IS_CIcJOG2tOtqSHSgTiP-9b6WDdDowdOydNthv76P9r3frwDHSjM_FA3m-Vb-MYgZR5sT0pOqYXCFUcek3G4N3HXCdi-47vP-HIvfdbsXJckJp8GqNKVZbaRNbUZ8o5ZWgvEFUfYD4Y0XYSmwQgk4o3usOa0jhJwFOVXm9_e-h6NZjvmjLOqiTWsD1vI0kTQnuG7CQpKWYb04goHkFlmG1Tk9wS147sps6s3I-xCdANFJ5rqtUmJb3B_IEH3E0-Az0TiSjAiuth0di1hhS3dxbeFEppokH6PHnFxF7AybiE2QwZyK5zb0Wpf3520vP1PBi6moj71Qc41ZjvGp4mh72lDGFJWxXxeGB1KdxULxWFKtuKLMIIKK6jMpJZexwmTD34FSOkyTXSB4x41IqAy5CXwhBfN5rCTFmGio0XEFTopfG40m0hnRTCTZAhEhEJEDIhpXoFr8_Sg3o9cIvU1oS6M8rMBpgchs-O-v7f3v8SNY7l60oturzs0-rDB7xK_baKlCKXt5Sw4w78jUoZtaX8UX0v4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathological+voice+detection+using+optimized+deep+residual+neural+network+and+explainable+artificial+intelligence&rft.jtitle=Multimedia+tools+and+applications&rft.au=Jegan%2C+Roohum&rft.au=Jayagowri%2C+R&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=84&rft.issue=19&rft.spage=21863&rft.epage=21889&rft_id=info:doi/10.1007%2Fs11042-024-20348-y&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |