Pathological voice detection using optimized deep residual neural network and explainable artificial intelligence

Voice disorders affect individuals’ vocal quality and communication abilities, which pose significant challenges for both individuals and healthcare providers. The accurate and timely detection of voice disorders is crucial in facilitating early intervention and effective treatment. This study propo...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 84; no. 19; pp. 21863 - 21889
Main Authors Jegan, Roohum, Jayagowri, R.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-7721
1380-7501
1573-7721
DOI10.1007/s11042-024-20348-y

Cover

Abstract Voice disorders affect individuals’ vocal quality and communication abilities, which pose significant challenges for both individuals and healthcare providers. The accurate and timely detection of voice disorders is crucial in facilitating early intervention and effective treatment. This study proposes a new noninvasive approach for voice disorder detection based on an optimized deep residual neural network. Input speech samples are transformed into mel-spectrogram time-frequency images and applied to train the ResNet-50 transfer learning model. The spectrogram time-frequency representation effectively captures intricate patterns and features that might indicate the presence of voice disorders exploiting local and global characteristics. Four hyperparameters of the ResNet-50 model are optimized using the snake optimization algorithm, which delivers an optimum residual deep transfer learning (DTL) model with an enhanced voice pathology detection rate. The proposed snake-optimized ResNet-50 model is evaluated on four popular voice pathology datasets: AVPD, SVD, PdA and VOICED. The results demonstrate the efficacy of the optimized ResNet-50 framework in accurately classifying healthy and pathological voice samples with 98.13% accuracy. Comparisons with recent machine learning and deep learning models reveal the superiority of the proposed approach in terms of F1-score, sensitivity, specificity and accuracy. Finally, Gradient-weighted class activation mapping (Grad-CAM) explainable artificial intelligence (XAI) is utilized for visualizing and interpreting the decision-making process.
AbstractList Voice disorders affect individuals’ vocal quality and communication abilities, which pose significant challenges for both individuals and healthcare providers. The accurate and timely detection of voice disorders is crucial in facilitating early intervention and effective treatment. This study proposes a new noninvasive approach for voice disorder detection based on an optimized deep residual neural network. Input speech samples are transformed into mel-spectrogram time-frequency images and applied to train the ResNet-50 transfer learning model. The spectrogram time-frequency representation effectively captures intricate patterns and features that might indicate the presence of voice disorders exploiting local and global characteristics. Four hyperparameters of the ResNet-50 model are optimized using the snake optimization algorithm, which delivers an optimum residual deep transfer learning (DTL) model with an enhanced voice pathology detection rate. The proposed snake-optimized ResNet-50 model is evaluated on four popular voice pathology datasets: AVPD, SVD, PdA and VOICED. The results demonstrate the efficacy of the optimized ResNet-50 framework in accurately classifying healthy and pathological voice samples with 98.13% accuracy. Comparisons with recent machine learning and deep learning models reveal the superiority of the proposed approach in terms of F1-score, sensitivity, specificity and accuracy. Finally, Gradient-weighted class activation mapping (Grad-CAM) explainable artificial intelligence (XAI) is utilized for visualizing and interpreting the decision-making process.
Author Jegan, Roohum
Jayagowri, R.
Author_xml – sequence: 1
  givenname: Roohum
  orcidid: 0000-0001-9426-7336
  surname: Jegan
  fullname: Jegan, Roohum
  email: roohumjegan@gmail.com
  organization: Department of Electronics and Communication Engineering, BMS College of Engineering, Department of Artificial Intelligence and Data Science, SIES Graduate School of Technology
– sequence: 2
  givenname: R.
  surname: Jayagowri
  fullname: Jayagowri, R.
  organization: Department of Electronics and Communication Engineering, BMS College of Engineering
BookMark eNp9kMtOwzAQRS1UJNrCD7CKxDrgR5ykS1TxkirBAtaWH5PgktqpnQDh6wkECVasZqQ59450FmjmvAOETgk-JxgXF5EQnNEU0yylmGVlOhygOeEFS4uCktmf_QgtYtxiTHJOsznaP8ju2Te-tlo2yau3GhIDHejOepf00bo68W1nd_YDzHiBNgkQrelH2kEfvkf35sNLIp1J4L1tpHVSNZDI0NnKajsi1nXQNLYGp-EYHVayiXDyM5fo6frqcX2bbu5v7taXm1STshjS3HBDeV4xovgqZ6YilCoiNSvKimdSYV0qriUxiitCK4ZXihgspeRSq4wRtkRnU28b_L6H2Imt74MbXwpGaY5pUfJ8pOhE6eBjDFCJNtidDIMgWHypFZNaMaoV32rFMIbYFIoj7GoIv9X_pD4BkRSBiA
Cites_doi 10.1007/s12559-024-10254-8
10.1016/j.apacoust.2020.107854
10.1016/j.bspc.2021.102973
10.1016/j.knosys.2022.108320
10.1155/2017/8783751
10.1007/s13042-018-0811-z
10.1007/s11042-023-14913-0
10.3390/biology11030469
10.1016/j.csite.2022.102504
10.1016/j.neucom.2015.02.085
10.1016/j.smhl.2021.100233
10.1016/j.cmpbup.2022.100074
10.1007/s11042-023-16351-4
10.3390/math10132351
10.1016/j.compeleceng.2018.04.008
10.1109/EMBC.2018.8513222
10.1007/s11831-022-09853-1
10.1038/s41598-023-34461-9
10.1016/j.bspc.2022.103771
10.1016/j.enconman.2023.117373
10.1109/ACCESS.2024.3371713
10.1007/s10772-022-09969-6
10.3390/s22176634
10.3390/math10030464
10.1109/ACCESS.2020.2986171
10.1016/j.engappai.2024.108047
10.1002/ohn.636
10.1007/s00521-022-07587-6
10.21437/Interspeech.2018-1351
10.1016/j.bspc.2023.105159
10.1016/j.jvoice.2023.09.024
10.1007/s11042-023-14734-1
10.3390/diagnostics12112758
10.1109/CVPR.2016.90
10.1016/j.media.2022.102470
10.1016/j.jvoice.2022.03.021
10.1109/IWOBI.2017.7985525
10.1016/j.compositesb.2021.109160
10.1007/s11783-023-1677-1
10.1007/s11042-021-11011-x
10.1016/j.neucom.2022.04.083
10.1016/j.bspc.2011.03.010
10.1109/JSEN.2021.3049277
10.3390/app10113723
10.1007/s00521-023-08340-3
10.1016/j.eswa.2023.119790
10.3109/14015439.2010.528788
10.1093/ije/dyv096.489
10.1007/s12652-022-03781-5
10.1007/s00500-023-09062-3
10.1002/lary.24740
10.1016/j.bspc.2024.106014
10.1007/s10462-022-10328-9
10.1109/ICCV.2017.74
10.1109/ACCESS.2021.3090317
10.21437/Interspeech.2017-416
10.1155/2021/6635964
10.1109/SAMI50585.2021.9378656
10.1016/j.inffus.2023.101805
10.1515/jisys-2022-0058
10.1016/j.cosrev.2023.100559
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-024-20348-y
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 21889
ExternalDocumentID 10_1007_s11042_024_20348_y
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABRTQ
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c187y-6d5d256f31b5963df122b1ac378f54ab0c8b5ca1db5b12f309b1d0aaa5acb4313
IEDL.DBID AGYKE
ISSN 1573-7721
1380-7501
IngestDate Sat Aug 23 13:28:23 EDT 2025
Wed Oct 01 06:01:05 EDT 2025
Wed Jul 02 02:44:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Speech pathology detection
Snake optimization
Voice disorder detection
Voice pathology detection
Explainable artificial intelligence
Optimized deep learning
Deep residual network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c187y-6d5d256f31b5963df122b1ac378f54ab0c8b5ca1db5b12f309b1d0aaa5acb4313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9426-7336
PQID 3226027856
PQPubID 54626
PageCount 27
ParticipantIDs proquest_journals_3226027856
crossref_primary_10_1007_s11042_024_20348_y
springer_journals_10_1007_s11042_024_20348_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250600
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 20348_CR46
20348_CR43
S Adige (20348_CR42) 2023; 35
NQ Abdulmajeed (20348_CR1) 2022; 31
GK Birajdar (20348_CR14) 2022; 14
20348_CR40
NP Narendra (20348_CR11) 2020; 8
20348_CR49
HMA Mohammed (20348_CR20) 2023; 223
K Lin (20348_CR39) 2023; 17
S Kaur (20348_CR50) 2023; 30
FA Hashim (20348_CR26) 2022; 242
SP Kumar (20348_CR12) 2023; 86
20348_CR7
M Nssibi (20348_CR51) 2023; 49
20348_CR9
U Cesari (20348_CR30) 2018; 68
S Kaul (20348_CR52) 2022; 81
MS Chinchu (20348_CR35) 2022; 78
S Tirronen (20348_CR16) 2022
20348_CR34
X Peng (20348_CR33) 2023; 13
20348_CR32
JD Arias-Londoño (20348_CR29) 2011; 36
A Banharnsakun (20348_CR53) 2019; 10
K Wahengbam (20348_CR36) 2021; 21
20348_CR2
20348_CR38
A Pandey (20348_CR41) 2022; 34
20348_CR3
JB Lee (20348_CR10) 2024; 91
20348_CR37
I Sindhu (20348_CR5) 2024; 12
Y Dai (20348_CR47) 2022; 40
20348_CR24
20348_CR21
20348_CR22
T Mesallam (20348_CR27) 2017; 2017
20348_CR61
20348_CR62
J Mekyska (20348_CR58) 2015; 167
T Dokeroglu (20348_CR45) 2022; 494
20348_CR28
20348_CR25
F Belabbes (20348_CR48) 2023; 292
MK Arjmandi (20348_CR8) 2012; 7
S Souli (20348_CR31) 2021; 177
20348_CR60
G Muhammad (20348_CR63) 2021; 9
G Gidaye (20348_CR18) 2022; 25
20348_CR13
20348_CR57
H Ding (20348_CR23) 2021; 70
20348_CR55
BHM van der Velden (20348_CR54) 2022; 79
S Bhattacharjee (20348_CR17) 2022; 23
M Ur Rehman (20348_CR4) 2024; 133
20348_CR19
20348_CR15
20348_CR59
S Meister (20348_CR56) 2021; 224
JS Pan (20348_CR44) 2022; 56
N Bhattacharyya (20348_CR6) 2014; 124
References_xml – ident: 20348_CR19
  doi: 10.1007/s12559-024-10254-8
– volume: 177
  year: 2021
  ident: 20348_CR31
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2020.107854
– volume: 70
  year: 2021
  ident: 20348_CR23
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102973
– volume: 242
  year: 2022
  ident: 20348_CR26
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.108320
– volume: 2017
  start-page: 1
  year: 2017
  ident: 20348_CR27
  publication-title: J Healthc Eng
  doi: 10.1155/2017/8783751
– volume: 10
  start-page: 1301
  year: 2019
  ident: 20348_CR53
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-018-0811-z
– ident: 20348_CR59
– ident: 20348_CR3
  doi: 10.1007/s11042-023-14913-0
– ident: 20348_CR2
  doi: 10.3390/biology11030469
– volume: 40
  year: 2022
  ident: 20348_CR47
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2022.102504
– volume: 167
  start-page: 94
  year: 2015
  ident: 20348_CR58
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.085
– volume: 23
  year: 2022
  ident: 20348_CR17
  publication-title: Smart Health
  doi: 10.1016/j.smhl.2021.100233
– ident: 20348_CR21
  doi: 10.1016/j.cmpbup.2022.100074
– ident: 20348_CR38
  doi: 10.1007/s11042-023-16351-4
– ident: 20348_CR46
  doi: 10.3390/math10132351
– volume: 68
  start-page: 310
  year: 2018
  ident: 20348_CR30
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2018.04.008
– ident: 20348_CR61
  doi: 10.1109/EMBC.2018.8513222
– volume: 30
  start-page: 1863
  year: 2023
  ident: 20348_CR50
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-022-09853-1
– volume: 13
  start-page: 1
  year: 2023
  ident: 20348_CR33
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-34461-9
– volume: 78
  year: 2022
  ident: 20348_CR35
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.103771
– volume: 292
  year: 2023
  ident: 20348_CR48
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2023.117373
– volume: 12
  start-page: 49667
  year: 2024
  ident: 20348_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3371713
– volume: 25
  start-page: 527
  issue: 2
  year: 2022
  ident: 20348_CR18
  publication-title: Int J Speech Technol
  doi: 10.1007/s10772-022-09969-6
– ident: 20348_CR37
  doi: 10.3390/s22176634
– ident: 20348_CR43
  doi: 10.3390/math10030464
– volume: 8
  start-page: 67745
  year: 2020
  ident: 20348_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2986171
– volume: 133
  year: 2024
  ident: 20348_CR4
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2024.108047
– ident: 20348_CR13
  doi: 10.1002/ohn.636
– volume: 34
  start-page: 21049
  year: 2022
  ident: 20348_CR41
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-022-07587-6
– ident: 20348_CR62
  doi: 10.21437/Interspeech.2018-1351
– volume: 86
  year: 2023
  ident: 20348_CR12
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.105159
– ident: 20348_CR34
  doi: 10.1016/j.jvoice.2023.09.024
– ident: 20348_CR25
  doi: 10.1007/s11042-023-14734-1
– ident: 20348_CR15
  doi: 10.3390/diagnostics12112758
– ident: 20348_CR40
  doi: 10.1109/CVPR.2016.90
– volume: 79
  year: 2022
  ident: 20348_CR54
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102470
– ident: 20348_CR28
– year: 2022
  ident: 20348_CR16
  publication-title: J Voice
  doi: 10.1016/j.jvoice.2022.03.021
– ident: 20348_CR24
  doi: 10.1109/IWOBI.2017.7985525
– volume: 224
  year: 2021
  ident: 20348_CR56
  publication-title: Compos Part B: Eng
  doi: 10.1016/j.compositesb.2021.109160
– volume: 17
  start-page: 77
  year: 2023
  ident: 20348_CR39
  publication-title: Front Environ Sci Eng
  doi: 10.1007/s11783-023-1677-1
– volume: 81
  start-page: 26779
  year: 2022
  ident: 20348_CR52
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-11011-x
– volume: 494
  start-page: 269
  year: 2022
  ident: 20348_CR45
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.083
– volume: 7
  start-page: 3
  issue: 1
  year: 2012
  ident: 20348_CR8
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2011.03.010
– volume: 21
  start-page: 8100
  issue: 6
  year: 2021
  ident: 20348_CR36
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2021.3049277
– ident: 20348_CR60
  doi: 10.3390/app10113723
– volume: 35
  start-page: 1
  year: 2023
  ident: 20348_CR42
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-023-08340-3
– volume: 223
  year: 2023
  ident: 20348_CR20
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119790
– volume: 36
  start-page: 60
  issue: 2
  year: 2011
  ident: 20348_CR29
  publication-title: Logopedics Phoniatrics Vocology
  doi: 10.3109/14015439.2010.528788
– ident: 20348_CR7
  doi: 10.1093/ije/dyv096.489
– volume: 14
  start-page: 13237
  year: 2022
  ident: 20348_CR14
  publication-title: J Ambient Intell Humanized Comput
  doi: 10.1007/s12652-022-03781-5
– ident: 20348_CR49
  doi: 10.1007/s00500-023-09062-3
– volume: 124
  start-page: 2359
  issue: 10
  year: 2014
  ident: 20348_CR6
  publication-title: The Laryngoscope
  doi: 10.1002/lary.24740
– volume: 91
  year: 2024
  ident: 20348_CR10
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2024.106014
– volume: 56
  start-page: 6101
  issue: 7
  year: 2022
  ident: 20348_CR44
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10328-9
– ident: 20348_CR57
  doi: 10.1109/ICCV.2017.74
– volume: 9
  start-page: 89198
  year: 2021
  ident: 20348_CR63
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3090317
– ident: 20348_CR9
  doi: 10.21437/Interspeech.2017-416
– ident: 20348_CR32
  doi: 10.1155/2021/6635964
– ident: 20348_CR22
  doi: 10.1109/SAMI50585.2021.9378656
– ident: 20348_CR55
  doi: 10.1016/j.inffus.2023.101805
– volume: 31
  start-page: 855
  issue: 1
  year: 2022
  ident: 20348_CR1
  publication-title: J Intell Syst
  doi: 10.1515/jisys-2022-0058
– volume: 49
  year: 2023
  ident: 20348_CR51
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2023.100559
SSID ssj0016524
Score 2.391768
Snippet Voice disorders affect individuals’ vocal quality and communication abilities, which pose significant challenges for both individuals and healthcare providers....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 21863
SubjectTerms 1239: Emerging Trends and Applications of Deep Learning for Biomedical Data Analysis
Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Classification
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Disorders
Effectiveness
Explainable artificial intelligence
Machine learning
Multimedia Information Systems
Neural networks
Optimization
Pathology
Special Purpose and Application-Based Systems
Speech disorders
Speech therapy
Time-frequency analysis
Visualization
Voice
Title Pathological voice detection using optimized deep residual neural network and explainable artificial intelligence
URI https://link.springer.com/article/10.1007/s11042-024-20348-y
https://www.proquest.com/docview/3226027856
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAG1EolQc2SIWdODVjiygIBGKgUpkiP2KEgLTQgCi_nrOb0IJgYIoiO5F1b_vuPgPsKcPCWByxIHTwj5FmHHVOyECqI4s7jBYG5e5o4PIqPutF533eL5rCRmW1e5mS9JZ62uxGXSsJ-hTkbBiJYDwPVY-3VYFq-_T24uQrexBzFhUNMr9_-d0JTSPLH8lQ72O6y9ArVzcpLXlovuaqqT9-ADf-d_krsFQEnaQ9kZJVmEuzNVguL3QghX6vweIMOuE6PF_L_Ms2krcBmhRi0tzXbmXEFczfkQFanKf7j9TgSDokuHf3zV3EwWT6hy8yJzIzJH0fPhatWsTJ6wS6gtzPYIJuQK97cnN8FhQ3NASaitY4iA03GDPZkCqOmmwsZUxRqcOWsDyS6lALxbWkRnFFmUV5UNQcSim51ApDl3ATKtkgS7eA4Bu3IqUy5jYKhRQs5FpJih7WUmt0DfZLliXDCRBHMoVcdrRNkLaJp20yrkG95GpSKOUoQdsVu0Qrj2twUDJpOvz337b_N30HFpi7Jdif1dShkr-8prsYuuSqgZLa7XSuGoXENmC-x9qf37DreA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RPKgHP1AjitqDN11Cu3WUIzESVCAeIOG2tOtqSHSgTCP-9b6WTdDowdOytNuhv76P9r33ewDnSjM_FA3m-Zb-MYgZR5kT0pOqYfCEUUen3F4NdHthexDcDvkwLwqbFtnuRUjSaepFsRu1pSRoUxBZPxDebBXWLIGVZcwfsOZX7CDkLMjLY37_7rsJWviVP0KhzsK0dmArdw1Jc47lLqwkaRm2i7YLJJfCMmwucQjuwfO9zL40GHkbo-ATnWQuwyolNq39gYxRLzyNPhKNI8mE4AnblWARS2bpHi4VnMhUk-R98pgXVBG7q-YEE2S0xNy5D4PWdf-q7eV9FLyYivrMCzXX6NkYnyqO8qYNZUxRGft1YXggVS0WiseSasUVZQZRU1TXpJRcxgodDP8ASuk4TQ6B4Bs3IqEy5CbwhRTM57GSFO2goUbHFbgoljaazOkyogUxsgUiQiAiB0Q0q0C1WP0oF51phBomtOFQHlbgskBkMfz3347-N_0M1tv9bifq3PTujmGD2b6-7nalCqXs5TU5QWcjU6dub30C607Owg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RTIwe_ECNKGoP3nTBdusoR6IS_CIcJOG2tOtqSHSgTiP-9b6WDdDowdOydNthv76P9r3frwDHSjM_FA3m-Vb-MYgZR5sT0pOqYXCFUcek3G4N3HXCdi-47vP-HIvfdbsXJckJp8GqNKVZbaRNbUZ8o5ZWgvEFUfYD4Y0XYSmwQgk4o3usOa0jhJwFOVXm9_e-h6NZjvmjLOqiTWsD1vI0kTQnuG7CQpKWYb04goHkFlmG1Tk9wS147sps6s3I-xCdANFJ5rqtUmJb3B_IEH3E0-Az0TiSjAiuth0di1hhS3dxbeFEppokH6PHnFxF7AybiE2QwZyK5zb0Wpf3520vP1PBi6moj71Qc41ZjvGp4mh72lDGFJWxXxeGB1KdxULxWFKtuKLMIIKK6jMpJZexwmTD34FSOkyTXSB4x41IqAy5CXwhBfN5rCTFmGio0XEFTopfG40m0hnRTCTZAhEhEJEDIhpXoFr8_Sg3o9cIvU1oS6M8rMBpgchs-O-v7f3v8SNY7l60oturzs0-rDB7xK_baKlCKXt5Sw4w78jUoZtaX8UX0v4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathological+voice+detection+using+optimized+deep+residual+neural+network+and+explainable+artificial+intelligence&rft.jtitle=Multimedia+tools+and+applications&rft.au=Jegan%2C+Roohum&rft.au=Jayagowri%2C+R&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=84&rft.issue=19&rft.spage=21863&rft.epage=21889&rft_id=info:doi/10.1007%2Fs11042-024-20348-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon