Multi-level thresholding segmentation for brain tumor detection using optimized deep learning approach

Medical image segmentation and classification are essential for diagnosing brain tumors, which carry a high risk due to the intricate nature of the brain. In this study, we introduce a multi-level thresholding (MLT) approach to achieve high-quality segmentation. The proposed method utilizes deep lea...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 37; no. 23; pp. 19279 - 19302
Main Authors Ewees, Ahmed A., Ismail, Fatma H., Labeeb, Nada S., Gaheen, Marwa A.
Format Journal Article
LanguageEnglish
Published London Springer London 01.08.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-025-11398-w

Cover

Abstract Medical image segmentation and classification are essential for diagnosing brain tumors, which carry a high risk due to the intricate nature of the brain. In this study, we introduce a multi-level thresholding (MLT) approach to achieve high-quality segmentation. The proposed method utilizes deep learning techniques, employing the weighted means of vectors optimization (INFO) algorithm to determine MLT threshold values. Additionally, we fine-tune the hyperparameters of the long Short-term memory (LSTM) neural network, a powerful deep learning architecture, using the INFO algorithm. This LSTM network is employed for classifying the segmented images and detecting brain tumors. The effectiveness of the proposed deep learning approach is assessed on a Kaggle dataset comprising 253 MRI images, including 98 non-tumor and 155 tumor images. We employ performance metrics, including peak signal-to-noise ratio, structural similarity Index, sensitivity, specificity, and accuracy, to evaluate the quality of the deep learning-based segmentation and classification process. The proposed deep learning-based approach consistently outperforms other methods in terms of producing high-quality segmented tumor images and exhibits enhanced detection and classification performance. These findings highlight the effectiveness of the proposed approach in segmenting and classifying brain tumor images.
AbstractList Medical image segmentation and classification are essential for diagnosing brain tumors, which carry a high risk due to the intricate nature of the brain. In this study, we introduce a multi-level thresholding (MLT) approach to achieve high-quality segmentation. The proposed method utilizes deep learning techniques, employing the weighted means of vectors optimization (INFO) algorithm to determine MLT threshold values. Additionally, we fine-tune the hyperparameters of the long Short-term memory (LSTM) neural network, a powerful deep learning architecture, using the INFO algorithm. This LSTM network is employed for classifying the segmented images and detecting brain tumors. The effectiveness of the proposed deep learning approach is assessed on a Kaggle dataset comprising 253 MRI images, including 98 non-tumor and 155 tumor images. We employ performance metrics, including peak signal-to-noise ratio, structural similarity Index, sensitivity, specificity, and accuracy, to evaluate the quality of the deep learning-based segmentation and classification process. The proposed deep learning-based approach consistently outperforms other methods in terms of producing high-quality segmented tumor images and exhibits enhanced detection and classification performance. These findings highlight the effectiveness of the proposed approach in segmenting and classifying brain tumor images.
Author Ewees, Ahmed A.
Labeeb, Nada S.
Gaheen, Marwa A.
Ismail, Fatma H.
Author_xml – sequence: 1
  givenname: Ahmed A.
  surname: Ewees
  fullname: Ewees, Ahmed A.
  email: a.ewees@hotmail.com, aewees@ub.edu.sa
  organization: Department of Information System and Cybersecurity, College of Computing and Information Technology, University of Bisha
– sequence: 2
  givenname: Fatma H.
  surname: Ismail
  fullname: Ismail, Fatma H.
  organization: Faculty of computer science, Misr International University
– sequence: 3
  givenname: Nada S.
  surname: Labeeb
  fullname: Labeeb, Nada S.
  organization: Department of Computer Science and Information, Applied College, Taibah University, Mathematics Department, Faculty of Science, Helwan University
– sequence: 4
  givenname: Marwa A.
  surname: Gaheen
  fullname: Gaheen, Marwa A.
  organization: Department of Computer, Damietta University
BookMark eNp9UMlOwzAQtVCRaAs_wCkSZ4Md21mOqGKTirjA2XLscZsqsYOdUMHX41IkbpxmNG-ZmbdAM-cdIHRJyTUlpLyJhIicYpILTCmrK7w_QXPKGcOMiGqG5qTmCS44O0OLGHeEEF5UYo7s89SNLe7gA7ps3AaIW9-Z1m2yCJse3KjG1rvM-pA1QbUuG6c-9QZG0D_IFA9kP4xt336BSQgMWQcquMNcDUPwSm_P0alVXYSL37pEb_d3r6tHvH55eFrdrrGmVbnHBrQVmjTpUGUs15XOmagZQF1Q2hSMcGasZsqUhlvgolB1rRinWpASKGnYEl0dfdPa9wniKHd-Ci6tlCxZ0bxKXydWfmTp4GMMYOUQ2l6FT0mJPOQpj3nKlKf8yVPuk4gdRTGR3QbCn_U_qm8tL31N
Cites_doi 10.1023/A:1011139631724
10.1016/j.knosys.2021.107468
10.3390/e23111429
10.1371/journal.pone.0112980
10.1016/j.eswa.2020.113233
10.1016/j.engappai.2021.104293
10.1016/j.future.2020.03.055
10.1016/j.knosys.2015.07.006
10.1016/j.compbiomed.2022.106405
10.1007/s12065-019-00238-1
10.1016/j.advengsoft.2016.01.008
10.1016/j.eswa.2020.113377
10.1016/j.patrec.2007.09.005
10.1016/j.compeleceng.2023.108586
10.1109/ICNN.1995.488968
10.1016/j.eswa.2019.01.047
10.1109/TSMC.1979.4310076
10.1007/s11227-023-05664-8
10.1016/j.eswa.2021.116158
10.1016/j.ecolind.2019.105802
10.1049/iet-cvi.2018.5028
10.1016/j.eswa.2022.116516
10.1007/s11042-020-10432-4
10.1049/iet-ipr.2019.1416
10.1016/j.neucom.2012.09.042
10.1016/j.knosys.2015.12.022
10.1109/TSMC.1973.4309314
10.3390/math9192363
10.1007/s00500-021-05611-w
10.1016/j.compeleceng.2022.107960
10.1007/s00530-020-00716-y
10.1007/s11042-019-7515-6
10.1016/j.bspc.2023.104853
10.1016/j.advengsoft.2013.12.007
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s00521-025-11398-w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 19302
ExternalDocumentID 10_1007_s00521_025_11398_w
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
CITATION
PUEGO
ID FETCH-LOGICAL-c187w-decf5c0b064adf4c8c23593ee9611b63043dfc3ad7d4fe456a99a341c507e10b3
IEDL.DBID AGYKE
ISSN 0941-0643
IngestDate Sat Aug 23 12:45:07 EDT 2025
Wed Oct 01 05:33:13 EDT 2025
Fri Aug 01 03:41:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Brain tumor
Long short-term memory
Weighted mean of vectors algorithm
Multi-level thresholding segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c187w-decf5c0b064adf4c8c23593ee9611b63043dfc3ad7d4fe456a99a341c507e10b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3235128685
PQPubID 2043988
PageCount 24
ParticipantIDs proquest_journals_3235128685
crossref_primary_10_1007_s00521_025_11398_w
springer_journals_10_1007_s00521_025_11398_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250800
2025-08-00
20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 8
  year: 2025
  text: 20250800
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References 11398_CR3
S Arora (11398_CR22) 2008; 29
F Chakraborty (11398_CR13) 2021; 25
AA Ewees (11398_CR18) 2021; 9
A Faramarzi (11398_CR36) 2020; 152
B Jena (11398_CR17) 2021; 103
MA Elaziz (11398_CR19) 2024; 27
11398_CR10
11398_CR32
11398_CR33
TR Farshi (11398_CR15) 2020; 149
S Mirjalili (11398_CR41) 2016; 95
FM Kheirkhah (11398_CR24) 2019; 13
S Mirjalili (11398_CR39) 2016; 96
T Akan (11398_CR7) 2024; 80
11398_CR27
Y Feng (11398_CR21) 2021; 23
R Bandyopadhyay (11398_CR8) 2021; 232
TR Farshi (11398_CR14) 2021; 27
E Dandil (11398_CR23) 2020; 14
F Chakraborty (11398_CR4) 2019; 12
W Pengjin (11398_CR16) 2023; 85
R Vankdothu (11398_CR2) 2022; 101
S Mirjalili (11398_CR34) 2014; 69
A Oliva (11398_CR26) 2001; 42
Taymaz Rahkar Farshi and Recep Demirci (11398_CR12) 2021; 80
11398_CR20
RM Haralick (11398_CR30) 1973; 6
L Abualigah (11398_CR38) 2022; 191
M Ahmadi (11398_CR9) 2019; 78
N Otsu (11398_CR6) 1979; 9
11398_CR25
11398_CR37
S Mirjalili (11398_CR35) 2015; 89
MA Elaziz (11398_CR5) 2019; 125
M Sachdeva (11398_CR1) 2023; 106
Y Park (11398_CR31) 2020; 109
S Li (11398_CR40) 2020; 111
FRD Siqueira (11398_CR29) 2013; 120
I Ahmadianfar (11398_CR11) 2022; 195
A Chauhan (11398_CR28) 2014; 9
References_xml – ident: 11398_CR27
– ident: 11398_CR25
– volume: 42
  start-page: 145
  year: 2001
  ident: 11398_CR26
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1011139631724
– volume: 232
  year: 2021
  ident: 11398_CR8
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107468
– volume: 23
  start-page: 1429
  issue: 11
  year: 2021
  ident: 11398_CR21
  publication-title: Entropy
  doi: 10.3390/e23111429
– ident: 11398_CR33
– volume: 9
  issue: 11
  year: 2014
  ident: 11398_CR28
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0112980
– volume: 149
  year: 2020
  ident: 11398_CR15
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113233
– ident: 11398_CR10
– volume: 103
  year: 2021
  ident: 11398_CR17
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104293
– volume: 111
  start-page: 300
  year: 2020
  ident: 11398_CR40
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2020.03.055
– volume: 89
  start-page: 228
  year: 2015
  ident: 11398_CR35
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.07.006
– ident: 11398_CR3
  doi: 10.1016/j.compbiomed.2022.106405
– volume: 12
  start-page: 445
  year: 2019
  ident: 11398_CR4
  publication-title: Evolut Intell
  doi: 10.1007/s12065-019-00238-1
– volume: 95
  start-page: 51
  year: 2016
  ident: 11398_CR41
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 152
  year: 2020
  ident: 11398_CR36
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113377
– volume: 29
  start-page: 119
  issue: 2
  year: 2008
  ident: 11398_CR22
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2007.09.005
– volume: 106
  year: 2023
  ident: 11398_CR1
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2023.108586
– ident: 11398_CR37
  doi: 10.1109/ICNN.1995.488968
– volume: 125
  start-page: 112
  year: 2019
  ident: 11398_CR5
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.01.047
– volume: 9
  start-page: 62
  year: 1979
  ident: 11398_CR6
  publication-title: IEEE Trans Syst Man Cybernet
  doi: 10.1109/TSMC.1979.4310076
– volume: 80
  start-page: 5298
  issue: 4
  year: 2024
  ident: 11398_CR7
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05664-8
– volume: 191
  year: 2022
  ident: 11398_CR38
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116158
– volume: 109
  year: 2020
  ident: 11398_CR31
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2019.105802
– ident: 11398_CR32
– volume: 13
  start-page: 369
  issue: 4
  year: 2019
  ident: 11398_CR24
  publication-title: IET Comput Vis
  doi: 10.1049/iet-cvi.2018.5028
– volume: 195
  year: 2022
  ident: 11398_CR11
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116516
– volume: 80
  start-page: 15273
  issue: 10
  year: 2021
  ident: 11398_CR12
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10432-4
– volume: 14
  start-page: 1967
  issue: 10
  year: 2020
  ident: 11398_CR23
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2019.1416
– volume: 120
  start-page: 336
  year: 2013
  ident: 11398_CR29
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.09.042
– volume: 96
  start-page: 120
  year: 2016
  ident: 11398_CR39
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 6
  start-page: 610
  year: 1973
  ident: 11398_CR30
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1973.4309314
– volume: 9
  start-page: 2363
  issue: 19
  year: 2021
  ident: 11398_CR18
  publication-title: Mathematics
  doi: 10.3390/math9192363
– volume: 27
  year: 2024
  ident: 11398_CR19
  publication-title: Egypt Inf J
– volume: 25
  start-page: 6973
  year: 2021
  ident: 11398_CR13
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-05611-w
– ident: 11398_CR20
– volume: 101
  year: 2022
  ident: 11398_CR2
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2022.107960
– volume: 27
  start-page: 125
  issue: 1
  year: 2021
  ident: 11398_CR14
  publication-title: Multimed Syst
  doi: 10.1007/s00530-020-00716-y
– volume: 78
  start-page: 23003
  year: 2019
  ident: 11398_CR9
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7515-6
– volume: 85
  year: 2023
  ident: 11398_CR16
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.104853
– volume: 69
  start-page: 46
  year: 2014
  ident: 11398_CR34
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
SSID ssj0004685
Score 2.3893132
Snippet Medical image segmentation and classification are essential for diagnosing brain tumors, which carry a high risk due to the intricate nature of the brain. In...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 19279
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Brain
Brain cancer
Brain research
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Deep learning
Effectiveness
Efficiency
Image Processing and Computer Vision
Image quality
Image segmentation
Machine learning
Medical imaging
Methods
Neural networks
Optimization algorithms
Original Article
Performance measurement
Probability and Statistics in Computer Science
Signal to noise ratio
Tumors
Title Multi-level thresholding segmentation for brain tumor detection using optimized deep learning approach
URI https://link.springer.com/article/10.1007/s00521-025-11398-w
https://www.proquest.com/docview/3235128685
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT8IwEL4ovPgi_owokj74piNs7QZ7JAYkGn2SBJ-WtbsRowwiIyT89V5LB0r0gbclbZruru197X13B3BDNhOF5J7jtlG_ViU6B2QaOBhzHgoZoGuesp9fgv5APA79oQ0KmxVs98IlaU7qdbCbfsGkq6_nOy7Blraz2IeyybdVgnLn4e2p-yMe0pTipJuLZvUIboNl_h7lt0HaoMwtx6ixN70KDIqZrmgmH415LhtquZXEcddfOYJDC0BZZ7VijmEPsxOoFMUdmN3rp5Ca0FznU5OKWE4an1lHFZvhaGwjljJGmJdJXWaC5fMxfSeYG3JXxjSjfsQmdCSN35eYUAtOmS1SMWJFLvMzGPS6r_d9xxZlcJTbbi2cBFXqq6YkucZJKlRbedwPOWIYuK4MeFPwJFU8TlqJSJHgWRyGMZlKRcCTFC_5OZSySYYXwHzFXZF61MFNBZJdDDTajGWITYmEK6pwW2gmmq5yb0TrLMtGhBGJMDIijBZVqBXKi-w-nEWcJkcWmNZDFe4KXWya_x_tcrfuV3DgaXUaZmANSvnXHK8JreSybhdnHfYHXucbbGjjMQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UD3rx24ii9uBNm7C1G9uRGAkqcIKE27J2r8REBnEjJP71vpYO1OjB25I2Tfde29-vfV-E3CJmgpDcZ14E5rUqMzkgdcgg5TwWMgTPPmX3B2F3JJ7HwdgFhRWVt3tlkrQn9TrYzbxg4tXXD5iHtCViy22yYxJYmYz5I7_9JRrSFuLEe4vx6RHchcr8PsZ3ONpwzB9mUYs2nUOy72giba_0ekS2ID8mB1UJBup25AnRNoCWvRnXH1qiXgpnTqIFTKYuriinyEypNMUgaLmY4ncGpXXByqnxe5_QGR4c09cPyLAF5tSVkpjQKuP4KRl1HocPXeZKJzDlRa0ly0DpQDUl_n-aaaEi5fMg5gBx6Hky5E3BM614mrUyoQFJVBrHKQKaQnqI6pH8jNTyWQ7nhAaKe0L72MHTAhC9QsMJUxlDUwKif53cVRJM5qsMGck6F7KVd4LyTqy8k2WdNCohJ263FAnHySFOot7q5L4S_Kb579Eu_tf9hux2h_1e0nsavFySPd-sA-vL1yC18n0BV8gvSnltl9MnpbvH8w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QXzxW5xOzYNvGrY2adc-DnXMr-GDg72FprkMwXXDdQz8671k7TZFH3wrJIT27tL7JXe_O0Iu0WeCUNxnXgT2tkrbGpAmZJBwHgsVgueusp-7YacnHvpBf4XF77Ldy5DknNNgqzRleX2sTX1BfLO3mXgM9gPmIYSJ2GydbAhbKAEtuue3VpiRriknnmFsfo_gBW3m9zW-u6Yl3vwRInWep71LtgvISFtzHe-RNcj2yU7ZjoEWu_OAGEemZe82DYjmqKNJEVqiExgMC45RRhGlUmUbQ9B8OsRnDblLx8qozYEf0BH-RIZvn6BxBMa0aCsxoGX18UPSa9-93nRY0UaBpV7UnDENqQnShsLvT7QRaZT6PIg5QBx6ngp5Q3BtUp7ophYGEFAlcZygc0sRKqKqFD8ilWyUwTGhQco9YXyc4BkB6MlCiw8TFUNDASKBKrkqJSjH82oZclEX2clborylk7ecVUmtFLIsds5Ecnw59Jmotyq5LgW_HP57tZP_Tb8gmy-3bfl03308JVu-NQOX1lcjlfxjCmcINXJ17qzpC075zC8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-level+thresholding+segmentation+for+brain+tumor+detection+using+optimized+deep+learning+approach&rft.jtitle=Neural+computing+%26+applications&rft.au=Ewees%2C+Ahmed+A.&rft.au=Ismail%2C+Fatma+H.&rft.au=Labeeb%2C+Nada+S.&rft.au=Gaheen%2C+Marwa+A.&rft.date=2025-08-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=23&rft.spage=19279&rft.epage=19302&rft_id=info:doi/10.1007%2Fs00521-025-11398-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_025_11398_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon