Multi-level thresholding segmentation for brain tumor detection using optimized deep learning approach
Medical image segmentation and classification are essential for diagnosing brain tumors, which carry a high risk due to the intricate nature of the brain. In this study, we introduce a multi-level thresholding (MLT) approach to achieve high-quality segmentation. The proposed method utilizes deep lea...
Saved in:
| Published in | Neural computing & applications Vol. 37; no. 23; pp. 19279 - 19302 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.08.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-025-11398-w |
Cover
| Abstract | Medical image segmentation and classification are essential for diagnosing brain tumors, which carry a high risk due to the intricate nature of the brain. In this study, we introduce a multi-level thresholding (MLT) approach to achieve high-quality segmentation. The proposed method utilizes deep learning techniques, employing the weighted means of vectors optimization (INFO) algorithm to determine MLT threshold values. Additionally, we fine-tune the hyperparameters of the long Short-term memory (LSTM) neural network, a powerful deep learning architecture, using the INFO algorithm. This LSTM network is employed for classifying the segmented images and detecting brain tumors. The effectiveness of the proposed deep learning approach is assessed on a Kaggle dataset comprising 253 MRI images, including 98 non-tumor and 155 tumor images. We employ performance metrics, including peak signal-to-noise ratio, structural similarity Index, sensitivity, specificity, and accuracy, to evaluate the quality of the deep learning-based segmentation and classification process. The proposed deep learning-based approach consistently outperforms other methods in terms of producing high-quality segmented tumor images and exhibits enhanced detection and classification performance. These findings highlight the effectiveness of the proposed approach in segmenting and classifying brain tumor images. |
|---|---|
| AbstractList | Medical image segmentation and classification are essential for diagnosing brain tumors, which carry a high risk due to the intricate nature of the brain. In this study, we introduce a multi-level thresholding (MLT) approach to achieve high-quality segmentation. The proposed method utilizes deep learning techniques, employing the weighted means of vectors optimization (INFO) algorithm to determine MLT threshold values. Additionally, we fine-tune the hyperparameters of the long Short-term memory (LSTM) neural network, a powerful deep learning architecture, using the INFO algorithm. This LSTM network is employed for classifying the segmented images and detecting brain tumors. The effectiveness of the proposed deep learning approach is assessed on a Kaggle dataset comprising 253 MRI images, including 98 non-tumor and 155 tumor images. We employ performance metrics, including peak signal-to-noise ratio, structural similarity Index, sensitivity, specificity, and accuracy, to evaluate the quality of the deep learning-based segmentation and classification process. The proposed deep learning-based approach consistently outperforms other methods in terms of producing high-quality segmented tumor images and exhibits enhanced detection and classification performance. These findings highlight the effectiveness of the proposed approach in segmenting and classifying brain tumor images. |
| Author | Ewees, Ahmed A. Labeeb, Nada S. Gaheen, Marwa A. Ismail, Fatma H. |
| Author_xml | – sequence: 1 givenname: Ahmed A. surname: Ewees fullname: Ewees, Ahmed A. email: a.ewees@hotmail.com, aewees@ub.edu.sa organization: Department of Information System and Cybersecurity, College of Computing and Information Technology, University of Bisha – sequence: 2 givenname: Fatma H. surname: Ismail fullname: Ismail, Fatma H. organization: Faculty of computer science, Misr International University – sequence: 3 givenname: Nada S. surname: Labeeb fullname: Labeeb, Nada S. organization: Department of Computer Science and Information, Applied College, Taibah University, Mathematics Department, Faculty of Science, Helwan University – sequence: 4 givenname: Marwa A. surname: Gaheen fullname: Gaheen, Marwa A. organization: Department of Computer, Damietta University |
| BookMark | eNp9UMlOwzAQtVCRaAs_wCkSZ4Md21mOqGKTirjA2XLscZsqsYOdUMHX41IkbpxmNG-ZmbdAM-cdIHRJyTUlpLyJhIicYpILTCmrK7w_QXPKGcOMiGqG5qTmCS44O0OLGHeEEF5UYo7s89SNLe7gA7ps3AaIW9-Z1m2yCJse3KjG1rvM-pA1QbUuG6c-9QZG0D_IFA9kP4xt336BSQgMWQcquMNcDUPwSm_P0alVXYSL37pEb_d3r6tHvH55eFrdrrGmVbnHBrQVmjTpUGUs15XOmagZQF1Q2hSMcGasZsqUhlvgolB1rRinWpASKGnYEl0dfdPa9wniKHd-Ci6tlCxZ0bxKXydWfmTp4GMMYOUQ2l6FT0mJPOQpj3nKlKf8yVPuk4gdRTGR3QbCn_U_qm8tL31N |
| Cites_doi | 10.1023/A:1011139631724 10.1016/j.knosys.2021.107468 10.3390/e23111429 10.1371/journal.pone.0112980 10.1016/j.eswa.2020.113233 10.1016/j.engappai.2021.104293 10.1016/j.future.2020.03.055 10.1016/j.knosys.2015.07.006 10.1016/j.compbiomed.2022.106405 10.1007/s12065-019-00238-1 10.1016/j.advengsoft.2016.01.008 10.1016/j.eswa.2020.113377 10.1016/j.patrec.2007.09.005 10.1016/j.compeleceng.2023.108586 10.1109/ICNN.1995.488968 10.1016/j.eswa.2019.01.047 10.1109/TSMC.1979.4310076 10.1007/s11227-023-05664-8 10.1016/j.eswa.2021.116158 10.1016/j.ecolind.2019.105802 10.1049/iet-cvi.2018.5028 10.1016/j.eswa.2022.116516 10.1007/s11042-020-10432-4 10.1049/iet-ipr.2019.1416 10.1016/j.neucom.2012.09.042 10.1016/j.knosys.2015.12.022 10.1109/TSMC.1973.4309314 10.3390/math9192363 10.1007/s00500-021-05611-w 10.1016/j.compeleceng.2022.107960 10.1007/s00530-020-00716-y 10.1007/s11042-019-7515-6 10.1016/j.bspc.2023.104853 10.1016/j.advengsoft.2013.12.007 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00521-025-11398-w |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 19302 |
| ExternalDocumentID | 10_1007_s00521_025_11398_w |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PQGLB PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX CITATION PUEGO |
| ID | FETCH-LOGICAL-c187w-decf5c0b064adf4c8c23593ee9611b63043dfc3ad7d4fe456a99a341c507e10b3 |
| IEDL.DBID | AGYKE |
| ISSN | 0941-0643 |
| IngestDate | Sat Aug 23 12:45:07 EDT 2025 Wed Oct 01 05:33:13 EDT 2025 Fri Aug 01 03:41:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | Brain tumor Long short-term memory Weighted mean of vectors algorithm Multi-level thresholding segmentation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c187w-decf5c0b064adf4c8c23593ee9611b63043dfc3ad7d4fe456a99a341c507e10b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3235128685 |
| PQPubID | 2043988 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_3235128685 crossref_primary_10_1007_s00521_025_11398_w springer_journals_10_1007_s00521_025_11398_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250800 2025-08-00 20250801 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 8 year: 2025 text: 20250800 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | 11398_CR3 S Arora (11398_CR22) 2008; 29 F Chakraborty (11398_CR13) 2021; 25 AA Ewees (11398_CR18) 2021; 9 A Faramarzi (11398_CR36) 2020; 152 B Jena (11398_CR17) 2021; 103 MA Elaziz (11398_CR19) 2024; 27 11398_CR10 11398_CR32 11398_CR33 TR Farshi (11398_CR15) 2020; 149 S Mirjalili (11398_CR41) 2016; 95 FM Kheirkhah (11398_CR24) 2019; 13 S Mirjalili (11398_CR39) 2016; 96 T Akan (11398_CR7) 2024; 80 11398_CR27 Y Feng (11398_CR21) 2021; 23 R Bandyopadhyay (11398_CR8) 2021; 232 TR Farshi (11398_CR14) 2021; 27 E Dandil (11398_CR23) 2020; 14 F Chakraborty (11398_CR4) 2019; 12 W Pengjin (11398_CR16) 2023; 85 R Vankdothu (11398_CR2) 2022; 101 S Mirjalili (11398_CR34) 2014; 69 A Oliva (11398_CR26) 2001; 42 Taymaz Rahkar Farshi and Recep Demirci (11398_CR12) 2021; 80 11398_CR20 RM Haralick (11398_CR30) 1973; 6 L Abualigah (11398_CR38) 2022; 191 M Ahmadi (11398_CR9) 2019; 78 N Otsu (11398_CR6) 1979; 9 11398_CR25 11398_CR37 S Mirjalili (11398_CR35) 2015; 89 MA Elaziz (11398_CR5) 2019; 125 M Sachdeva (11398_CR1) 2023; 106 Y Park (11398_CR31) 2020; 109 S Li (11398_CR40) 2020; 111 FRD Siqueira (11398_CR29) 2013; 120 I Ahmadianfar (11398_CR11) 2022; 195 A Chauhan (11398_CR28) 2014; 9 |
| References_xml | – ident: 11398_CR27 – ident: 11398_CR25 – volume: 42 start-page: 145 year: 2001 ident: 11398_CR26 publication-title: Int J Comput Vis doi: 10.1023/A:1011139631724 – volume: 232 year: 2021 ident: 11398_CR8 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2021.107468 – volume: 23 start-page: 1429 issue: 11 year: 2021 ident: 11398_CR21 publication-title: Entropy doi: 10.3390/e23111429 – ident: 11398_CR33 – volume: 9 issue: 11 year: 2014 ident: 11398_CR28 publication-title: PloS ONE doi: 10.1371/journal.pone.0112980 – volume: 149 year: 2020 ident: 11398_CR15 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113233 – ident: 11398_CR10 – volume: 103 year: 2021 ident: 11398_CR17 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104293 – volume: 111 start-page: 300 year: 2020 ident: 11398_CR40 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2020.03.055 – volume: 89 start-page: 228 year: 2015 ident: 11398_CR35 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.07.006 – ident: 11398_CR3 doi: 10.1016/j.compbiomed.2022.106405 – volume: 12 start-page: 445 year: 2019 ident: 11398_CR4 publication-title: Evolut Intell doi: 10.1007/s12065-019-00238-1 – volume: 95 start-page: 51 year: 2016 ident: 11398_CR41 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 152 year: 2020 ident: 11398_CR36 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113377 – volume: 29 start-page: 119 issue: 2 year: 2008 ident: 11398_CR22 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2007.09.005 – volume: 106 year: 2023 ident: 11398_CR1 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2023.108586 – ident: 11398_CR37 doi: 10.1109/ICNN.1995.488968 – volume: 125 start-page: 112 year: 2019 ident: 11398_CR5 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.01.047 – volume: 9 start-page: 62 year: 1979 ident: 11398_CR6 publication-title: IEEE Trans Syst Man Cybernet doi: 10.1109/TSMC.1979.4310076 – volume: 80 start-page: 5298 issue: 4 year: 2024 ident: 11398_CR7 publication-title: J Supercomput doi: 10.1007/s11227-023-05664-8 – volume: 191 year: 2022 ident: 11398_CR38 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116158 – volume: 109 year: 2020 ident: 11398_CR31 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2019.105802 – ident: 11398_CR32 – volume: 13 start-page: 369 issue: 4 year: 2019 ident: 11398_CR24 publication-title: IET Comput Vis doi: 10.1049/iet-cvi.2018.5028 – volume: 195 year: 2022 ident: 11398_CR11 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116516 – volume: 80 start-page: 15273 issue: 10 year: 2021 ident: 11398_CR12 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10432-4 – volume: 14 start-page: 1967 issue: 10 year: 2020 ident: 11398_CR23 publication-title: IET Image Process doi: 10.1049/iet-ipr.2019.1416 – volume: 120 start-page: 336 year: 2013 ident: 11398_CR29 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.09.042 – volume: 96 start-page: 120 year: 2016 ident: 11398_CR39 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 6 start-page: 610 year: 1973 ident: 11398_CR30 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1973.4309314 – volume: 9 start-page: 2363 issue: 19 year: 2021 ident: 11398_CR18 publication-title: Mathematics doi: 10.3390/math9192363 – volume: 27 year: 2024 ident: 11398_CR19 publication-title: Egypt Inf J – volume: 25 start-page: 6973 year: 2021 ident: 11398_CR13 publication-title: Soft Comput doi: 10.1007/s00500-021-05611-w – ident: 11398_CR20 – volume: 101 year: 2022 ident: 11398_CR2 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2022.107960 – volume: 27 start-page: 125 issue: 1 year: 2021 ident: 11398_CR14 publication-title: Multimed Syst doi: 10.1007/s00530-020-00716-y – volume: 78 start-page: 23003 year: 2019 ident: 11398_CR9 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7515-6 – volume: 85 year: 2023 ident: 11398_CR16 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.104853 – volume: 69 start-page: 46 year: 2014 ident: 11398_CR34 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 |
| SSID | ssj0004685 |
| Score | 2.3893132 |
| Snippet | Medical image segmentation and classification are essential for diagnosing brain tumors, which carry a high risk due to the intricate nature of the brain. In... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 19279 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Brain Brain cancer Brain research Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Deep learning Effectiveness Efficiency Image Processing and Computer Vision Image quality Image segmentation Machine learning Medical imaging Methods Neural networks Optimization algorithms Original Article Performance measurement Probability and Statistics in Computer Science Signal to noise ratio Tumors |
| Title | Multi-level thresholding segmentation for brain tumor detection using optimized deep learning approach |
| URI | https://link.springer.com/article/10.1007/s00521-025-11398-w https://www.proquest.com/docview/3235128685 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT8IwEL4ovPgi_owokj74piNs7QZ7JAYkGn2SBJ-WtbsRowwiIyT89V5LB0r0gbclbZruru197X13B3BDNhOF5J7jtlG_ViU6B2QaOBhzHgoZoGuesp9fgv5APA79oQ0KmxVs98IlaU7qdbCbfsGkq6_nOy7Blraz2IeyybdVgnLn4e2p-yMe0pTipJuLZvUIboNl_h7lt0HaoMwtx6ixN70KDIqZrmgmH415LhtquZXEcddfOYJDC0BZZ7VijmEPsxOoFMUdmN3rp5Ca0FznU5OKWE4an1lHFZvhaGwjljJGmJdJXWaC5fMxfSeYG3JXxjSjfsQmdCSN35eYUAtOmS1SMWJFLvMzGPS6r_d9xxZlcJTbbi2cBFXqq6YkucZJKlRbedwPOWIYuK4MeFPwJFU8TlqJSJHgWRyGMZlKRcCTFC_5OZSySYYXwHzFXZF61MFNBZJdDDTajGWITYmEK6pwW2gmmq5yb0TrLMtGhBGJMDIijBZVqBXKi-w-nEWcJkcWmNZDFe4KXWya_x_tcrfuV3DgaXUaZmANSvnXHK8JreSybhdnHfYHXucbbGjjMQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UD3rx24ii9uBNm7C1G9uRGAkqcIKE27J2r8REBnEjJP71vpYO1OjB25I2Tfde29-vfV-E3CJmgpDcZ14E5rUqMzkgdcgg5TwWMgTPPmX3B2F3JJ7HwdgFhRWVt3tlkrQn9TrYzbxg4tXXD5iHtCViy22yYxJYmYz5I7_9JRrSFuLEe4vx6RHchcr8PsZ3ONpwzB9mUYs2nUOy72giba_0ekS2ID8mB1UJBup25AnRNoCWvRnXH1qiXgpnTqIFTKYuriinyEypNMUgaLmY4ncGpXXByqnxe5_QGR4c09cPyLAF5tSVkpjQKuP4KRl1HocPXeZKJzDlRa0ly0DpQDUl_n-aaaEi5fMg5gBx6Hky5E3BM614mrUyoQFJVBrHKQKaQnqI6pH8jNTyWQ7nhAaKe0L72MHTAhC9QsMJUxlDUwKif53cVRJM5qsMGck6F7KVd4LyTqy8k2WdNCohJ263FAnHySFOot7q5L4S_Kb579Eu_tf9hux2h_1e0nsavFySPd-sA-vL1yC18n0BV8gvSnltl9MnpbvH8w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QXzxW5xOzYNvGrY2adc-DnXMr-GDg72FprkMwXXDdQz8671k7TZFH3wrJIT27tL7JXe_O0Iu0WeCUNxnXgT2tkrbGpAmZJBwHgsVgueusp-7YacnHvpBf4XF77Ldy5DknNNgqzRleX2sTX1BfLO3mXgM9gPmIYSJ2GydbAhbKAEtuue3VpiRriknnmFsfo_gBW3m9zW-u6Yl3vwRInWep71LtgvISFtzHe-RNcj2yU7ZjoEWu_OAGEemZe82DYjmqKNJEVqiExgMC45RRhGlUmUbQ9B8OsRnDblLx8qozYEf0BH-RIZvn6BxBMa0aCsxoGX18UPSa9-93nRY0UaBpV7UnDENqQnShsLvT7QRaZT6PIg5QBx6ngp5Q3BtUp7ophYGEFAlcZygc0sRKqKqFD8ilWyUwTGhQco9YXyc4BkB6MlCiw8TFUNDASKBKrkqJSjH82oZclEX2clborylk7ecVUmtFLIsds5Ecnw59Jmotyq5LgW_HP57tZP_Tb8gmy-3bfl03308JVu-NQOX1lcjlfxjCmcINXJ17qzpC075zC8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-level+thresholding+segmentation+for+brain+tumor+detection+using+optimized+deep+learning+approach&rft.jtitle=Neural+computing+%26+applications&rft.au=Ewees%2C+Ahmed+A.&rft.au=Ismail%2C+Fatma+H.&rft.au=Labeeb%2C+Nada+S.&rft.au=Gaheen%2C+Marwa+A.&rft.date=2025-08-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=23&rft.spage=19279&rft.epage=19302&rft_id=info:doi/10.1007%2Fs00521-025-11398-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_025_11398_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |