Fractional Calculus Operator Emerging from the 2D Biorthogonal Hermite Konhauser Polynomials
In this paper, we present a novel method for constructing families of two-variable biorthogonal polynomials by utilizing known families of one-variable biorthogonal and orthogonal polynomials. Employing this approach, we define a new class of two-dimensional Hermite–Konhauser (H–K) polynomials and i...
Saved in:
| Published in | International journal of applied and computational mathematics Vol. 11; no. 4; p. 120 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New Delhi
Springer India
01.08.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2349-5103 2199-5796 |
| DOI | 10.1007/s40819-025-01932-8 |
Cover
| Abstract | In this paper, we present a novel method for constructing families of two-variable biorthogonal polynomials by utilizing known families of one-variable biorthogonal and orthogonal polynomials. Employing this approach, we define a new class of two-dimensional Hermite–Konhauser (H–K) polynomials and investigate several of their fundamental properties, including biorthogonality, operational formulas, and integral representations. Furthermore, we examine the behavior of these polynomials under Laplace transformations, as well as fractional integral and derivative operators. Corresponding to the introduced polynomials, we define a new class of bivariate H–K Mittag–Leffler functions and derive analogous properties. To develop a new framework in fractional calculus, we introduce two additional parameters and extend our study to the modified two-dimensional Hermite–Konhauser polynomials and bivariate H–K Mittag–Leffler functions. Additionally, we propose an integral ope-rator whose kernel involves the modified bivariate H–K Mittag–Leffler function. We demonstrate that this operator satisfies the semigroup property and establish its left inverse, which corresponds to a fractional derivative operator. |
|---|---|
| AbstractList | In this paper, we present a novel method for constructing families of two-variable biorthogonal polynomials by utilizing known families of one-variable biorthogonal and orthogonal polynomials. Employing this approach, we define a new class of two-dimensional Hermite–Konhauser (H–K) polynomials and investigate several of their fundamental properties, including biorthogonality, operational formulas, and integral representations. Furthermore, we examine the behavior of these polynomials under Laplace transformations, as well as fractional integral and derivative operators. Corresponding to the introduced polynomials, we define a new class of bivariate H–K Mittag–Leffler functions and derive analogous properties. To develop a new framework in fractional calculus, we introduce two additional parameters and extend our study to the modified two-dimensional Hermite–Konhauser polynomials and bivariate H–K Mittag–Leffler functions. Additionally, we propose an integral ope-rator whose kernel involves the modified bivariate H–K Mittag–Leffler function. We demonstrate that this operator satisfies the semigroup property and establish its left inverse, which corresponds to a fractional derivative operator. |
| ArticleNumber | 120 |
| Author | Elidemir, Ilkay Onbasi Özarslan, Mehmet Ali |
| Author_xml | – sequence: 1 givenname: Mehmet Ali surname: Özarslan fullname: Özarslan, Mehmet Ali organization: Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Gazimagusa, TRNC – sequence: 2 givenname: Ilkay Onbasi surname: Elidemir fullname: Elidemir, Ilkay Onbasi email: ilkay.onbasi@emu.edu.tr organization: Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Gazimagusa, TRNC |
| BookMark | eNp9kM9LwzAcxYNMcM79A54Cnqv51SY56tycOJgHvQkhzdKuo21q0h7235utgjfhC-8d3ufx5V2DSetaC8AtRvcYIf4QGBJYJoikCcKSkkRcgCnBUiYpl9kkesqix4hegXkIB4QQwYwjIqbga-W16SvX6houdG2Geghw21mve-fhsrG-rNoSFt41sN9bSJ7hU-V8v3flmVlb31S9hW-u3eshWA_fXX1sXVPpOtyAyyKKnf_qDHyulh-LdbLZvrwuHjeJwYKLxEgtmDBap7uMZ7mVhc6pxZkUyGSZlamhuRRMZ0Iym-t4mjOe5kzsuOEFpzNwN_Z23n0PNvTq4AYf3wuKkjTFRCIqYoqMKeNdCN4WqvNVo_1RYaROQ6pxSBWHVOch1QmiIxRiuC2t_6v-h_oBxC94fw |
| Cites_doi | 10.1007/s41478-023-00551-0 10.1016/j.chaos.2023.113495 10.1002/mana.19720530114 10.1016/0022-247X(65)90085-5 10.1007/BF02412238 10.2140/pjm.1982.100.417 10.1002/mma.6324 10.1080/10652469.2010.533474 10.2298/NSJOM2301089S 10.1016/j.amc.2018.11.010 10.3390/math8060970 10.2140/pjm.1967.21.303 10.1007/s40314-020-01224-5 10.1016/j.jmaa.2023.126145 10.1080/00207160.2021.1906869 10.1007/s40314-023-02363-1 10.1007/978-3-662-61550-8 10.1016/j.jmaa.2006.01.008 10.1016/B978-0-12-064850-4.50015-X 10.1080/10652469608819121 10.1016/j.jmaa.2007.03.018 10.2140/pjm.1968.24.425 10.3390/fractalfract5020045 10.1080/10652460310001600717 10.1080/10652469.2013.789872 10.1080/10652469808819189 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature India Private Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature India Private Limited 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s40819-025-01932-8 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 2199-5796 |
| ExternalDocumentID | 10_1007_s40819_025_01932_8 |
| GroupedDBID | 0R~ 203 406 AACDK AAHNG AAIAL AAJBT AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATHPR AUKKA AVWKF AVXWI AXYYD AYFIA AZFZN BAPOH BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI FEDTE FERAY FIGPU FNLPD GGCAI GGRSB GJIRD HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR 4.4 AARHV AAYXX AEBTG AHSBF AJBLW CITATION EJD FINBP FSGXE |
| ID | FETCH-LOGICAL-c1878-c9a848caa5d676be9fab3e16980c66e95c3b984a6894ebaebaa7475b48d7c7f73 |
| ISSN | 2349-5103 |
| IngestDate | Wed Oct 01 07:00:09 EDT 2025 Wed Oct 01 05:24:56 EDT 2025 Sat Sep 13 01:10:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Bivariate orthogonal polynomials Mittag Leffler functions 26A33 Primary 33C50 44A20 Hermite polynomials Fractional integrals and derivative |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1878-c9a848caa5d676be9fab3e16980c66e95c3b984a6894ebaebaa7475b48d7c7f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3255129038 |
| PQPubID | 2044256 |
| ParticipantIDs | proquest_journals_3255129038 crossref_primary_10_1007_s40819_025_01932_8 springer_journals_10_1007_s40819_025_01932_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New Delhi |
| PublicationPlace_xml | – name: New Delhi – name: Heidelberg |
| PublicationTitle | International journal of applied and computational mathematics |
| PublicationTitleAbbrev | Int. J. Appl. Comput. Math |
| PublicationYear | 2025 |
| Publisher | Springer India Springer Nature B.V |
| Publisher_xml | – name: Springer India – name: Springer Nature B.V |
| References | AK Shukla (1932_CR23) 2007; 336 PK Suetin (1932_CR9) 1999 SS Isah (1932_CR31) 2023; 171 L Carlitz (1932_CR2) 1968; 24 AA Kilbas (1932_CR24) 2006 M Saigo (1932_CR21) 1998; 7 MA Özarslan (1932_CR26) 2014; 229 JDE Konhauser (1932_CR3) 1967; 21 HC Madhekar (1932_CR5) 1982; 100 HL Krall (1932_CR7) 1967; 76 RK Saxena (1932_CR25) 2011; 22 1932_CR35 SS Isah (1932_CR32) 2023; 42 YX Ng (1932_CR19) 2022; 13 JDE Konhauser (1932_CR4) 1965; 11 Y Luchko (1932_CR14) 2020; 8 C Kürt (1932_CR29) 2021; 44 MJS Shahwam (1932_CR10) 2023; 54 HM Srivastava (1932_CR34) 1972; 53 MG Bin-Saad (1932_CR1) 2006; 324 VS Kiryakova (1932_CR13) 2010; 1301 1932_CR8 A Fernandez (1932_CR17) 2020; 39 MA Özarslan (1932_CR27) 2022; 99 MA Özarslan (1932_CR30) 2021; 5 MG Bin-Saad (1932_CR11) 2023; 518 AA Kilbas (1932_CR22) 1996; 4 MJS Shahwan (1932_CR18) 2023; 31 TR Prabhakar (1932_CR15) 1971; 19 MA Özarslan (1932_CR6) 2019; 347 MJ Shahwan (1932_CR33) 2023; 31 R Gorenflo (1932_CR12) 2020 AA Kilbas (1932_CR16) 2004; 15 M Garg (1932_CR20) 2013; 24 C Kürt (1932_CR28) 2023; 443 |
| References_xml | – volume: 31 start-page: 2063 year: 2023 ident: 1932_CR18 publication-title: J. Anal. doi: 10.1007/s41478-023-00551-0 – volume: 171 year: 2023 ident: 1932_CR31 publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2023.113495 – volume: 19 start-page: 7 year: 1971 ident: 1932_CR15 publication-title: Yokohama math. J. – volume: 53 start-page: 151 year: 1972 ident: 1932_CR34 publication-title: Math. Nachr. doi: 10.1002/mana.19720530114 – volume: 11 start-page: 242 year: 1965 ident: 1932_CR4 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(65)90085-5 – volume-title: Orthogonal Polynomials in Two Variables year: 1999 ident: 1932_CR9 – volume: 31 start-page: 1 year: 2023 ident: 1932_CR33 publication-title: J. Anal. doi: 10.1007/s41478-023-00551-0 – volume: 76 start-page: 325 year: 1967 ident: 1932_CR7 publication-title: Annali di Matematica doi: 10.1007/BF02412238 – volume-title: Rheory and Applications of Fractional Differential Equations year: 2006 ident: 1932_CR24 – volume: 100 start-page: 417 year: 1982 ident: 1932_CR5 publication-title: Pac. J. Math. doi: 10.2140/pjm.1982.100.417 – volume: 443 year: 2023 ident: 1932_CR28 publication-title: Appl. Math. Comput. – volume: 44 start-page: 2600 year: 2021 ident: 1932_CR29 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6324 – volume: 1301 start-page: 597 year: 2010 ident: 1932_CR13 publication-title: Am. Inst. Phys. – volume: 22 start-page: 533 year: 2011 ident: 1932_CR25 publication-title: Int. trans. Special Funct. doi: 10.1080/10652469.2010.533474 – volume: 54 start-page: 89 issue: 1 year: 2023 ident: 1932_CR10 publication-title: Novi Sad J. Math. doi: 10.2298/NSJOM2301089S – volume: 347 start-page: 631 year: 2019 ident: 1932_CR6 publication-title: Appl. Math. Comp. doi: 10.1016/j.amc.2018.11.010 – volume: 8 start-page: 970 year: 2020 ident: 1932_CR14 publication-title: Mathematics. doi: 10.3390/math8060970 – ident: 1932_CR35 – volume: 21 start-page: 303 year: 1967 ident: 1932_CR3 publication-title: Pac. J. Math. doi: 10.2140/pjm.1967.21.303 – volume: 39 start-page: 1 year: 2020 ident: 1932_CR17 publication-title: Comput. Appl. Math. doi: 10.1007/s40314-020-01224-5 – volume: 518 start-page: 126 issue: 1 year: 2023 ident: 1932_CR11 publication-title: J. Math. Anal doi: 10.1016/j.jmaa.2023.126145 – volume: 229 start-page: 350 year: 2014 ident: 1932_CR26 publication-title: Appl. Math. Comput. – volume: 99 start-page: 247 year: 2022 ident: 1932_CR27 publication-title: Int. J. Comput. Math. doi: 10.1080/00207160.2021.1906869 – volume: 42 start-page: 228 issue: 5 year: 2023 ident: 1932_CR32 publication-title: Comput. Appl. Math. doi: 10.1007/s40314-023-02363-1 – volume-title: Mittag-Leffler Functions, Related Topics and Applications year: 2020 ident: 1932_CR12 doi: 10.1007/978-3-662-61550-8 – volume: 324 start-page: 1438 year: 2006 ident: 1932_CR1 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2006.01.008 – ident: 1932_CR8 doi: 10.1016/B978-0-12-064850-4.50015-X – volume: 4 start-page: 355 year: 1996 ident: 1932_CR22 publication-title: Integral Transform. Spec. Funct. doi: 10.1080/10652469608819121 – volume: 336 start-page: 797 year: 2007 ident: 1932_CR23 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2007.03.018 – volume: 24 start-page: 425 year: 1968 ident: 1932_CR2 publication-title: Pac. J. Math. doi: 10.2140/pjm.1968.24.425 – volume: 5 start-page: 45 year: 2021 ident: 1932_CR30 publication-title: Fractal Fract. doi: 10.3390/fractalfract5020045 – volume: 15 start-page: 31 year: 2004 ident: 1932_CR16 publication-title: Integral Transform. Spec. Funct. doi: 10.1080/10652460310001600717 – volume: 13 start-page: 14 year: 2022 ident: 1932_CR19 publication-title: Behaviour – volume: 24 start-page: 934 year: 2013 ident: 1932_CR20 publication-title: Integral Transform. Spec. Funct. doi: 10.1080/10652469.2013.789872 – volume: 7 start-page: 97 year: 1998 ident: 1932_CR21 publication-title: Integral Transform. Spec. Funct. doi: 10.1080/10652469808819189 |
| SSID | ssj0002147028 |
| Score | 2.321635 |
| Snippet | In this paper, we present a novel method for constructing families of two-variable biorthogonal polynomials by utilizing known families of one-variable... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 120 |
| SubjectTerms | Applications of Mathematics Bivariate analysis Calculus Computational Science and Engineering Derivatives Fractional calculus Hermite polynomials Integrals Investigations Laplace transforms Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nuclear Energy Operations Research/Decision Theory Operators (mathematics) Original Paper Parameter modification Polynomials Theoretical Variables |
| Title | Fractional Calculus Operator Emerging from the 2D Biorthogonal Hermite Konhauser Polynomials |
| URI | https://link.springer.com/article/10.1007/s40819-025-01932-8 https://www.proquest.com/docview/3255129038 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2199-5796 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002147028 issn: 2349-5103 databaseCode: AFBBN dateStart: 20150301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLdKd4EDjwFiMJAP3IJRmjiJfewY1QB1u2zSDkiR4zi0IkurJjtsh_3t--w4TgqbxJCqqHKch_z98r38PRD6GHIwq_JAEe77OaFUJiSjMiKF0rU3eSFj07VkfhwfndHv59H5aHQzzC5pss_y-s68kv-hKowBXXWW7AMo624KA_Af6AtHoDAc_4nGs02blqAdAKLUjrzaO1krs3PuaXeT6UDkMkiCQ916ctMsVr9sUWGdza-8H6tqIbS3QkfDXek8ZVHWQ6112204KDYhrA5rk-PWl0036cKVg3VKu96T5_E1WNJl63Wdq8WFarxpuewjSEy_WoOib-VvceWdVCBnl0PfRBC5yLht3yTwunwpes4WhJQTXcqvFULt2ITDWNK2t3WseTKAIL2T47dBHjXVqg0xr6BVUsJ6-eaiDl2FZjM5hcmpmZyyR2gnAKngj9HOdHZwcOy8dLqLk28a9Lp3tplXJv_yr6duaze9yfLHLrtRXk6fo6fW6sDTFkIv0EhVu-iZtUCw5e_1Lnoy78n2Ev3s8YU7fOEOX7jDF9b4wnAZDg7xEF_Y4gs7fOEBvl6hs9nX0y9HxHbjIHLCEkYkF4wyKUSUx0mcKV6ILFSTmDNfxrHikQwzzqiIGacqE_ATYKpGGWV5IpMiCV-jcbWq1BuEmeSq4CEtAq7rrcnMVxMuY2AZMgeZ4u8hr1vFdN0WXUnvJ94e2u8WOrVfQJ2GYCprF2sIpz91i9-fvv9ubx82_R163AN_H42bzaV6D2pqk32wWLoFBMGRBw |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+Calculus+Operator+Emerging+from+the+2D+Biorthogonal+Hermite+Konhauser+Polynomials&rft.jtitle=International+journal+of+applied+and+computational+mathematics&rft.au=%C3%96zarslan%2C+Mehmet+Ali&rft.au=Elidemir%2C+Ilkay+Onbasi&rft.date=2025-08-01&rft.pub=Springer+India&rft.issn=2349-5103&rft.eissn=2199-5796&rft.volume=11&rft.issue=4&rft_id=info:doi/10.1007%2Fs40819-025-01932-8&rft.externalDocID=10_1007_s40819_025_01932_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-5103&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-5103&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-5103&client=summon |