Fractional Calculus Operator Emerging from the 2D Biorthogonal Hermite Konhauser Polynomials

In this paper, we present a novel method for constructing families of two-variable biorthogonal polynomials by utilizing known families of one-variable biorthogonal and orthogonal polynomials. Employing this approach, we define a new class of two-dimensional Hermite–Konhauser (H–K) polynomials and i...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied and computational mathematics Vol. 11; no. 4; p. 120
Main Authors Özarslan, Mehmet Ali, Elidemir, Ilkay Onbasi
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.08.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2349-5103
2199-5796
DOI10.1007/s40819-025-01932-8

Cover

Abstract In this paper, we present a novel method for constructing families of two-variable biorthogonal polynomials by utilizing known families of one-variable biorthogonal and orthogonal polynomials. Employing this approach, we define a new class of two-dimensional Hermite–Konhauser (H–K) polynomials and investigate several of their fundamental properties, including biorthogonality, operational formulas, and integral representations. Furthermore, we examine the behavior of these polynomials under Laplace transformations, as well as fractional integral and derivative operators. Corresponding to the introduced polynomials, we define a new class of bivariate H–K Mittag–Leffler functions and derive analogous properties. To develop a new framework in fractional calculus, we introduce two additional parameters and extend our study to the modified two-dimensional Hermite–Konhauser polynomials and bivariate H–K Mittag–Leffler functions. Additionally, we propose an integral ope-rator whose kernel involves the modified bivariate H–K Mittag–Leffler function. We demonstrate that this operator satisfies the semigroup property and establish its left inverse, which corresponds to a fractional derivative operator.
AbstractList In this paper, we present a novel method for constructing families of two-variable biorthogonal polynomials by utilizing known families of one-variable biorthogonal and orthogonal polynomials. Employing this approach, we define a new class of two-dimensional Hermite–Konhauser (H–K) polynomials and investigate several of their fundamental properties, including biorthogonality, operational formulas, and integral representations. Furthermore, we examine the behavior of these polynomials under Laplace transformations, as well as fractional integral and derivative operators. Corresponding to the introduced polynomials, we define a new class of bivariate H–K Mittag–Leffler functions and derive analogous properties. To develop a new framework in fractional calculus, we introduce two additional parameters and extend our study to the modified two-dimensional Hermite–Konhauser polynomials and bivariate H–K Mittag–Leffler functions. Additionally, we propose an integral ope-rator whose kernel involves the modified bivariate H–K Mittag–Leffler function. We demonstrate that this operator satisfies the semigroup property and establish its left inverse, which corresponds to a fractional derivative operator.
ArticleNumber 120
Author Elidemir, Ilkay Onbasi
Özarslan, Mehmet Ali
Author_xml – sequence: 1
  givenname: Mehmet Ali
  surname: Özarslan
  fullname: Özarslan, Mehmet Ali
  organization: Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Gazimagusa, TRNC
– sequence: 2
  givenname: Ilkay Onbasi
  surname: Elidemir
  fullname: Elidemir, Ilkay Onbasi
  email: ilkay.onbasi@emu.edu.tr
  organization: Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Gazimagusa, TRNC
BookMark eNp9kM9LwzAcxYNMcM79A54Cnqv51SY56tycOJgHvQkhzdKuo21q0h7235utgjfhC-8d3ufx5V2DSetaC8AtRvcYIf4QGBJYJoikCcKSkkRcgCnBUiYpl9kkesqix4hegXkIB4QQwYwjIqbga-W16SvX6houdG2Geghw21mve-fhsrG-rNoSFt41sN9bSJ7hU-V8v3flmVlb31S9hW-u3eshWA_fXX1sXVPpOtyAyyKKnf_qDHyulh-LdbLZvrwuHjeJwYKLxEgtmDBap7uMZ7mVhc6pxZkUyGSZlamhuRRMZ0Iym-t4mjOe5kzsuOEFpzNwN_Z23n0PNvTq4AYf3wuKkjTFRCIqYoqMKeNdCN4WqvNVo_1RYaROQ6pxSBWHVOch1QmiIxRiuC2t_6v-h_oBxC94fw
Cites_doi 10.1007/s41478-023-00551-0
10.1016/j.chaos.2023.113495
10.1002/mana.19720530114
10.1016/0022-247X(65)90085-5
10.1007/BF02412238
10.2140/pjm.1982.100.417
10.1002/mma.6324
10.1080/10652469.2010.533474
10.2298/NSJOM2301089S
10.1016/j.amc.2018.11.010
10.3390/math8060970
10.2140/pjm.1967.21.303
10.1007/s40314-020-01224-5
10.1016/j.jmaa.2023.126145
10.1080/00207160.2021.1906869
10.1007/s40314-023-02363-1
10.1007/978-3-662-61550-8
10.1016/j.jmaa.2006.01.008
10.1016/B978-0-12-064850-4.50015-X
10.1080/10652469608819121
10.1016/j.jmaa.2007.03.018
10.2140/pjm.1968.24.425
10.3390/fractalfract5020045
10.1080/10652460310001600717
10.1080/10652469.2013.789872
10.1080/10652469808819189
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature India Private Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature India Private Limited 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2025.
DBID AAYXX
CITATION
DOI 10.1007/s40819-025-01932-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 2199-5796
ExternalDocumentID 10_1007_s40819_025_01932_8
GroupedDBID 0R~
203
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
ATHPR
AUKKA
AVWKF
AVXWI
AXYYD
AYFIA
AZFZN
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
FEDTE
FERAY
FIGPU
FNLPD
GGCAI
GGRSB
GJIRD
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
4.4
AARHV
AAYXX
AEBTG
AHSBF
AJBLW
CITATION
EJD
FINBP
FSGXE
ID FETCH-LOGICAL-c1878-c9a848caa5d676be9fab3e16980c66e95c3b984a6894ebaebaa7475b48d7c7f73
ISSN 2349-5103
IngestDate Wed Oct 01 07:00:09 EDT 2025
Wed Oct 01 05:24:56 EDT 2025
Sat Sep 13 01:10:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Bivariate orthogonal polynomials
Mittag Leffler functions
26A33
Primary 33C50
44A20
Hermite polynomials
Fractional integrals and derivative
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1878-c9a848caa5d676be9fab3e16980c66e95c3b984a6894ebaebaa7475b48d7c7f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255129038
PQPubID 2044256
ParticipantIDs proquest_journals_3255129038
crossref_primary_10_1007_s40819_025_01932_8
springer_journals_10_1007_s40819_025_01932_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Heidelberg
PublicationTitle International journal of applied and computational mathematics
PublicationTitleAbbrev Int. J. Appl. Comput. Math
PublicationYear 2025
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References AK Shukla (1932_CR23) 2007; 336
PK Suetin (1932_CR9) 1999
SS Isah (1932_CR31) 2023; 171
L Carlitz (1932_CR2) 1968; 24
AA Kilbas (1932_CR24) 2006
M Saigo (1932_CR21) 1998; 7
MA Özarslan (1932_CR26) 2014; 229
JDE Konhauser (1932_CR3) 1967; 21
HC Madhekar (1932_CR5) 1982; 100
HL Krall (1932_CR7) 1967; 76
RK Saxena (1932_CR25) 2011; 22
1932_CR35
SS Isah (1932_CR32) 2023; 42
YX Ng (1932_CR19) 2022; 13
JDE Konhauser (1932_CR4) 1965; 11
Y Luchko (1932_CR14) 2020; 8
C Kürt (1932_CR29) 2021; 44
MJS Shahwam (1932_CR10) 2023; 54
HM Srivastava (1932_CR34) 1972; 53
MG Bin-Saad (1932_CR1) 2006; 324
VS Kiryakova (1932_CR13) 2010; 1301
1932_CR8
A Fernandez (1932_CR17) 2020; 39
MA Özarslan (1932_CR27) 2022; 99
MA Özarslan (1932_CR30) 2021; 5
MG Bin-Saad (1932_CR11) 2023; 518
AA Kilbas (1932_CR22) 1996; 4
MJS Shahwan (1932_CR18) 2023; 31
TR Prabhakar (1932_CR15) 1971; 19
MA Özarslan (1932_CR6) 2019; 347
MJ Shahwan (1932_CR33) 2023; 31
R Gorenflo (1932_CR12) 2020
AA Kilbas (1932_CR16) 2004; 15
M Garg (1932_CR20) 2013; 24
C Kürt (1932_CR28) 2023; 443
References_xml – volume: 31
  start-page: 2063
  year: 2023
  ident: 1932_CR18
  publication-title: J. Anal.
  doi: 10.1007/s41478-023-00551-0
– volume: 171
  year: 2023
  ident: 1932_CR31
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2023.113495
– volume: 19
  start-page: 7
  year: 1971
  ident: 1932_CR15
  publication-title: Yokohama math. J.
– volume: 53
  start-page: 151
  year: 1972
  ident: 1932_CR34
  publication-title: Math. Nachr.
  doi: 10.1002/mana.19720530114
– volume: 11
  start-page: 242
  year: 1965
  ident: 1932_CR4
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(65)90085-5
– volume-title: Orthogonal Polynomials in Two Variables
  year: 1999
  ident: 1932_CR9
– volume: 31
  start-page: 1
  year: 2023
  ident: 1932_CR33
  publication-title: J. Anal.
  doi: 10.1007/s41478-023-00551-0
– volume: 76
  start-page: 325
  year: 1967
  ident: 1932_CR7
  publication-title: Annali di Matematica
  doi: 10.1007/BF02412238
– volume-title: Rheory and Applications of Fractional Differential Equations
  year: 2006
  ident: 1932_CR24
– volume: 100
  start-page: 417
  year: 1982
  ident: 1932_CR5
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1982.100.417
– volume: 443
  year: 2023
  ident: 1932_CR28
  publication-title: Appl. Math. Comput.
– volume: 44
  start-page: 2600
  year: 2021
  ident: 1932_CR29
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6324
– volume: 1301
  start-page: 597
  year: 2010
  ident: 1932_CR13
  publication-title: Am. Inst. Phys.
– volume: 22
  start-page: 533
  year: 2011
  ident: 1932_CR25
  publication-title: Int. trans. Special Funct.
  doi: 10.1080/10652469.2010.533474
– volume: 54
  start-page: 89
  issue: 1
  year: 2023
  ident: 1932_CR10
  publication-title: Novi Sad J. Math.
  doi: 10.2298/NSJOM2301089S
– volume: 347
  start-page: 631
  year: 2019
  ident: 1932_CR6
  publication-title: Appl. Math. Comp.
  doi: 10.1016/j.amc.2018.11.010
– volume: 8
  start-page: 970
  year: 2020
  ident: 1932_CR14
  publication-title: Mathematics.
  doi: 10.3390/math8060970
– ident: 1932_CR35
– volume: 21
  start-page: 303
  year: 1967
  ident: 1932_CR3
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1967.21.303
– volume: 39
  start-page: 1
  year: 2020
  ident: 1932_CR17
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-020-01224-5
– volume: 518
  start-page: 126
  issue: 1
  year: 2023
  ident: 1932_CR11
  publication-title: J. Math. Anal
  doi: 10.1016/j.jmaa.2023.126145
– volume: 229
  start-page: 350
  year: 2014
  ident: 1932_CR26
  publication-title: Appl. Math. Comput.
– volume: 99
  start-page: 247
  year: 2022
  ident: 1932_CR27
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2021.1906869
– volume: 42
  start-page: 228
  issue: 5
  year: 2023
  ident: 1932_CR32
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-023-02363-1
– volume-title: Mittag-Leffler Functions, Related Topics and Applications
  year: 2020
  ident: 1932_CR12
  doi: 10.1007/978-3-662-61550-8
– volume: 324
  start-page: 1438
  year: 2006
  ident: 1932_CR1
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.01.008
– ident: 1932_CR8
  doi: 10.1016/B978-0-12-064850-4.50015-X
– volume: 4
  start-page: 355
  year: 1996
  ident: 1932_CR22
  publication-title: Integral Transform. Spec. Funct.
  doi: 10.1080/10652469608819121
– volume: 336
  start-page: 797
  year: 2007
  ident: 1932_CR23
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2007.03.018
– volume: 24
  start-page: 425
  year: 1968
  ident: 1932_CR2
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1968.24.425
– volume: 5
  start-page: 45
  year: 2021
  ident: 1932_CR30
  publication-title: Fractal Fract.
  doi: 10.3390/fractalfract5020045
– volume: 15
  start-page: 31
  year: 2004
  ident: 1932_CR16
  publication-title: Integral Transform. Spec. Funct.
  doi: 10.1080/10652460310001600717
– volume: 13
  start-page: 14
  year: 2022
  ident: 1932_CR19
  publication-title: Behaviour
– volume: 24
  start-page: 934
  year: 2013
  ident: 1932_CR20
  publication-title: Integral Transform. Spec. Funct.
  doi: 10.1080/10652469.2013.789872
– volume: 7
  start-page: 97
  year: 1998
  ident: 1932_CR21
  publication-title: Integral Transform. Spec. Funct.
  doi: 10.1080/10652469808819189
SSID ssj0002147028
Score 2.321635
Snippet In this paper, we present a novel method for constructing families of two-variable biorthogonal polynomials by utilizing known families of one-variable...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 120
SubjectTerms Applications of Mathematics
Bivariate analysis
Calculus
Computational Science and Engineering
Derivatives
Fractional calculus
Hermite polynomials
Integrals
Investigations
Laplace transforms
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Nuclear Energy
Operations Research/Decision Theory
Operators (mathematics)
Original Paper
Parameter modification
Polynomials
Theoretical
Variables
Title Fractional Calculus Operator Emerging from the 2D Biorthogonal Hermite Konhauser Polynomials
URI https://link.springer.com/article/10.1007/s40819-025-01932-8
https://www.proquest.com/docview/3255129038
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2199-5796
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002147028
  issn: 2349-5103
  databaseCode: AFBBN
  dateStart: 20150301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLdKd4EDjwFiMJAP3IJRmjiJfewY1QB1u2zSDkiR4zi0IkurJjtsh_3t--w4TgqbxJCqqHKch_z98r38PRD6GHIwq_JAEe77OaFUJiSjMiKF0rU3eSFj07VkfhwfndHv59H5aHQzzC5pss_y-s68kv-hKowBXXWW7AMo624KA_Af6AtHoDAc_4nGs02blqAdAKLUjrzaO1krs3PuaXeT6UDkMkiCQ916ctMsVr9sUWGdza-8H6tqIbS3QkfDXek8ZVHWQ6112204KDYhrA5rk-PWl0036cKVg3VKu96T5_E1WNJl63Wdq8WFarxpuewjSEy_WoOib-VvceWdVCBnl0PfRBC5yLht3yTwunwpes4WhJQTXcqvFULt2ITDWNK2t3WseTKAIL2T47dBHjXVqg0xr6BVUsJ6-eaiDl2FZjM5hcmpmZyyR2gnAKngj9HOdHZwcOy8dLqLk28a9Lp3tplXJv_yr6duaze9yfLHLrtRXk6fo6fW6sDTFkIv0EhVu-iZtUCw5e_1Lnoy78n2Ev3s8YU7fOEOX7jDF9b4wnAZDg7xEF_Y4gs7fOEBvl6hs9nX0y9HxHbjIHLCEkYkF4wyKUSUx0mcKV6ILFSTmDNfxrHikQwzzqiIGacqE_ATYKpGGWV5IpMiCV-jcbWq1BuEmeSq4CEtAq7rrcnMVxMuY2AZMgeZ4u8hr1vFdN0WXUnvJ94e2u8WOrVfQJ2GYCprF2sIpz91i9-fvv9ubx82_R163AN_H42bzaV6D2pqk32wWLoFBMGRBw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+Calculus+Operator+Emerging+from+the+2D+Biorthogonal+Hermite+Konhauser+Polynomials&rft.jtitle=International+journal+of+applied+and+computational+mathematics&rft.au=%C3%96zarslan%2C+Mehmet+Ali&rft.au=Elidemir%2C+Ilkay+Onbasi&rft.date=2025-08-01&rft.pub=Springer+India&rft.issn=2349-5103&rft.eissn=2199-5796&rft.volume=11&rft.issue=4&rft_id=info:doi/10.1007%2Fs40819-025-01932-8&rft.externalDocID=10_1007_s40819_025_01932_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-5103&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-5103&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-5103&client=summon