Developing an Artificial Neural Network-based model for predicting EFL achievement level
Motivated by the increasing applications of artificial intelligence in education, the present study aimed at developing an Artificial Neural Network (ANN)-based model for predicting EFL (English as a Foreign Language) achievement levels using data about learners’ variables. Another endeavor of the c...
Saved in:
Published in | Multimedia tools and applications Vol. 84; no. 24; pp. 28061 - 28084 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1573-7721 1380-7501 1573-7721 |
DOI | 10.1007/s11042-024-20295-8 |
Cover
Abstract | Motivated by the increasing applications of artificial intelligence in education, the present study aimed at developing an Artificial Neural Network (ANN)-based model for predicting EFL (English as a Foreign Language) achievement levels using data about learners’ variables. Another endeavor of the current survey was to analyze the importance of learners’ differences in predicting EFL achievement: personality traits, perceptual learning style preferences, language learning strategies, motivation, and attitudes. A Likert-response format questionnaire served to gauge the considered learners’ variables. The subjects were 200 Tunisian first-year university students aged 19 to 23, not English-specialized students. As for data analysis procedures, the employment of the alpha internal consistency coefficient was to inform about the reliability of the study instrument, and the ANNs were to give insights into the interconnections among the study variables. The findings postulated that it was practicable to implement systematic ANNs to predict learners’ EFL achievement levels using their individual affective and cognitive factors, as the model achieved an excellent overall accuracy (an accuracy of 97%). Moreover, results proved that using learners’ variables simultaneously provided a better prediction of EFL achievement. The study highly recommends the implementation of ANNs for the analysis of EFL learning to increase its effectiveness. |
---|---|
AbstractList | Motivated by the increasing applications of artificial intelligence in education, the present study aimed at developing an Artificial Neural Network (ANN)-based model for predicting EFL (English as a Foreign Language) achievement levels using data about learners’ variables. Another endeavor of the current survey was to analyze the importance of learners’ differences in predicting EFL achievement: personality traits, perceptual learning style preferences, language learning strategies, motivation, and attitudes. A Likert-response format questionnaire served to gauge the considered learners’ variables. The subjects were 200 Tunisian first-year university students aged 19 to 23, not English-specialized students. As for data analysis procedures, the employment of the alpha internal consistency coefficient was to inform about the reliability of the study instrument, and the ANNs were to give insights into the interconnections among the study variables. The findings postulated that it was practicable to implement systematic ANNs to predict learners’ EFL achievement levels using their individual affective and cognitive factors, as the model achieved an excellent overall accuracy (an accuracy of 97%). Moreover, results proved that using learners’ variables simultaneously provided a better prediction of EFL achievement. The study highly recommends the implementation of ANNs for the analysis of EFL learning to increase its effectiveness. |
Author | Harizi, Riadh Bouzayenne, Amani |
Author_xml | – sequence: 1 givenname: Amani orcidid: 0009-0009-3145-6872 surname: Bouzayenne fullname: Bouzayenne, Amani organization: Higher Institute of Management of Gabes – sequence: 2 givenname: Riadh orcidid: 0000-0003-4096-8959 surname: Harizi fullname: Harizi, Riadh email: riadh.harizi@isimg.tn organization: National School of Engineers of Sfax |
BookMark | eNp9kLFOwzAURS0EEm3hB5gsMRtsP7tOxqq0gFTBAhKblbjPJSWNi52C-HvSBgkmpvuGe-6TzpAcN6FBQi4EvxKcm-skBFeScamY5DLXLDsiA6ENMGOkOP5zn5JhSmvOxVhLNSAvN_iBddhWzYoWDZ3EtvKVq4qaPuAuHqL9DPGNlUXCJd2EJdbUh0i3EZeVa_fcbL6ghXutuqUNNi2t95Nn5MQXdcLznxyR5_nsaXrHFo-399PJgjmRmYxpAO4Vlt47KMFLJQx3Y8h0noPWTnEALIyB0iieeV-KUijkquQKIIccYUQu-91tDO87TK1dh11supcWJEitzVjKriX7loshpYjebmO1KeKXFdzuDdreoO0M2oNBm3UQ9FDqys0K4-_0P9Q37md0LA |
Cites_doi | 10.4324/9781003389316 10.2307/jj.30945943.5 10.1017/S0272263100009979 10.1111/0023-8333.00117 10.4324/9781315835891 10.3389/fpsyg.2012.00322 10.1007/s11042-022-11998-x 10.1111/j.1467-1770.1985.tb01012.x 10.1016/0191-8869(92)90236-I 10.1111/modl.12340 10.17509/ijal.v11i2.34121 10.1007/s11042-021-10663-z 10.1016/j.tics.2019.05.006 10.2139/ssrn.4804190 10.1017/CBO9780511667343 10.1515/iral.2003.012 10.1016/0346-251X(94)00047-A 10.30827/Digibug.31616 10.1080/10790195.2011.10850344 10.1080/2331186X.2020.1738184 10.1097/WCO.0000000000001190 10.31098/jefltr.v3i1.1414 10.1177/1094428107309326 10.1080/17501229.2021.2012477 10.1515/applirev-2022-0049 10.1016/j.tourman.2017.03.026 10.22492/issn.2435-9467.2022.15 10.54097/ehss.v8i.4362 10.11591/edulearn.v18i2.21144 10.1080/09588220903186547 10.21009/bahtera.191.10 10.1007/s11423-018-9615-9 10.18196/ftl.v8i2.18133 10.1016/j.neunet.2021.10.005 10.1007/s10639-022-11194-2 10.1007/978-3-030-67634-6_7 10.5220/0012426200003636 10.1016/j.heliyon.2024.e31053 10.18806/tesl.v9i2.602 10.31849/utamax.v2i3.5325 10.22214/ijraset.2021.37362 10.1016/S0346-251X(03)00045-9 10.1016/j.caeai.2020.100001 10.12928/eltej.v2i1.947 10.3991/ijet.v16i11.19657 10.1017/S1366728906002732 10.1016/j.flowmeasinst.2019.101689 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
DBID | AAYXX CITATION 7SC 7T9 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s11042-024-20295-8 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Linguistics and Language Behavior Abstracts (LLBA) Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Linguistics and Language Behavior Abstracts (LLBA) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 28084 |
ExternalDocumentID | 10_1007_s11042_024_20295_8 |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX CITATION 7SC 7T9 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c1878-5330f4ebffc3b3f24170c638599355c4033ea773b7408ffb1b14e04b0433939e3 |
IEDL.DBID | AGYKE |
ISSN | 1573-7721 1380-7501 |
IngestDate | Sat Aug 23 12:58:14 EDT 2025 Thu Sep 11 00:26:22 EDT 2025 Thu Jul 24 02:02:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Artificial Neural Network Learners’ differences Predicting EFL achievement level |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1878-5330f4ebffc3b3f24170c638599355c4033ea773b7408ffb1b14e04b0433939e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0009-3145-6872 0000-0003-4096-8959 |
PQID | 3232557622 |
PQPubID | 54626 |
PageCount | 24 |
ParticipantIDs | proquest_journals_3232557622 crossref_primary_10_1007_s11042_024_20295_8 springer_journals_10_1007_s11042_024_20295_8 |
PublicationCentury | 2000 |
PublicationDate | 20250700 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 7 year: 2025 text: 20250700 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | (20295_CR19) 2022 A Bouzayenne (20295_CR20) 2023; 3 J Holler (20295_CR32) 2019; 23 Z Dörnyei (20295_CR46) 2014 C Moskovsky (20295_CR45) 2016; 100 RL Oxford (20295_CR35) 1995; 23 B Klimova (20295_CR6) 2023; 28 DO Fakeye (20295_CR42) 2010; 22 K De Bot (20295_CR49) 2007; 10 20295_CR38 PT Costa (20295_CR28) 1992; 13 M Ekman (20295_CR68) 2022 R Yoshida (20295_CR12) 2024 20295_CR70 J An (20295_CR62) 2022; 145 JMM Domínguez (20295_CR36) 2024; 18 20295_CR33 F Karahan (20295_CR50) 2007; 1 HW Seliger (20295_CR64) 1989 G Wharton (20295_CR37) 2000; 50 P Skehan (20295_CR59) 1991; 13 J Gao (20295_CR5) 2021; 16 D Lee (20295_CR44) 2018; 66 20295_CR29 20295_CR27 A D’ Anglejan (20295_CR58) 1985; 35 A Bouzayenne (20295_CR21) 2023; 8 AY Wahyudin (20295_CR31) 2020; 19 E Piechurska-Kuciel (20295_CR26) 2021 Z Dörnyei (20295_CR40) 2001 C Kenner (20295_CR30) 2011; 41 T Hermessi (20295_CR24) 2020; 53 F Derbel (20295_CR69) 2017; 15 J Khalilzadeh (20295_CR11) 2017; 62 S Alireza (20295_CR34) 2010; 5 20295_CR22 20295_CR67 A Thakur (20295_CR63) 2021; 9 D Larsen-Freeman (20295_CR57) 2014 AS Getie (20295_CR52) 2020; 7 T Buchnan (20295_CR65) 2001 20295_CR7 20295_CR8 B Schoser (20295_CR61) 2023; 36 20295_CR9 RC Gardner (20295_CR43) 2007 JW Osborne (20295_CR10) 2019; 8 R Harizi (20295_CR1) 2022; 81 20295_CR3 T Hermessi (20295_CR23) 2023; 17 20295_CR4 Z Dörnyei (20295_CR13) 2005 A Kara (20295_CR56) 2009; 34 RL Oxford (20295_CR15) 1992; 9 T Zulfikar (20295_CR51) 2019; 2 20295_CR55 ARMM Rahman (20295_CR53) 2021; 11 AI Prastiwi (20295_CR54) 2018; 7 A Sharp (20295_CR25) 2008; 4 MJ Somers (20295_CR17) 2009; 12 KW Tai (20295_CR41) 2024; 15 E Cascallar (20295_CR16) 2014; 2 20295_CR48 RL Oxford (20295_CR39) 1990 M Vandewaetere (20295_CR66) 2009; 22 GD Garson (20295_CR18) 2014 20295_CR47 ME Ehrman (20295_CR14) 2003; 31 Z Ahmad (20295_CR60) 2018; 40 R Harizi (20295_CR2) 2022; 81 |
References_xml | – volume-title: Self-concept in foreign language learning: a longitudinal study of Japanese language learners year: 2024 ident: 20295_CR12 doi: 10.4324/9781003389316 – ident: 20295_CR48 doi: 10.2307/jj.30945943.5 – volume: 13 start-page: 275 issue: 2 year: 1991 ident: 20295_CR59 publication-title: Stud Second Lang Acquis doi: 10.1017/S0272263100009979 – volume-title: Learning deep learning: Theory and practice of neural networks, computer vision, natural language processing and transformers using TenserFlow year: 2022 ident: 20295_CR68 – volume: 50 start-page: 202 issue: 2 year: 2000 ident: 20295_CR37 publication-title: Lang Learn doi: 10.1111/0023-8333.00117 – volume-title: An introduction to second language acquisition research year: 2014 ident: 20295_CR57 doi: 10.4324/9781315835891 – ident: 20295_CR9 doi: 10.3389/fpsyg.2012.00322 – volume: 81 start-page: 24691 issue: 17 year: 2022 ident: 20295_CR2 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-022-11998-x – ident: 20295_CR33 – volume: 35 start-page: 1 issue: 1 year: 1985 ident: 20295_CR58 publication-title: Lang Learn doi: 10.1111/j.1467-1770.1985.tb01012.x – volume: 13 start-page: 653 year: 1992 ident: 20295_CR28 publication-title: Pers Individ Differ doi: 10.1016/0191-8869(92)90236-I – volume: 100 start-page: 641 issue: 3 year: 2016 ident: 20295_CR45 publication-title: Mod Lang J doi: 10.1111/modl.12340 – volume: 8 start-page: 2 issue: 1 year: 2019 ident: 20295_CR10 publication-title: Practical Assess Res Evaluation – volume: 11 start-page: 269 issue: 2 year: 2021 ident: 20295_CR53 publication-title: Indones J Appl Linguist doi: 10.17509/ijal.v11i2.34121 – volume: 81 start-page: 3091 issue: 3 year: 2022 ident: 20295_CR1 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-021-10663-z – volume: 23 start-page: 639 issue: 8 year: 2019 ident: 20295_CR32 publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2019.05.006 – ident: 20295_CR47 doi: 10.2139/ssrn.4804190 – volume-title: Motivational strategies in the language classroom year: 2001 ident: 20295_CR40 doi: 10.1017/CBO9780511667343 – ident: 20295_CR38 doi: 10.1515/iral.2003.012 – volume: 23 start-page: 1 issue: 1 year: 1995 ident: 20295_CR35 publication-title: System doi: 10.1016/0346-251X(94)00047-A – volume: 7 start-page: 265 issue: 4 year: 2018 ident: 20295_CR54 publication-title: Engl Lang Teach J – volume-title: Online implementation of IPIP five factor personality inventory version 1 year: 2001 ident: 20295_CR65 – volume: 5 start-page: 35 issue: 2 year: 2010 ident: 20295_CR34 publication-title: Educ Res Rev – volume-title: Motivating learners, motivating teachers: Building vision in the language classroom year: 2014 ident: 20295_CR46 – volume: 2 start-page: 67 issue: 5 year: 2014 ident: 20295_CR16 publication-title: Frontline Learn Res – volume-title: Motivation and second language acquisition year: 2007 ident: 20295_CR43 doi: 10.30827/Digibug.31616 – volume: 4 start-page: 17 issue: 11 year: 2008 ident: 20295_CR25 publication-title: Asian Soc Sci – volume: 41 start-page: 87 issue: 2 year: 2011 ident: 20295_CR30 publication-title: J Coll Read Learn doi: 10.1080/10790195.2011.10850344 – volume: 40 start-page: 157 issue: 3 year: 2018 ident: 20295_CR60 publication-title: Bull Educ Res – ident: 20295_CR7 – volume: 7 start-page: 1738184 issue: 1 year: 2020 ident: 20295_CR52 publication-title: Cogent Educ doi: 10.1080/2331186X.2020.1738184 – volume: 36 start-page: 424 issue: 5 year: 2023 ident: 20295_CR61 publication-title: Curr Opin Neurol doi: 10.1097/WCO.0000000000001190 – volume: 3 start-page: 14 issue: 1 year: 2023 ident: 20295_CR20 publication-title: J Engl as Foreign Lang Teach Res doi: 10.31098/jefltr.v3i1.1414 – volume-title: Neural network models year: 2014 ident: 20295_CR18 – volume: 12 start-page: 403 issue: 3 year: 2009 ident: 20295_CR17 publication-title: Organ Res Methods doi: 10.1177/1094428107309326 – volume: 17 start-page: 235 issue: 2 year: 2023 ident: 20295_CR23 publication-title: Innov Lang Learn Teach doi: 10.1080/17501229.2021.2012477 – volume: 15 start-page: 611 issue: 2 year: 2024 ident: 20295_CR41 publication-title: Appl Linguist Rev doi: 10.1515/applirev-2022-0049 – volume: 22 start-page: 205 issue: 3 year: 2010 ident: 20295_CR42 publication-title: J Soc Sci – volume: 62 start-page: 89 year: 2017 ident: 20295_CR11 publication-title: Tour Manag doi: 10.1016/j.tourman.2017.03.026 – volume-title: The Routledge handbook of second language acquisition and individual differences year: 2022 ident: 20295_CR19 – ident: 20295_CR22 doi: 10.22492/issn.2435-9467.2022.15 – ident: 20295_CR29 doi: 10.54097/ehss.v8i.4362 – volume: 18 start-page: 471 issue: 2 year: 2024 ident: 20295_CR36 publication-title: J Educ Learn (EduLearn) doi: 10.11591/edulearn.v18i2.21144 – volume: 22 start-page: 349 issue: 4 year: 2009 ident: 20295_CR66 publication-title: Comput Assist Lang Learn doi: 10.1080/09588220903186547 – volume-title: Language learning strategies: what every teacher should know year: 1990 ident: 20295_CR39 – volume: 19 start-page: 169 issue: 1 year: 2020 ident: 20295_CR31 publication-title: BAHTERA: Jurnal Pendidikan Bahasa Dan Sastra doi: 10.21009/bahtera.191.10 – volume-title: Second language research methods year: 1989 ident: 20295_CR64 – volume: 66 start-page: 1269 year: 2018 ident: 20295_CR44 publication-title: Educ Technol Res Dev doi: 10.1007/s11423-018-9615-9 – volume: 8 start-page: 127 issue: 2 year: 2023 ident: 20295_CR21 publication-title: J Foreign Lang Teach Learn doi: 10.18196/ftl.v8i2.18133 – volume: 145 start-page: 177 year: 2022 ident: 20295_CR62 publication-title: Neural Netw doi: 10.1016/j.neunet.2021.10.005 – volume: 1 start-page: 73 issue: 7 year: 2007 ident: 20295_CR50 publication-title: Çankaya Univ J arts Sci – ident: 20295_CR8 – volume: 28 start-page: 663 issue: 1 year: 2023 ident: 20295_CR6 publication-title: Educ Inform Technol doi: 10.1007/s10639-022-11194-2 – start-page: 135 volume-title: New perspectives on willingness to communicate in a second language year: 2021 ident: 20295_CR26 doi: 10.1007/978-3-030-67634-6_7 – volume-title: The psychology of the language learner, individual differences in second language acquisition year: 2005 ident: 20295_CR13 – ident: 20295_CR3 doi: 10.5220/0012426200003636 – ident: 20295_CR70 doi: 10.1016/j.heliyon.2024.e31053 – volume: 9 start-page: 30 year: 1992 ident: 20295_CR15 publication-title: TESL Can J doi: 10.18806/tesl.v9i2.602 – ident: 20295_CR27 doi: 10.31849/utamax.v2i3.5325 – volume: 9 start-page: 407 issue: VIII year: 2021 ident: 20295_CR63 publication-title: Int J Res Appl Sci Eng Technol doi: 10.22214/ijraset.2021.37362 – volume: 34 start-page: 100 issue: 3 year: 2009 ident: 20295_CR56 publication-title: Aust J Teach Educ – volume: 31 start-page: 313 year: 2003 ident: 20295_CR14 publication-title: System doi: 10.1016/S0346-251X(03)00045-9 – ident: 20295_CR4 doi: 10.1016/j.caeai.2020.100001 – volume: 15 start-page: 269 issue: 3 year: 2017 ident: 20295_CR69 publication-title: Electron J e-learn – volume: 2 start-page: 1 issue: 1 year: 2019 ident: 20295_CR51 publication-title: Engl Lang Teach Educ J doi: 10.12928/eltej.v2i1.947 – volume: 16 start-page: 322 issue: 11 year: 2021 ident: 20295_CR5 publication-title: Int J Emerg Technol Learn (iJET) doi: 10.3991/ijet.v16i11.19657 – volume: 53 start-page: 85 year: 2020 ident: 20295_CR24 publication-title: Al-‘Arabiyya – ident: 20295_CR55 – volume: 10 start-page: 7 issue: 1 year: 2007 ident: 20295_CR49 publication-title: Biling Lang Cogn doi: 10.1017/S1366728906002732 – ident: 20295_CR67 doi: 10.1016/j.flowmeasinst.2019.101689 |
SSID | ssj0016524 |
Score | 2.3891797 |
Snippet | Motivated by the increasing applications of artificial intelligence in education, the present study aimed at developing an Artificial Neural Network... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 28061 |
SubjectTerms | Artificial intelligence Artificial neural networks Cognitive style College students Colleges & universities Computer Communication Networks Computer Science Data analysis Data Structures and Information Theory English as a second language learning Foreign languages Language acquisition Learning Learning strategies Motivation Multimedia Information Systems Neural networks Personality traits Special Purpose and Application-Based Systems Speech perception Students Track 5: Multimedia and Education |
Title | Developing an Artificial Neural Network-based model for predicting EFL achievement level |
URI | https://link.springer.com/article/10.1007/s11042-024-20295-8 https://www.proquest.com/docview/3232557622 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoGBQgFRKJUHNkiV2E6djC20VDw6EalMUew6CyhUfSz8es5u0kAFQ6cMiS3Ld-c75777DuDao0J5QmtHaxE6nE7R5gJOHT51tU4E1dL-030Zd0cRf5z4k7wobFGg3YuUpD2py2I3z5SSoE9BydLQd4IK1Hy8oKA51noPb0-DTfag61OeF8j8PfK3Eyojy61kqPUxwzpExerW0JL3zmopO-pri7hx1-UfwWEedJLeWkuOYU9nDagXDR1Ibt8NOPjBTngCk_tNQRVJMjt6TTdBDKOHfVgIuWM84ZTYnjoEY2Aym5vsj8FTk8HwmRi4pra05EvyYaY8hWg4eL0bOXkjBkd5Ad4yDQI15VqmqWKSpej0havQcP3QsLMr7jKGchVMCu4GaSo96XHtcmnI0UIWanYG1ewz0-dAgm6QiERwGboJV9wLFfMVlYZTRmKskzbhppBMPFvzbcQls7LZwhi3MLZbGAdNaBXCi3PbW8QMg0Qfr1GUNuG2kEX5-v_ZLnb7_BL2qWkGbLG7Lagu5yt9hRHKUrZRIYf9_ridK2YbKhHtfQP-fN3j |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKifHpgA0uJ7dTxWEGrAm2nVupmxa4zoVC15f_jc5MGEAxMGRJ7eM7l7nLv3gHcxUzaWDpHnZOKCjbzNpcKRsUsci6TzJnwT3c4avcn4mWaTMumsGXFdq9KkuFLXTe7xdhK4n2KP1mmEppuww6WGTHlmrDOpnbQTpgo22N-X_fdBdVx5Y9SaPAwvSM4KEND0lmf5TFsuaIJh9XYBVJaYRP2v2gInsD0adP2RLIirF6LQhDU3QiXQPSm6K9mJEy-IT5SJfMF1miQ9Uy6vQFBUqUL4uEr8oZbnsKk1x0_9mk5LoHaOPW5IPJEc-FMnltueO5ds4ysN69EoYa6FRHnHn3JjRRRmucmNrFwkTAoYaa4cvwMGsV74c6BpO00k5kURkWZsCJWlieWGVR-MT4iyVtwXyGo52tVDF3rHyPe2uOtA946bcFVBbIuLWSpuT-5xCc7jLXgoQK-vv33bhf_e_wWdvvj4UAPnkevl7DHcHxvYNteQWO1-HDXPqZYmZvwCn0CeELBdg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT8IwFH5RSIweRFEjitqDNx1ubUe3IxEQBYkHSfC0rF130UyC4-Kvt-02hkQPxtMOW5utry_v6973vgdw6WAmHCalJSXzLYoj5XMexRaNbClDhiU3_3Qfx-3BhD5M3elKFb9huxcpyaymQas0JenNLIpvysI3R5eVqPiirIx91_I2oUp1D4kKVDt3L8PeMpPQdjHNi2V-Hvk9IJUocy0xauJNvwZh8aYZzeS1tUh5S3yuiTj-51P2YDcHo6iT7Z592JBJHWpFoweU-30ddlZUCw9g2l0WWqEwMaMzGQqklT7MxVDLLR0hI2R67SCFjdFsrrNCmmeNev0R0jROaeTKU_SmpzyESb_3fDuw8gYNlnA8dfrUzNSYSh7HgnASKzDAbKEc2vW1arugNiHK3oxwpmwTx9zhDpU25Vo0zSe-JEdQSd4TeQzIa3shCxnlvh1SQR1fEFdgrrVmuMJAcQOuCisFs0yHIygVl_USBmoJA7OEgdeAZmHIIPfJj4Ao8Oiq4xXGDbgu7FLe_n22k789fgFbT91-MLofD09hG-t-wYbe24RKOl_IMwViUn6e79MvjMLnSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+an+Artificial+Neural+Network-based+model+for+predicting+EFL+achievement+level&rft.jtitle=Multimedia+tools+and+applications&rft.au=Bouzayenne%2C+Amani&rft.au=Harizi%2C+Riadh&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=84&rft.issue=24&rft.spage=28061&rft.epage=28084&rft_id=info:doi/10.1007%2Fs11042-024-20295-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |