A novel and efficient statistical and soft-computing intelligence integrated feature selection technique for human chronic diseases prediction

Due to the exponential increase in data volume, the widespread use of intelligent information systems has created significant obstacles and issues. High dimensionality and the existence of noisy and extraneous data are a few of the difficulties. These difficulties incur high computing costs and have...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 84; no. 33; pp. 41853 - 41896
Main Authors Yadav, Amit, Khanna, Munish, Anand, Darpan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-7721
1380-7501
1573-7721
DOI10.1007/s11042-025-20707-3

Cover

Abstract Due to the exponential increase in data volume, the widespread use of intelligent information systems has created significant obstacles and issues. High dimensionality and the existence of noisy and extraneous data are a few of the difficulties. These difficulties incur high computing costs and have a considerable effect on the accuracy and efficiency of machine learning (ML) methods. A key idea used to increase classification accuracy and lower computational costs is feature selection (FS). Finding the ideal collection of features that can accurately determine class labels by removing unnecessary data is the fundamental goal of FS. However, finding an effective FS strategy is a difficult task that has given rise to a number of algorithms built using biological systems based soft computing approaches. In order to solve the difficulties faced during the FS process; this work provides a novel hybrid optimization approach that combines statistical and soft-computing intelligence. On the first dataset of diabetes disease, the suggested approach was initially tested. The approach was later tested on the Wisconsin Diagnostic Breast Cancer (WDBC) dataset after yielding encouraging results on diabetes dataset. While finding the solution, typically, data cleaning happens at the pre-processing stage. Later on, in a series of trials, different FS methods were used separately and in hybridized fashion, such as fine-tuned statistical methods like lasso (L1 regularization) and chi-square, as well as binary Harmony search algorithm (HSA) which is based on soft computing algorithmic approach. The most efficient strategy was chosen based on the performance metric data. These FS methods pick informative features, which are then used as input for a variety of traditional ML classifiers. The chosen technique is shown along with the determined influential features and associated metric values. The success of the classifiers is then evaluated using performance metrics like accuracy, precision, F-measure, computational time, and recall. On datasets, the accuracy obtained by hybridizing the lasso technique with the HSA is highly encouraging. Our proposed hybridized approach computes astonishing results with over 99% accuracy, 98.9% F1-score, 99% AUC, 97.7% precision and 100% recall on Breast cancer dataset and 99% accuracy, 99.3% F1-score, 99%AUC, 100% precision and 98.6% recall on diabetes dataset which helps physicians make accurate diagnosis and effective treatment regimens. The key novelty of our work lies in the fusion of Lasso with HSA, resulting in a hybrid optimization technique that outperforms individual methods, other hybrid approaches, and other recent approaches mentioned in recent state-of-the-art studies . The experimental research shows that the suggested hybrid technique helps clinicians make well-informed judgments, precise diagnoses, and efficient treatment plans for patients, eventually saving lives. It serves as a vital second opinion for them.
AbstractList Due to the exponential increase in data volume, the widespread use of intelligent information systems has created significant obstacles and issues. High dimensionality and the existence of noisy and extraneous data are a few of the difficulties. These difficulties incur high computing costs and have a considerable effect on the accuracy and efficiency of machine learning (ML) methods. A key idea used to increase classification accuracy and lower computational costs is feature selection (FS). Finding the ideal collection of features that can accurately determine class labels by removing unnecessary data is the fundamental goal of FS. However, finding an effective FS strategy is a difficult task that has given rise to a number of algorithms built using biological systems based soft computing approaches. In order to solve the difficulties faced during the FS process; this work provides a novel hybrid optimization approach that combines statistical and soft-computing intelligence. On the first dataset of diabetes disease, the suggested approach was initially tested. The approach was later tested on the Wisconsin Diagnostic Breast Cancer (WDBC) dataset after yielding encouraging results on diabetes dataset. While finding the solution, typically, data cleaning happens at the pre-processing stage. Later on, in a series of trials, different FS methods were used separately and in hybridized fashion, such as fine-tuned statistical methods like lasso (L1 regularization) and chi-square, as well as binary Harmony search algorithm (HSA) which is based on soft computing algorithmic approach. The most efficient strategy was chosen based on the performance metric data. These FS methods pick informative features, which are then used as input for a variety of traditional ML classifiers. The chosen technique is shown along with the determined influential features and associated metric values. The success of the classifiers is then evaluated using performance metrics like accuracy, precision, F-measure, computational time, and recall. On datasets, the accuracy obtained by hybridizing the lasso technique with the HSA is highly encouraging. Our proposed hybridized approach computes astonishing results with over 99% accuracy, 98.9% F1-score, 99% AUC, 97.7% precision and 100% recall on Breast cancer dataset and 99% accuracy, 99.3% F1-score, 99%AUC, 100% precision and 98.6% recall on diabetes dataset which helps physicians make accurate diagnosis and effective treatment regimens. The key novelty of our work lies in the fusion of Lasso with HSA, resulting in a hybrid optimization technique that outperforms individual methods, other hybrid approaches, and other recent approaches mentioned in recent state-of-the-art studies. The experimental research shows that the suggested hybrid technique helps clinicians make well-informed judgments, precise diagnoses, and efficient treatment plans for patients, eventually saving lives. It serves as a vital second opinion for them.
Due to the exponential increase in data volume, the widespread use of intelligent information systems has created significant obstacles and issues. High dimensionality and the existence of noisy and extraneous data are a few of the difficulties. These difficulties incur high computing costs and have a considerable effect on the accuracy and efficiency of machine learning (ML) methods. A key idea used to increase classification accuracy and lower computational costs is feature selection (FS). Finding the ideal collection of features that can accurately determine class labels by removing unnecessary data is the fundamental goal of FS. However, finding an effective FS strategy is a difficult task that has given rise to a number of algorithms built using biological systems based soft computing approaches. In order to solve the difficulties faced during the FS process; this work provides a novel hybrid optimization approach that combines statistical and soft-computing intelligence. On the first dataset of diabetes disease, the suggested approach was initially tested. The approach was later tested on the Wisconsin Diagnostic Breast Cancer (WDBC) dataset after yielding encouraging results on diabetes dataset. While finding the solution, typically, data cleaning happens at the pre-processing stage. Later on, in a series of trials, different FS methods were used separately and in hybridized fashion, such as fine-tuned statistical methods like lasso (L1 regularization) and chi-square, as well as binary Harmony search algorithm (HSA) which is based on soft computing algorithmic approach. The most efficient strategy was chosen based on the performance metric data. These FS methods pick informative features, which are then used as input for a variety of traditional ML classifiers. The chosen technique is shown along with the determined influential features and associated metric values. The success of the classifiers is then evaluated using performance metrics like accuracy, precision, F-measure, computational time, and recall. On datasets, the accuracy obtained by hybridizing the lasso technique with the HSA is highly encouraging. Our proposed hybridized approach computes astonishing results with over 99% accuracy, 98.9% F1-score, 99% AUC, 97.7% precision and 100% recall on Breast cancer dataset and 99% accuracy, 99.3% F1-score, 99%AUC, 100% precision and 98.6% recall on diabetes dataset which helps physicians make accurate diagnosis and effective treatment regimens. The key novelty of our work lies in the fusion of Lasso with HSA, resulting in a hybrid optimization technique that outperforms individual methods, other hybrid approaches, and other recent approaches mentioned in recent state-of-the-art studies . The experimental research shows that the suggested hybrid technique helps clinicians make well-informed judgments, precise diagnoses, and efficient treatment plans for patients, eventually saving lives. It serves as a vital second opinion for them.
Author Yadav, Amit
Anand, Darpan
Khanna, Munish
Author_xml – sequence: 1
  givenname: Amit
  surname: Yadav
  fullname: Yadav, Amit
  organization: Department of Computer and Engineering, Sir Padampat Singhania University
– sequence: 2
  givenname: Munish
  orcidid: 0000-0002-7682-1089
  surname: Khanna
  fullname: Khanna, Munish
  email: munishkhanna.official@rocketmail.com
  organization: School of Computer Science and Engineering, Galgotias University
– sequence: 3
  givenname: Darpan
  surname: Anand
  fullname: Anand, Darpan
  organization: Department of Computer and Engineering, Sir Padampat Singhania University
BookMark eNp9kMtOwzAQRS1UJNrCD7CyxDpgx3GdLKuKl4TEBtaW64xTV6kdbAeJn-CbMQ0SrFjNjObcedwFmjnvAKFLSq4pIeImUkqqsiAlL0oiiCjYCZpTLlghRElnf_IztIhxTwhd8bKao881dv4deqxci8EYqy24hGNSycZktZo60ZtUaH8YxmRdh61L0Pe2A6fhWHRBJWixAZXGADhCDzpZ73ACvXP2bQRsfMC78aAc1rvgndW4tRFUhIiHAK098ufo1Kg-wsVPXKLXu9uXzUPx9Hz_uFk_FZrW-RG21VW-X7UNXwFAQ82WVUJVgkNLK9YY0-YWcAElNaLkfFUbVteCVi1jRhi2RFfT3CH4fFxMcu_H4PJKyTLeUCIqnqlyonTwMQYwcgj2oMKHpER--y4n32X2XR59lyyL2CSKGXYdhN_R_6i-ABzeir4
Cites_doi 10.1007/s10044-014-0375-9
10.1080/08839514.2024.2335098
10.1016/j.eswa.2015.01.065
10.1080/03772063.2020.1713917
10.1016/j.asoc.2019.105524
10.1007/s10916-019-1397-z
10.1016/j.aej.2023.02.038
10.1007/978-981-13-8798-2_12
10.1016/j.neucom.2018.06.046
10.1007/s11042-024-18473-9
10.1016/j.neucom.2017.11.077
10.1016/j.tele.2017.01.007
10.1186/1471-2407-9-104
10.1016/j.jbi.2020.103591
10.1016/j.measurement.2023.113525
10.1016/j.advengsoft.2022.103283
10.1016/j.jbi.2014.01.010
10.1007/s00500-021-05839-6
10.1007/s12652-018-1031-9
10.31557/APJCP.2019.20.12.3777
10.1109/ACCESS.2020.2981337
10.1109/ACCESS.2018.2843443
10.1007/s10470-018-1366-3
10.1109/TIP.2018.2886761
10.1007/s11042-023-17044-8
10.1016/j.knosys.2018.08.003
10.1016/j.ipm.2018.10.014
10.1016/j.patrec.2018.11.004
10.1016/j.imu.2017.12.008
10.1109/ISMSIT50672.2020.9254720
10.1007/s11042-018-6083-5
10.1049/cp.2012.0989
10.1016/j.advengsoft.2022.103338
10.1007/s00521-015-2103-9
10.1016/j.bspc.2021.102764
10.1016/j.jksuci.2017.08.001
10.1016/j.measurement.2015.04.028
10.1016/j.neucom.2017.04.053
10.3390/app11052218
10.1016/j.diabres.2019.107843
10.1109/TGRS.2017.2743102
10.1016/j.patcog.2018.07.011
10.1016/j.compbiomed.2020.103974
10.1016/j.apacoust.2019.05.006
10.1007/s40200-020-00520-5
10.7717/peerj-cs.427
10.1016/j.asoc.2018.10.036
10.1177/003754970107600201
10.1016/B978-0-12-819061-6.00014-8
10.1007/s13721-020-00237-8
10.1038/s41574-020-00435-4
10.1016/j.asoc.2018.07.060
10.1016/j.oceaneng.2020.108415
10.1007/s11277-017-4110-x
10.1016/j.compbiomed.2021.104968
10.1016/j.oceaneng.2019.04.013
10.1016/j.eswa.2013.08.044
10.1016/j.eswa.2017.05.035
10.1016/j.heliyon.2024.e26799
10.1016/j.apacoust.2019.107005
10.1007/s11042-020-09306-6
10.1016/j.cmpb.2016.07.020
10.1007/s00500-007-0193-8
10.1016/j.ijar.2017.10.022
10.1016/j.asoc.2017.04.042
10.1007/978-3-642-13498-2_40
10.1016/j.diabres.2020.108072
10.1016/j.asoc.2015.10.005
10.1007/s13369-018-3507-5
10.1016/j.knosys.2017.03.006
10.4018/978-1-5225-5149-2.ch007
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-025-20707-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 41896
ExternalDocumentID 10_1007_s11042_025_20707_3
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PUEGO
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c1873-3bc4652ad956eee91fb347a475ed1439ffdd95e57e21f725568f388714d33f7f3
IEDL.DBID U2A
ISSN 1573-7721
1380-7501
IngestDate Mon Oct 06 16:31:46 EDT 2025
Thu Oct 02 04:27:07 EDT 2025
Sun Sep 28 01:12:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords Feature selection
Hybrid approach
Human disease classification
Soft computing approach
Harmony Search optimization algorithm
Statistical approach
Health informatics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1873-3bc4652ad956eee91fb347a475ed1439ffdd95e57e21f725568f388714d33f7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7682-1089
PQID 3255910745
PQPubID 54626
PageCount 44
ParticipantIDs proquest_journals_3255910745
crossref_primary_10_1007_s11042_025_20707_3
springer_journals_10_1007_s11042_025_20707_3
PublicationCentury 2000
PublicationDate 20251000
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 20251000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 20707_CR32
B Zheng (20707_CR60) 2014; 41
20707_CR72
L Dora (20707_CR65) 2017; 85
LK Singh (20707_CR1) 2023; 175
R Williams (20707_CR14) 2020; 1
M Kaveh (20707_CR76) 2019; 100
RA Ibrahim (20707_CR37) 2019; 10
LK Singh (20707_CR50) 2024; 83
R Sheikhpour (20707_CR19) 2016; 40
M Pota (20707_CR68) 2017; 124
CHEN Liangjun (20707_CR70) 2018; 84
P Saeedi (20707_CR15) 2019; 1
C Wu (20707_CR79) 2023; 27
M Khishe (20707_CR81) 2019; 181
VJ Kadam (20707_CR42) 2019; 43
H Rajaguru (20707_CR48) 2019; 20
MR Mosavi (20707_CR75) 2017; 95
M Abdar (20707_CR43) 2020; 132
L Chaves (20707_CR53) 2021; 11
J Cai (20707_CR3) 2018; 300
LK Singh (20707_CR26) 2023; 221
NF Idris (20707_CR41) 2021; 7
N Abbas (20707_CR73) 2023; 70
IS Thaseen (20707_CR29) 2019; 44
T Hu (20707_CR78) 2021; 68
VE Christo (20707_CR40) 2022; 68
D Yilmaz Eroglu (20707_CR66) 2024; 38
SK Nayak (20707_CR69) 2020; 32
C Henneges (20707_CR74) 2009; 9
X Kang (20707_CR6) 2017; 55
V Chaurasia (20707_CR47) 2020; 1
S Lim (20707_CR17) 2021; 17
D Singh (20707_CR34) 2020; 97
X Deng (20707_CR12) 2019; 78
S Aalaei (20707_CR21) 2016; 19
E Aličković (20707_CR23) 2017; 28
M Pota (20707_CR71) 2018; 93
L Peng (20707_CR28) 2016; 134
20707_CR54
20707_CR7
20707_CR56
A Bhardwaj (20707_CR25) 2015; 42
M Khishe (20707_CR77) 2020; 157
20707_CR52
B Ma (20707_CR67) 2017; 58
20707_CR51
F Tan (20707_CR8) 2008; 12
JM Jo (20707_CR33) 2019; 14
F Ahmad (20707_CR24) 2015; 18
M Mafarja (20707_CR10) 2018; 161
M Khishe (20707_CR82) 2019; 154
H Naz (20707_CR55) 2020; 19
S Murugesan (20707_CR46) 2021; 2021
M Nilashi (20707_CR22) 2017; 34
R Jafari-Marandi (20707_CR62) 2018; 72
RJ Raj (20707_CR5) 2020; 8
SB Sakri (20707_CR9) 2018; 6
ZW Geem (20707_CR31) 2001; 76
20707_CR58
LK Singh (20707_CR2) 2022; 173
F Nie (20707_CR4) 2018; 28
20707_CR13
20707_CR57
20707_CR16
20707_CR59
20707_CR45
S Raiesdana (20707_CR49) 2021; 12
20707_CR44
F Li (20707_CR63) 2018; 314
J Dheeba (20707_CR27) 2014; 49
ON Oyelade (20707_CR61) 2018; 10
Z Khandezamin (20707_CR64) 2020; 111
20707_CR85
20707_CR84
V Fonti (20707_CR30) 2017; 30
M Karabatak (20707_CR20) 2015; 72
K Munish (20707_CR86) 2024; 83
H Rao (20707_CR38) 2019; 1
G Sahebi (20707_CR39) 2020; 125
S Thawkar (20707_CR18) 2021; 139
N Liu (20707_CR35) 2019; 56
MM Mafarja (20707_CR11) 2017; 260
AS Elkorany (20707_CR80) 2020; 79
GN Ramadevi (20707_CR36) 2015; 3
W Qiao (20707_CR83) 2021; 219
References_xml – volume: 18
  start-page: 861
  year: 2015
  ident: 20707_CR24
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-014-0375-9
– volume: 38
  start-page: 2335098
  issue: 1
  year: 2024
  ident: 20707_CR66
  publication-title: Appl Artif Intell
  doi: 10.1080/08839514.2024.2335098
– volume: 42
  start-page: 4611
  issue: 10
  year: 2015
  ident: 20707_CR25
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.01.065
– volume: 68
  start-page: 2508
  issue: 4
  year: 2022
  ident: 20707_CR40
  publication-title: IETE J Res
  doi: 10.1080/03772063.2020.1713917
– volume: 14
  start-page: 547
  issue: 3
  year: 2019
  ident: 20707_CR33
  publication-title: J Korea Institut Elect Commun Sci
– volume: 97
  start-page: 105524
  year: 2020
  ident: 20707_CR34
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105524
– volume: 43
  start-page: 1
  issue: 8
  year: 2019
  ident: 20707_CR42
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1397-z
– volume: 70
  start-page: 179
  year: 2023
  ident: 20707_CR73
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2023.02.038
– ident: 20707_CR32
  doi: 10.1007/978-981-13-8798-2_12
– volume: 314
  start-page: 109
  year: 2018
  ident: 20707_CR63
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.046
– ident: 20707_CR44
– ident: 20707_CR85
  doi: 10.1007/s11042-024-18473-9
– volume: 300
  start-page: 70
  year: 2018
  ident: 20707_CR3
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.077
– volume: 34
  start-page: 133
  issue: 4
  year: 2017
  ident: 20707_CR22
  publication-title: Telematics Inform
  doi: 10.1016/j.tele.2017.01.007
– volume: 9
  start-page: 1
  year: 2009
  ident: 20707_CR74
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-9-104
– volume: 111
  start-page: 103591
  year: 2020
  ident: 20707_CR64
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2020.103591
– volume: 221
  start-page: 113525
  year: 2023
  ident: 20707_CR26
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113525
– volume: 2021
  start-page: 18
  issue: 1
  year: 2021
  ident: 20707_CR46
  publication-title: Comput Mathematic Methods Med
– ident: 20707_CR7
– volume: 173
  start-page: 103283
  year: 2022
  ident: 20707_CR2
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2022.103283
– ident: 20707_CR51
– volume: 49
  start-page: 45
  year: 2014
  ident: 20707_CR27
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2014.01.010
– volume: 27
  start-page: 3307
  issue: 6
  year: 2023
  ident: 20707_CR79
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-05839-6
– volume: 10
  start-page: 3155
  issue: 8
  year: 2019
  ident: 20707_CR37
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-018-1031-9
– volume: 20
  start-page: 3777
  issue: 12
  year: 2019
  ident: 20707_CR48
  publication-title: Asian Pacific J Cancer Prevent: APJCP
  doi: 10.31557/APJCP.2019.20.12.3777
– volume: 8
  start-page: 58006
  year: 2020
  ident: 20707_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981337
– volume: 6
  start-page: 29637
  year: 2018
  ident: 20707_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2843443
– volume: 100
  start-page: 405
  year: 2019
  ident: 20707_CR76
  publication-title: Analog Integr Circ Sig Process
  doi: 10.1007/s10470-018-1366-3
– volume: 28
  start-page: 2428
  issue: 5
  year: 2018
  ident: 20707_CR4
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2886761
– volume: 83
  start-page: 43223
  issue: 14
  year: 2024
  ident: 20707_CR50
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-17044-8
– volume: 161
  start-page: 185
  year: 2018
  ident: 20707_CR10
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.08.003
– volume: 56
  start-page: 609
  issue: 3
  year: 2019
  ident: 20707_CR35
  publication-title: Inf Process Manage
  doi: 10.1016/j.ipm.2018.10.014
– ident: 20707_CR16
– volume: 19
  start-page: 476
  issue: 5
  year: 2016
  ident: 20707_CR21
  publication-title: Iran J Basic Med Sci
– volume: 132
  start-page: 123
  year: 2020
  ident: 20707_CR43
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2018.11.004
– volume: 10
  start-page: 117
  year: 2018
  ident: 20707_CR61
  publication-title: Inf Med Unlocked
  doi: 10.1016/j.imu.2017.12.008
– ident: 20707_CR54
  doi: 10.1109/ISMSIT50672.2020.9254720
– volume: 78
  start-page: 3797
  year: 2019
  ident: 20707_CR12
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6083-5
– ident: 20707_CR58
  doi: 10.1049/cp.2012.0989
– volume: 175
  start-page: 103338
  year: 2023
  ident: 20707_CR1
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2022.103338
– volume: 28
  start-page: 753
  year: 2017
  ident: 20707_CR23
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2103-9
– volume: 68
  start-page: 102764
  year: 2021
  ident: 20707_CR78
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102764
– ident: 20707_CR52
– volume: 32
  start-page: 174
  issue: 2
  year: 2020
  ident: 20707_CR69
  publication-title: J King Saud Univ-Comput Inf Sci
  doi: 10.1016/j.jksuci.2017.08.001
– volume: 72
  start-page: 32
  year: 2015
  ident: 20707_CR20
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.04.028
– volume: 260
  start-page: 302
  year: 2017
  ident: 20707_CR11
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– volume: 11
  start-page: 2218
  issue: 5
  year: 2021
  ident: 20707_CR53
  publication-title: Appl Sci
  doi: 10.3390/app11052218
– volume: 83
  start-page: 17773
  issue: 6
  year: 2024
  ident: 20707_CR86
  publication-title: Multimed Tools Appl
– volume: 1
  start-page: 107843
  issue: 157
  year: 2019
  ident: 20707_CR15
  publication-title: Diab Res Clinic Pract
  doi: 10.1016/j.diabres.2019.107843
– volume: 55
  start-page: 7140
  issue: 12
  year: 2017
  ident: 20707_CR6
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2017.2743102
– volume: 84
  start-page: 357
  year: 2018
  ident: 20707_CR70
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.07.011
– volume: 125
  start-page: 103974
  year: 2020
  ident: 20707_CR39
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103974
– volume: 154
  start-page: 176
  year: 2019
  ident: 20707_CR82
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2019.05.006
– volume: 19
  start-page: 391
  year: 2020
  ident: 20707_CR55
  publication-title: J Diabetes Metab Disord
  doi: 10.1007/s40200-020-00520-5
– volume: 7
  start-page: e427
  year: 2021
  ident: 20707_CR41
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.427
– volume: 1
  start-page: 634
  issue: 74
  year: 2019
  ident: 20707_CR38
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.10.036
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 20707_CR31
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– ident: 20707_CR56
  doi: 10.1016/B978-0-12-819061-6.00014-8
– ident: 20707_CR13
– ident: 20707_CR72
  doi: 10.1007/s13721-020-00237-8
– volume: 17
  start-page: 11
  issue: 1
  year: 2021
  ident: 20707_CR17
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/s41574-020-00435-4
– volume: 72
  start-page: 108
  year: 2018
  ident: 20707_CR62
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.07.060
– volume: 219
  start-page: 108415
  year: 2021
  ident: 20707_CR83
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2020.108415
– volume: 95
  start-page: 4623
  year: 2017
  ident: 20707_CR75
  publication-title: Wireless Pers Commun
  doi: 10.1007/s11277-017-4110-x
– volume: 139
  start-page: 104968
  year: 2021
  ident: 20707_CR18
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104968
– volume: 181
  start-page: 98
  year: 2019
  ident: 20707_CR81
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2019.04.013
– volume: 41
  start-page: 1476
  issue: 4
  year: 2014
  ident: 20707_CR60
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.08.044
– volume: 85
  start-page: 134
  year: 2017
  ident: 20707_CR65
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.05.035
– ident: 20707_CR84
  doi: 10.1016/j.heliyon.2024.e26799
– volume: 157
  start-page: 107005
  year: 2020
  ident: 20707_CR77
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2019.107005
– volume: 79
  start-page: 27791
  issue: 37
  year: 2020
  ident: 20707_CR80
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-09306-6
– volume: 134
  start-page: 259
  year: 2016
  ident: 20707_CR28
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2016.07.020
– volume: 12
  start-page: 111
  year: 2008
  ident: 20707_CR8
  publication-title: Soft Comput
  doi: 10.1007/s00500-007-0193-8
– volume: 93
  start-page: 88
  year: 2018
  ident: 20707_CR71
  publication-title: Int J Approximate Reasoning
  doi: 10.1016/j.ijar.2017.10.022
– volume: 3
  start-page: 763
  issue: 2
  year: 2015
  ident: 20707_CR36
  publication-title: Int J Scientif Innov Mathematic Res
– volume: 58
  start-page: 328
  year: 2017
  ident: 20707_CR67
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.04.042
– ident: 20707_CR45
– volume: 12
  start-page: 48
  issue: 1
  year: 2021
  ident: 20707_CR49
  publication-title: Middle East J Cancer
– ident: 20707_CR59
  doi: 10.1007/978-3-642-13498-2_40
– volume: 1
  start-page: 108072
  issue: 162
  year: 2020
  ident: 20707_CR14
  publication-title: Diab Res Clin Pract
  doi: 10.1016/j.diabres.2020.108072
– volume: 1
  start-page: 1
  issue: 5
  year: 2020
  ident: 20707_CR47
  publication-title: SN Comput Sci
– volume: 30
  start-page: 1
  year: 2017
  ident: 20707_CR30
  publication-title: VU Amsterdam Res Paper Busi Analyt
– volume: 40
  start-page: 113
  year: 2016
  ident: 20707_CR19
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.10.005
– volume: 44
  start-page: 3357
  year: 2019
  ident: 20707_CR29
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-018-3507-5
– volume: 124
  start-page: 105
  year: 2017
  ident: 20707_CR68
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.03.006
– ident: 20707_CR57
  doi: 10.4018/978-1-5225-5149-2.ch007
SSID ssj0016524
Score 2.4085057
Snippet Due to the exponential increase in data volume, the widespread use of intelligent information systems has created significant obstacles and issues. High...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 41853
SubjectTerms Accuracy
Algorithms
Biopsy
Breast cancer
Chronic illnesses
Classification
Computational efficiency
Computer Communication Networks
Computer Science
Computing costs
Computing time
Data mining
Data Structures and Information Theory
Datasets
Diabetes
Feature selection
Health services
Information systems
Insulin
Intelligence
Machine learning
Mammography
Medical diagnosis
Mortality
Multimedia Information Systems
Optimization
Optimization techniques
Performance evaluation
Performance measurement
Plant diseases
Recall
Regularization
Search algorithms
Severe acute respiratory syndrome coronavirus 2
Soft computing
Special Purpose and Application-Based Systems
Statistical methods
Support vector machines
Tissues
Track 2: Medical Applications of Multimedia
Tumors
Womens health
Title A novel and efficient statistical and soft-computing intelligence integrated feature selection technique for human chronic diseases prediction
URI https://link.springer.com/article/10.1007/s11042-025-20707-3
https://www.proquest.com/docview/3255910745
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMdP0C4w8CggCqW6gQ0sNbHTJGOKWioQnahUpsiObQkJpVVT-Bh8ZmwnaQuCgcmDH4PPj791vt8BXMe038s8IUjmc58wI2FJFMmIMG5h4j3OPGGDk58m_fGUPcyCWRUUVtS_3WuXpDupN8Fung0lselXfcuoIXQXmoHFeZlVPPWTte-gH_isCo_5vd_3K2ijK3-4Qt0NMzqCg0oaYlLa8hh2VN6CwzrtAla7sAX7WwzBE_hMMJ9_qDfkuUTlgBDmHkEbKOQYzLysKcxxSzI3lumGr1skTlwjIyRq5UCfWLj0OMZmuIa8opG36FL6YVYSdbHy7hS4WFp_j21_CtPR8PluTKokCyTzopASKjJmZoxL81BSSsWeFpSFnIWBkkZLxVpLU6WCUPmeDh2wTFNzMnlMUqpDTc-gkc9zdQ7Ig4xLnTGulceUiGMWxYpJYUQDV5qJNtzU854uSpZGuqEmWyulxkqps1JK29CpTZNW-6pIqX0B2T-kQRtua3Ntqv8e7eJ_zS9hz7crxv3a60BjtXxXV0Z9rEQXmsloMJjY8v7lcdh1i-8LlxzZIQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIBPUAZgoDxFocANbGBEYqdJxgoB5dFOrVSmyE8JgQIihYEfwW_GdpIWEAzMfsjyne2z7u47gMOUdk5lIASRIQ8JsyYsSRKVEMYdTPyUs0C45OT-oNMbsetxNK6Swoo62r12SfqbepbsFrhUEld-NXSMGkLnYYHZD0rYgIXu5d3N-dR70IlCViXI_D7y-yM0syx_OEP9G3PRhFG9ujK05OHkdSJO5PsPcON_l78KK5XRid1SS9ZgTufr0KwLOmB1vtdh-QudcAM-upg_velH5LlC7VET9oVCl4Lk6c68bCnsRU6kn8sOw_svjE-cwigUGu0Rolj4wjtWG3CKj0VrOKMvFoiyZPVi5Tcq8PnFeZJc_00YXZwPz3qkKt9AZJDElFAhmZUEV_YLprVOAyMoizmLI62slZYao2yTjmIdBib2KDRD7Z0XMEWpiQ3dgkb-lOttQB5Jroxk3OiAaZGmLEk1U8KaI1wbJlpwVMszey4pHdmMx-w2PrMbn_mNz2gL2rXIs-rEFhl1fysXnRq14LiW4Kz579l2_tf9ABZ7w_5tdns1uNmFpdAphI8NbENj8vKq96yNMxH7lUp_Ag8d9ec
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3JTsMwEIZHUCQEB5YCoqxz4AZWm9hpkmMFVGWrOFCpt8iObQkJpVVTeAyeGdtJmoLgwNmLZP9exhrPNwAXMe12Uk8IkvrcJ8yYsCSKZEQYtzDxDmeesMHJT8PuYMTux8F4KYrf_XavXJJFTIOlNGXz9lTqdh345tmwEpuK1be8GkJXYY1ZUIJZ0SO_t_AjdAOflaEyv7f7fh3VNuYPt6i7bfo7sFWaidgrdN2FFZU1YbtKwYDljmzC5hJPcA8-e5hNPtQb8kyicnAIMya0QUOOx8yLktwcvSR1fZlm-LpE5cQFPkKiVg76iblLlWP0wwXwFY2piy69H6YFXRdLT0-O05n1_dj6-zDq375cD0iZcIGkXhRSQkXKzIxxaR5NSqnY04KykLMwUNLYVbHW0hSpIFS-p0MHL9PUnFIek5TqUNMDaGSTTB0C8iDlUqeMa-UxJeKYRbFiUhgDgivNRAsuq3lPpgVXI6kJylalxKiUOJUS2oKTSpqk3GN5Qu1ryP4nDVpwVclVF__d29H_qp_D-vNNP3m8Gz4cw4ZvF4_7zHcCjfnsXZ0ao2Quzty6-wKlgd05
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+and+efficient+statistical+and+soft-computing+intelligence+integrated+feature+selection+technique+for+human+chronic+diseases+prediction&rft.jtitle=Multimedia+tools+and+applications&rft.au=Yadav%2C+Amit&rft.au=Khanna%2C+Munish&rft.au=Anand%2C+Darpan&rft.date=2025-10-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=84&rft.issue=33&rft.spage=41853&rft.epage=41896&rft_id=info:doi/10.1007%2Fs11042-025-20707-3&rft.externalDocID=10_1007_s11042_025_20707_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon