A novel and efficient statistical and soft-computing intelligence integrated feature selection technique for human chronic diseases prediction
Due to the exponential increase in data volume, the widespread use of intelligent information systems has created significant obstacles and issues. High dimensionality and the existence of noisy and extraneous data are a few of the difficulties. These difficulties incur high computing costs and have...
Saved in:
| Published in | Multimedia tools and applications Vol. 84; no. 33; pp. 41853 - 41896 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1573-7721 1380-7501 1573-7721 |
| DOI | 10.1007/s11042-025-20707-3 |
Cover
| Abstract | Due to the exponential increase in data volume, the widespread use of intelligent information systems has created significant obstacles and issues. High dimensionality and the existence of noisy and extraneous data are a few of the difficulties. These difficulties incur high computing costs and have a considerable effect on the accuracy and efficiency of machine learning (ML) methods. A key idea used to increase classification accuracy and lower computational costs is feature selection (FS). Finding the ideal collection of features that can accurately determine class labels by removing unnecessary data is the fundamental goal of FS. However, finding an effective FS strategy is a difficult task that has given rise to a number of algorithms built using biological systems based soft computing approaches. In order to solve the difficulties faced during the FS process; this work provides a novel hybrid optimization approach that combines statistical and soft-computing intelligence. On the first dataset of diabetes disease, the suggested approach was initially tested. The approach was later tested on the Wisconsin Diagnostic Breast Cancer (WDBC) dataset after yielding encouraging results on diabetes dataset. While finding the solution, typically, data cleaning happens at the pre-processing stage. Later on, in a series of trials, different FS methods were used separately and in hybridized fashion, such as fine-tuned statistical methods like lasso (L1 regularization) and chi-square, as well as binary Harmony search algorithm (HSA) which is based on soft computing algorithmic approach. The most efficient strategy was chosen based on the performance metric data. These FS methods pick informative features, which are then used as input for a variety of traditional ML classifiers. The chosen technique is shown along with the determined influential features and associated metric values. The success of the classifiers is then evaluated using performance metrics like accuracy, precision, F-measure, computational time, and recall. On datasets, the accuracy obtained by hybridizing the lasso technique with the HSA is highly encouraging. Our proposed hybridized approach computes astonishing results with over 99% accuracy, 98.9% F1-score, 99% AUC, 97.7% precision and 100% recall on Breast cancer dataset and 99% accuracy, 99.3% F1-score, 99%AUC, 100% precision and 98.6% recall on diabetes dataset which helps physicians make accurate diagnosis and effective treatment regimens. The key novelty of our work lies in the fusion of Lasso with HSA, resulting in a hybrid optimization technique that outperforms individual methods, other hybrid approaches, and other recent approaches mentioned in recent state-of-the-art studies
.
The experimental research shows that the suggested hybrid technique helps clinicians make well-informed judgments, precise diagnoses, and efficient treatment plans for patients, eventually saving lives. It serves as a vital second opinion for them. |
|---|---|
| AbstractList | Due to the exponential increase in data volume, the widespread use of intelligent information systems has created significant obstacles and issues. High dimensionality and the existence of noisy and extraneous data are a few of the difficulties. These difficulties incur high computing costs and have a considerable effect on the accuracy and efficiency of machine learning (ML) methods. A key idea used to increase classification accuracy and lower computational costs is feature selection (FS). Finding the ideal collection of features that can accurately determine class labels by removing unnecessary data is the fundamental goal of FS. However, finding an effective FS strategy is a difficult task that has given rise to a number of algorithms built using biological systems based soft computing approaches. In order to solve the difficulties faced during the FS process; this work provides a novel hybrid optimization approach that combines statistical and soft-computing intelligence. On the first dataset of diabetes disease, the suggested approach was initially tested. The approach was later tested on the Wisconsin Diagnostic Breast Cancer (WDBC) dataset after yielding encouraging results on diabetes dataset. While finding the solution, typically, data cleaning happens at the pre-processing stage. Later on, in a series of trials, different FS methods were used separately and in hybridized fashion, such as fine-tuned statistical methods like lasso (L1 regularization) and chi-square, as well as binary Harmony search algorithm (HSA) which is based on soft computing algorithmic approach. The most efficient strategy was chosen based on the performance metric data. These FS methods pick informative features, which are then used as input for a variety of traditional ML classifiers. The chosen technique is shown along with the determined influential features and associated metric values. The success of the classifiers is then evaluated using performance metrics like accuracy, precision, F-measure, computational time, and recall. On datasets, the accuracy obtained by hybridizing the lasso technique with the HSA is highly encouraging. Our proposed hybridized approach computes astonishing results with over 99% accuracy, 98.9% F1-score, 99% AUC, 97.7% precision and 100% recall on Breast cancer dataset and 99% accuracy, 99.3% F1-score, 99%AUC, 100% precision and 98.6% recall on diabetes dataset which helps physicians make accurate diagnosis and effective treatment regimens. The key novelty of our work lies in the fusion of Lasso with HSA, resulting in a hybrid optimization technique that outperforms individual methods, other hybrid approaches, and other recent approaches mentioned in recent state-of-the-art studies. The experimental research shows that the suggested hybrid technique helps clinicians make well-informed judgments, precise diagnoses, and efficient treatment plans for patients, eventually saving lives. It serves as a vital second opinion for them. Due to the exponential increase in data volume, the widespread use of intelligent information systems has created significant obstacles and issues. High dimensionality and the existence of noisy and extraneous data are a few of the difficulties. These difficulties incur high computing costs and have a considerable effect on the accuracy and efficiency of machine learning (ML) methods. A key idea used to increase classification accuracy and lower computational costs is feature selection (FS). Finding the ideal collection of features that can accurately determine class labels by removing unnecessary data is the fundamental goal of FS. However, finding an effective FS strategy is a difficult task that has given rise to a number of algorithms built using biological systems based soft computing approaches. In order to solve the difficulties faced during the FS process; this work provides a novel hybrid optimization approach that combines statistical and soft-computing intelligence. On the first dataset of diabetes disease, the suggested approach was initially tested. The approach was later tested on the Wisconsin Diagnostic Breast Cancer (WDBC) dataset after yielding encouraging results on diabetes dataset. While finding the solution, typically, data cleaning happens at the pre-processing stage. Later on, in a series of trials, different FS methods were used separately and in hybridized fashion, such as fine-tuned statistical methods like lasso (L1 regularization) and chi-square, as well as binary Harmony search algorithm (HSA) which is based on soft computing algorithmic approach. The most efficient strategy was chosen based on the performance metric data. These FS methods pick informative features, which are then used as input for a variety of traditional ML classifiers. The chosen technique is shown along with the determined influential features and associated metric values. The success of the classifiers is then evaluated using performance metrics like accuracy, precision, F-measure, computational time, and recall. On datasets, the accuracy obtained by hybridizing the lasso technique with the HSA is highly encouraging. Our proposed hybridized approach computes astonishing results with over 99% accuracy, 98.9% F1-score, 99% AUC, 97.7% precision and 100% recall on Breast cancer dataset and 99% accuracy, 99.3% F1-score, 99%AUC, 100% precision and 98.6% recall on diabetes dataset which helps physicians make accurate diagnosis and effective treatment regimens. The key novelty of our work lies in the fusion of Lasso with HSA, resulting in a hybrid optimization technique that outperforms individual methods, other hybrid approaches, and other recent approaches mentioned in recent state-of-the-art studies . The experimental research shows that the suggested hybrid technique helps clinicians make well-informed judgments, precise diagnoses, and efficient treatment plans for patients, eventually saving lives. It serves as a vital second opinion for them. |
| Author | Yadav, Amit Anand, Darpan Khanna, Munish |
| Author_xml | – sequence: 1 givenname: Amit surname: Yadav fullname: Yadav, Amit organization: Department of Computer and Engineering, Sir Padampat Singhania University – sequence: 2 givenname: Munish orcidid: 0000-0002-7682-1089 surname: Khanna fullname: Khanna, Munish email: munishkhanna.official@rocketmail.com organization: School of Computer Science and Engineering, Galgotias University – sequence: 3 givenname: Darpan surname: Anand fullname: Anand, Darpan organization: Department of Computer and Engineering, Sir Padampat Singhania University |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7CyxDpgx3GdLKuKl4TEBtaW64xTV6kdbAeJn-CbMQ0SrFjNjObcedwFmjnvAKFLSq4pIeImUkqqsiAlL0oiiCjYCZpTLlghRElnf_IztIhxTwhd8bKao881dv4deqxci8EYqy24hGNSycZktZo60ZtUaH8YxmRdh61L0Pe2A6fhWHRBJWixAZXGADhCDzpZ73ACvXP2bQRsfMC78aAc1rvgndW4tRFUhIiHAK098ufo1Kg-wsVPXKLXu9uXzUPx9Hz_uFk_FZrW-RG21VW-X7UNXwFAQ82WVUJVgkNLK9YY0-YWcAElNaLkfFUbVteCVi1jRhi2RFfT3CH4fFxMcu_H4PJKyTLeUCIqnqlyonTwMQYwcgj2oMKHpER--y4n32X2XR59lyyL2CSKGXYdhN_R_6i-ABzeir4 |
| Cites_doi | 10.1007/s10044-014-0375-9 10.1080/08839514.2024.2335098 10.1016/j.eswa.2015.01.065 10.1080/03772063.2020.1713917 10.1016/j.asoc.2019.105524 10.1007/s10916-019-1397-z 10.1016/j.aej.2023.02.038 10.1007/978-981-13-8798-2_12 10.1016/j.neucom.2018.06.046 10.1007/s11042-024-18473-9 10.1016/j.neucom.2017.11.077 10.1016/j.tele.2017.01.007 10.1186/1471-2407-9-104 10.1016/j.jbi.2020.103591 10.1016/j.measurement.2023.113525 10.1016/j.advengsoft.2022.103283 10.1016/j.jbi.2014.01.010 10.1007/s00500-021-05839-6 10.1007/s12652-018-1031-9 10.31557/APJCP.2019.20.12.3777 10.1109/ACCESS.2020.2981337 10.1109/ACCESS.2018.2843443 10.1007/s10470-018-1366-3 10.1109/TIP.2018.2886761 10.1007/s11042-023-17044-8 10.1016/j.knosys.2018.08.003 10.1016/j.ipm.2018.10.014 10.1016/j.patrec.2018.11.004 10.1016/j.imu.2017.12.008 10.1109/ISMSIT50672.2020.9254720 10.1007/s11042-018-6083-5 10.1049/cp.2012.0989 10.1016/j.advengsoft.2022.103338 10.1007/s00521-015-2103-9 10.1016/j.bspc.2021.102764 10.1016/j.jksuci.2017.08.001 10.1016/j.measurement.2015.04.028 10.1016/j.neucom.2017.04.053 10.3390/app11052218 10.1016/j.diabres.2019.107843 10.1109/TGRS.2017.2743102 10.1016/j.patcog.2018.07.011 10.1016/j.compbiomed.2020.103974 10.1016/j.apacoust.2019.05.006 10.1007/s40200-020-00520-5 10.7717/peerj-cs.427 10.1016/j.asoc.2018.10.036 10.1177/003754970107600201 10.1016/B978-0-12-819061-6.00014-8 10.1007/s13721-020-00237-8 10.1038/s41574-020-00435-4 10.1016/j.asoc.2018.07.060 10.1016/j.oceaneng.2020.108415 10.1007/s11277-017-4110-x 10.1016/j.compbiomed.2021.104968 10.1016/j.oceaneng.2019.04.013 10.1016/j.eswa.2013.08.044 10.1016/j.eswa.2017.05.035 10.1016/j.heliyon.2024.e26799 10.1016/j.apacoust.2019.107005 10.1007/s11042-020-09306-6 10.1016/j.cmpb.2016.07.020 10.1007/s00500-007-0193-8 10.1016/j.ijar.2017.10.022 10.1016/j.asoc.2017.04.042 10.1007/978-3-642-13498-2_40 10.1016/j.diabres.2020.108072 10.1016/j.asoc.2015.10.005 10.1007/s13369-018-3507-5 10.1016/j.knosys.2017.03.006 10.4018/978-1-5225-5149-2.ch007 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s11042-025-20707-3 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 41896 |
| ExternalDocumentID | 10_1007_s11042_025_20707_3 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PT5 PUEGO Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c1873-3bc4652ad956eee91fb347a475ed1439ffdd95e57e21f725568f388714d33f7f3 |
| IEDL.DBID | U2A |
| ISSN | 1573-7721 1380-7501 |
| IngestDate | Mon Oct 06 16:31:46 EDT 2025 Thu Oct 02 04:27:07 EDT 2025 Sun Sep 28 01:12:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 33 |
| Keywords | Feature selection Hybrid approach Human disease classification Soft computing approach Harmony Search optimization algorithm Statistical approach Health informatics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1873-3bc4652ad956eee91fb347a475ed1439ffdd95e57e21f725568f388714d33f7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7682-1089 |
| PQID | 3255910745 |
| PQPubID | 54626 |
| PageCount | 44 |
| ParticipantIDs | proquest_journals_3255910745 crossref_primary_10_1007_s11042_025_20707_3 springer_journals_10_1007_s11042_025_20707_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20251000 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 20251000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | 20707_CR32 B Zheng (20707_CR60) 2014; 41 20707_CR72 L Dora (20707_CR65) 2017; 85 LK Singh (20707_CR1) 2023; 175 R Williams (20707_CR14) 2020; 1 M Kaveh (20707_CR76) 2019; 100 RA Ibrahim (20707_CR37) 2019; 10 LK Singh (20707_CR50) 2024; 83 R Sheikhpour (20707_CR19) 2016; 40 M Pota (20707_CR68) 2017; 124 CHEN Liangjun (20707_CR70) 2018; 84 P Saeedi (20707_CR15) 2019; 1 C Wu (20707_CR79) 2023; 27 M Khishe (20707_CR81) 2019; 181 VJ Kadam (20707_CR42) 2019; 43 H Rajaguru (20707_CR48) 2019; 20 MR Mosavi (20707_CR75) 2017; 95 M Abdar (20707_CR43) 2020; 132 L Chaves (20707_CR53) 2021; 11 J Cai (20707_CR3) 2018; 300 LK Singh (20707_CR26) 2023; 221 NF Idris (20707_CR41) 2021; 7 N Abbas (20707_CR73) 2023; 70 IS Thaseen (20707_CR29) 2019; 44 T Hu (20707_CR78) 2021; 68 VE Christo (20707_CR40) 2022; 68 D Yilmaz Eroglu (20707_CR66) 2024; 38 SK Nayak (20707_CR69) 2020; 32 C Henneges (20707_CR74) 2009; 9 X Kang (20707_CR6) 2017; 55 V Chaurasia (20707_CR47) 2020; 1 S Lim (20707_CR17) 2021; 17 D Singh (20707_CR34) 2020; 97 X Deng (20707_CR12) 2019; 78 S Aalaei (20707_CR21) 2016; 19 E Aličković (20707_CR23) 2017; 28 M Pota (20707_CR71) 2018; 93 L Peng (20707_CR28) 2016; 134 20707_CR54 20707_CR7 20707_CR56 A Bhardwaj (20707_CR25) 2015; 42 M Khishe (20707_CR77) 2020; 157 20707_CR52 B Ma (20707_CR67) 2017; 58 20707_CR51 F Tan (20707_CR8) 2008; 12 JM Jo (20707_CR33) 2019; 14 F Ahmad (20707_CR24) 2015; 18 M Mafarja (20707_CR10) 2018; 161 M Khishe (20707_CR82) 2019; 154 H Naz (20707_CR55) 2020; 19 S Murugesan (20707_CR46) 2021; 2021 M Nilashi (20707_CR22) 2017; 34 R Jafari-Marandi (20707_CR62) 2018; 72 RJ Raj (20707_CR5) 2020; 8 SB Sakri (20707_CR9) 2018; 6 ZW Geem (20707_CR31) 2001; 76 20707_CR58 LK Singh (20707_CR2) 2022; 173 F Nie (20707_CR4) 2018; 28 20707_CR13 20707_CR57 20707_CR16 20707_CR59 20707_CR45 S Raiesdana (20707_CR49) 2021; 12 20707_CR44 F Li (20707_CR63) 2018; 314 J Dheeba (20707_CR27) 2014; 49 ON Oyelade (20707_CR61) 2018; 10 Z Khandezamin (20707_CR64) 2020; 111 20707_CR85 20707_CR84 V Fonti (20707_CR30) 2017; 30 M Karabatak (20707_CR20) 2015; 72 K Munish (20707_CR86) 2024; 83 H Rao (20707_CR38) 2019; 1 G Sahebi (20707_CR39) 2020; 125 S Thawkar (20707_CR18) 2021; 139 N Liu (20707_CR35) 2019; 56 MM Mafarja (20707_CR11) 2017; 260 AS Elkorany (20707_CR80) 2020; 79 GN Ramadevi (20707_CR36) 2015; 3 W Qiao (20707_CR83) 2021; 219 |
| References_xml | – volume: 18 start-page: 861 year: 2015 ident: 20707_CR24 publication-title: Pattern Anal Appl doi: 10.1007/s10044-014-0375-9 – volume: 38 start-page: 2335098 issue: 1 year: 2024 ident: 20707_CR66 publication-title: Appl Artif Intell doi: 10.1080/08839514.2024.2335098 – volume: 42 start-page: 4611 issue: 10 year: 2015 ident: 20707_CR25 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.01.065 – volume: 68 start-page: 2508 issue: 4 year: 2022 ident: 20707_CR40 publication-title: IETE J Res doi: 10.1080/03772063.2020.1713917 – volume: 14 start-page: 547 issue: 3 year: 2019 ident: 20707_CR33 publication-title: J Korea Institut Elect Commun Sci – volume: 97 start-page: 105524 year: 2020 ident: 20707_CR34 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105524 – volume: 43 start-page: 1 issue: 8 year: 2019 ident: 20707_CR42 publication-title: J Med Syst doi: 10.1007/s10916-019-1397-z – volume: 70 start-page: 179 year: 2023 ident: 20707_CR73 publication-title: Alex Eng J doi: 10.1016/j.aej.2023.02.038 – ident: 20707_CR32 doi: 10.1007/978-981-13-8798-2_12 – volume: 314 start-page: 109 year: 2018 ident: 20707_CR63 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.046 – ident: 20707_CR44 – ident: 20707_CR85 doi: 10.1007/s11042-024-18473-9 – volume: 300 start-page: 70 year: 2018 ident: 20707_CR3 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.077 – volume: 34 start-page: 133 issue: 4 year: 2017 ident: 20707_CR22 publication-title: Telematics Inform doi: 10.1016/j.tele.2017.01.007 – volume: 9 start-page: 1 year: 2009 ident: 20707_CR74 publication-title: BMC Cancer doi: 10.1186/1471-2407-9-104 – volume: 111 start-page: 103591 year: 2020 ident: 20707_CR64 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2020.103591 – volume: 221 start-page: 113525 year: 2023 ident: 20707_CR26 publication-title: Measurement doi: 10.1016/j.measurement.2023.113525 – volume: 2021 start-page: 18 issue: 1 year: 2021 ident: 20707_CR46 publication-title: Comput Mathematic Methods Med – ident: 20707_CR7 – volume: 173 start-page: 103283 year: 2022 ident: 20707_CR2 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2022.103283 – ident: 20707_CR51 – volume: 49 start-page: 45 year: 2014 ident: 20707_CR27 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2014.01.010 – volume: 27 start-page: 3307 issue: 6 year: 2023 ident: 20707_CR79 publication-title: Soft Comput doi: 10.1007/s00500-021-05839-6 – volume: 10 start-page: 3155 issue: 8 year: 2019 ident: 20707_CR37 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-018-1031-9 – volume: 20 start-page: 3777 issue: 12 year: 2019 ident: 20707_CR48 publication-title: Asian Pacific J Cancer Prevent: APJCP doi: 10.31557/APJCP.2019.20.12.3777 – volume: 8 start-page: 58006 year: 2020 ident: 20707_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981337 – volume: 6 start-page: 29637 year: 2018 ident: 20707_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2843443 – volume: 100 start-page: 405 year: 2019 ident: 20707_CR76 publication-title: Analog Integr Circ Sig Process doi: 10.1007/s10470-018-1366-3 – volume: 28 start-page: 2428 issue: 5 year: 2018 ident: 20707_CR4 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2886761 – volume: 83 start-page: 43223 issue: 14 year: 2024 ident: 20707_CR50 publication-title: Multimed Tools Appl doi: 10.1007/s11042-023-17044-8 – volume: 161 start-page: 185 year: 2018 ident: 20707_CR10 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.08.003 – volume: 56 start-page: 609 issue: 3 year: 2019 ident: 20707_CR35 publication-title: Inf Process Manage doi: 10.1016/j.ipm.2018.10.014 – ident: 20707_CR16 – volume: 19 start-page: 476 issue: 5 year: 2016 ident: 20707_CR21 publication-title: Iran J Basic Med Sci – volume: 132 start-page: 123 year: 2020 ident: 20707_CR43 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2018.11.004 – volume: 10 start-page: 117 year: 2018 ident: 20707_CR61 publication-title: Inf Med Unlocked doi: 10.1016/j.imu.2017.12.008 – ident: 20707_CR54 doi: 10.1109/ISMSIT50672.2020.9254720 – volume: 78 start-page: 3797 year: 2019 ident: 20707_CR12 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6083-5 – ident: 20707_CR58 doi: 10.1049/cp.2012.0989 – volume: 175 start-page: 103338 year: 2023 ident: 20707_CR1 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2022.103338 – volume: 28 start-page: 753 year: 2017 ident: 20707_CR23 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-2103-9 – volume: 68 start-page: 102764 year: 2021 ident: 20707_CR78 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102764 – ident: 20707_CR52 – volume: 32 start-page: 174 issue: 2 year: 2020 ident: 20707_CR69 publication-title: J King Saud Univ-Comput Inf Sci doi: 10.1016/j.jksuci.2017.08.001 – volume: 72 start-page: 32 year: 2015 ident: 20707_CR20 publication-title: Measurement doi: 10.1016/j.measurement.2015.04.028 – volume: 260 start-page: 302 year: 2017 ident: 20707_CR11 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – volume: 11 start-page: 2218 issue: 5 year: 2021 ident: 20707_CR53 publication-title: Appl Sci doi: 10.3390/app11052218 – volume: 83 start-page: 17773 issue: 6 year: 2024 ident: 20707_CR86 publication-title: Multimed Tools Appl – volume: 1 start-page: 107843 issue: 157 year: 2019 ident: 20707_CR15 publication-title: Diab Res Clinic Pract doi: 10.1016/j.diabres.2019.107843 – volume: 55 start-page: 7140 issue: 12 year: 2017 ident: 20707_CR6 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2017.2743102 – volume: 84 start-page: 357 year: 2018 ident: 20707_CR70 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.07.011 – volume: 125 start-page: 103974 year: 2020 ident: 20707_CR39 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.103974 – volume: 154 start-page: 176 year: 2019 ident: 20707_CR82 publication-title: Appl Acoust doi: 10.1016/j.apacoust.2019.05.006 – volume: 19 start-page: 391 year: 2020 ident: 20707_CR55 publication-title: J Diabetes Metab Disord doi: 10.1007/s40200-020-00520-5 – volume: 7 start-page: e427 year: 2021 ident: 20707_CR41 publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.427 – volume: 1 start-page: 634 issue: 74 year: 2019 ident: 20707_CR38 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.10.036 – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 20707_CR31 publication-title: Simulation doi: 10.1177/003754970107600201 – ident: 20707_CR56 doi: 10.1016/B978-0-12-819061-6.00014-8 – ident: 20707_CR13 – ident: 20707_CR72 doi: 10.1007/s13721-020-00237-8 – volume: 17 start-page: 11 issue: 1 year: 2021 ident: 20707_CR17 publication-title: Nat Rev Endocrinol doi: 10.1038/s41574-020-00435-4 – volume: 72 start-page: 108 year: 2018 ident: 20707_CR62 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.07.060 – volume: 219 start-page: 108415 year: 2021 ident: 20707_CR83 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2020.108415 – volume: 95 start-page: 4623 year: 2017 ident: 20707_CR75 publication-title: Wireless Pers Commun doi: 10.1007/s11277-017-4110-x – volume: 139 start-page: 104968 year: 2021 ident: 20707_CR18 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104968 – volume: 181 start-page: 98 year: 2019 ident: 20707_CR81 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2019.04.013 – volume: 41 start-page: 1476 issue: 4 year: 2014 ident: 20707_CR60 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.08.044 – volume: 85 start-page: 134 year: 2017 ident: 20707_CR65 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.05.035 – ident: 20707_CR84 doi: 10.1016/j.heliyon.2024.e26799 – volume: 157 start-page: 107005 year: 2020 ident: 20707_CR77 publication-title: Appl Acoust doi: 10.1016/j.apacoust.2019.107005 – volume: 79 start-page: 27791 issue: 37 year: 2020 ident: 20707_CR80 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-09306-6 – volume: 134 start-page: 259 year: 2016 ident: 20707_CR28 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2016.07.020 – volume: 12 start-page: 111 year: 2008 ident: 20707_CR8 publication-title: Soft Comput doi: 10.1007/s00500-007-0193-8 – volume: 93 start-page: 88 year: 2018 ident: 20707_CR71 publication-title: Int J Approximate Reasoning doi: 10.1016/j.ijar.2017.10.022 – volume: 3 start-page: 763 issue: 2 year: 2015 ident: 20707_CR36 publication-title: Int J Scientif Innov Mathematic Res – volume: 58 start-page: 328 year: 2017 ident: 20707_CR67 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.04.042 – ident: 20707_CR45 – volume: 12 start-page: 48 issue: 1 year: 2021 ident: 20707_CR49 publication-title: Middle East J Cancer – ident: 20707_CR59 doi: 10.1007/978-3-642-13498-2_40 – volume: 1 start-page: 108072 issue: 162 year: 2020 ident: 20707_CR14 publication-title: Diab Res Clin Pract doi: 10.1016/j.diabres.2020.108072 – volume: 1 start-page: 1 issue: 5 year: 2020 ident: 20707_CR47 publication-title: SN Comput Sci – volume: 30 start-page: 1 year: 2017 ident: 20707_CR30 publication-title: VU Amsterdam Res Paper Busi Analyt – volume: 40 start-page: 113 year: 2016 ident: 20707_CR19 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.10.005 – volume: 44 start-page: 3357 year: 2019 ident: 20707_CR29 publication-title: Arab J Sci Eng doi: 10.1007/s13369-018-3507-5 – volume: 124 start-page: 105 year: 2017 ident: 20707_CR68 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.03.006 – ident: 20707_CR57 doi: 10.4018/978-1-5225-5149-2.ch007 |
| SSID | ssj0016524 |
| Score | 2.4085057 |
| Snippet | Due to the exponential increase in data volume, the widespread use of intelligent information systems has created significant obstacles and issues. High... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 41853 |
| SubjectTerms | Accuracy Algorithms Biopsy Breast cancer Chronic illnesses Classification Computational efficiency Computer Communication Networks Computer Science Computing costs Computing time Data mining Data Structures and Information Theory Datasets Diabetes Feature selection Health services Information systems Insulin Intelligence Machine learning Mammography Medical diagnosis Mortality Multimedia Information Systems Optimization Optimization techniques Performance evaluation Performance measurement Plant diseases Recall Regularization Search algorithms Severe acute respiratory syndrome coronavirus 2 Soft computing Special Purpose and Application-Based Systems Statistical methods Support vector machines Tissues Track 2: Medical Applications of Multimedia Tumors Womens health |
| Title | A novel and efficient statistical and soft-computing intelligence integrated feature selection technique for human chronic diseases prediction |
| URI | https://link.springer.com/article/10.1007/s11042-025-20707-3 https://www.proquest.com/docview/3255910745 |
| Volume | 84 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMdP0C4w8CggCqW6gQ0sNbHTJGOKWioQnahUpsiObQkJpVVT-Bh8ZmwnaQuCgcmDH4PPj791vt8BXMe038s8IUjmc58wI2FJFMmIMG5h4j3OPGGDk58m_fGUPcyCWRUUVtS_3WuXpDupN8Fung0lselXfcuoIXQXmoHFeZlVPPWTte-gH_isCo_5vd_3K2ijK3-4Qt0NMzqCg0oaYlLa8hh2VN6CwzrtAla7sAX7WwzBE_hMMJ9_qDfkuUTlgBDmHkEbKOQYzLysKcxxSzI3lumGr1skTlwjIyRq5UCfWLj0OMZmuIa8opG36FL6YVYSdbHy7hS4WFp_j21_CtPR8PluTKokCyTzopASKjJmZoxL81BSSsWeFpSFnIWBkkZLxVpLU6WCUPmeDh2wTFNzMnlMUqpDTc-gkc9zdQ7Ig4xLnTGulceUiGMWxYpJYUQDV5qJNtzU854uSpZGuqEmWyulxkqps1JK29CpTZNW-6pIqX0B2T-kQRtua3Ntqv8e7eJ_zS9hz7crxv3a60BjtXxXV0Z9rEQXmsloMJjY8v7lcdh1i-8LlxzZIQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIBPUAZgoDxFocANbGBEYqdJxgoB5dFOrVSmyE8JgQIihYEfwW_GdpIWEAzMfsjyne2z7u47gMOUdk5lIASRIQ8JsyYsSRKVEMYdTPyUs0C45OT-oNMbsetxNK6Swoo62r12SfqbepbsFrhUEld-NXSMGkLnYYHZD0rYgIXu5d3N-dR70IlCViXI_D7y-yM0syx_OEP9G3PRhFG9ujK05OHkdSJO5PsPcON_l78KK5XRid1SS9ZgTufr0KwLOmB1vtdh-QudcAM-upg_velH5LlC7VET9oVCl4Lk6c68bCnsRU6kn8sOw_svjE-cwigUGu0Rolj4wjtWG3CKj0VrOKMvFoiyZPVi5Tcq8PnFeZJc_00YXZwPz3qkKt9AZJDElFAhmZUEV_YLprVOAyMoizmLI62slZYao2yTjmIdBib2KDRD7Z0XMEWpiQ3dgkb-lOttQB5Jroxk3OiAaZGmLEk1U8KaI1wbJlpwVMszey4pHdmMx-w2PrMbn_mNz2gL2rXIs-rEFhl1fysXnRq14LiW4Kz579l2_tf9ABZ7w_5tdns1uNmFpdAphI8NbENj8vKq96yNMxH7lUp_Ag8d9ec |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3JTsMwEIZHUCQEB5YCoqxz4AZWm9hpkmMFVGWrOFCpt8iObQkJpVVTeAyeGdtJmoLgwNmLZP9exhrPNwAXMe12Uk8IkvrcJ8yYsCSKZEQYtzDxDmeesMHJT8PuYMTux8F4KYrf_XavXJJFTIOlNGXz9lTqdh345tmwEpuK1be8GkJXYY1ZUIJZ0SO_t_AjdAOflaEyv7f7fh3VNuYPt6i7bfo7sFWaidgrdN2FFZU1YbtKwYDljmzC5hJPcA8-e5hNPtQb8kyicnAIMya0QUOOx8yLktwcvSR1fZlm-LpE5cQFPkKiVg76iblLlWP0wwXwFY2piy69H6YFXRdLT0-O05n1_dj6-zDq375cD0iZcIGkXhRSQkXKzIxxaR5NSqnY04KykLMwUNLYVbHW0hSpIFS-p0MHL9PUnFIek5TqUNMDaGSTTB0C8iDlUqeMa-UxJeKYRbFiUhgDgivNRAsuq3lPpgVXI6kJylalxKiUOJUS2oKTSpqk3GN5Qu1ryP4nDVpwVclVF__d29H_qp_D-vNNP3m8Gz4cw4ZvF4_7zHcCjfnsXZ0ao2Quzty6-wKlgd05 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+and+efficient+statistical+and+soft-computing+intelligence+integrated+feature+selection+technique+for+human+chronic+diseases+prediction&rft.jtitle=Multimedia+tools+and+applications&rft.au=Yadav%2C+Amit&rft.au=Khanna%2C+Munish&rft.au=Anand%2C+Darpan&rft.date=2025-10-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=84&rft.issue=33&rft.spage=41853&rft.epage=41896&rft_id=info:doi/10.1007%2Fs11042-025-20707-3&rft.externalDocID=10_1007_s11042_025_20707_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |