Establishing Echo State Network in Order to Be Used in Online Application

Reservoir computing is an efficient computational framework which provides an appropriate approach for training recurrent neural networks. Echo state network is a simple and new method for reservoir computing models which consists of three input layers, a dynamic reservoir, and an output layer. The...

Full description

Saved in:
Bibliographic Details
Published inOperations Research Forum Vol. 6; no. 3; p. 115
Main Authors Saadat, Javad, Farshad, Mohsen, Eliasi, Hussein, Mehr, Kazem Shokoohi
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2662-2556
2662-2556
DOI10.1007/s43069-025-00514-0

Cover

Abstract Reservoir computing is an efficient computational framework which provides an appropriate approach for training recurrent neural networks. Echo state network is a simple and new method for reservoir computing models which consists of three input layers, a dynamic reservoir, and an output layer. The weight of connections entered into the reservoir is randomly generated and remains fixed in the training process, so it is possible to use many units in the dynamic reservoir to generate more dynamics. In practice, it can be seen that the performance of some dynamic reservoir units is similar to each other. The similarity of the reservoir units’ performance causes a large eigenvalue spread of the network autocorrelation matrix. Therefore, the convergence speed of the online training algorithm is slowed down or the algorithm does not converge. In this study, using the mutual correlation criterion, similar dynamics are found and one (as a representative) from each group of units with similar functions and other similar units are disconnected from the output layer. In this case, without losing the dynamic diversity of the reservoir, the number of trainable connections is reduced. In addition to reducing the number of calculations, the proposed method reduces the eigenvalue spread of the autocorrelation matrix of the reservoir states. The proposed method simultaneously increases the speed of convergence and the accuracy of echo state network online training. At the end, Mackey–Glass time series prediction is used to show the efficiency of the proposed method.
AbstractList Reservoir computing is an efficient computational framework which provides an appropriate approach for training recurrent neural networks. Echo state network is a simple and new method for reservoir computing models which consists of three input layers, a dynamic reservoir, and an output layer. The weight of connections entered into the reservoir is randomly generated and remains fixed in the training process, so it is possible to use many units in the dynamic reservoir to generate more dynamics. In practice, it can be seen that the performance of some dynamic reservoir units is similar to each other. The similarity of the reservoir units’ performance causes a large eigenvalue spread of the network autocorrelation matrix. Therefore, the convergence speed of the online training algorithm is slowed down or the algorithm does not converge. In this study, using the mutual correlation criterion, similar dynamics are found and one (as a representative) from each group of units with similar functions and other similar units are disconnected from the output layer. In this case, without losing the dynamic diversity of the reservoir, the number of trainable connections is reduced. In addition to reducing the number of calculations, the proposed method reduces the eigenvalue spread of the autocorrelation matrix of the reservoir states. The proposed method simultaneously increases the speed of convergence and the accuracy of echo state network online training. At the end, Mackey–Glass time series prediction is used to show the efficiency of the proposed method.
ArticleNumber 115
Author Farshad, Mohsen
Mehr, Kazem Shokoohi
Eliasi, Hussein
Saadat, Javad
Author_xml – sequence: 1
  givenname: Javad
  surname: Saadat
  fullname: Saadat, Javad
  organization: Department of Electrical and Computer Engineering, University of Birjand
– sequence: 2
  givenname: Mohsen
  surname: Farshad
  fullname: Farshad, Mohsen
  email: mfarshad@birjand.ac.ir
  organization: Department of Electrical and Computer Engineering, University of Birjand
– sequence: 3
  givenname: Hussein
  surname: Eliasi
  fullname: Eliasi, Hussein
  organization: Department of Electrical and Computer Engineering, University of Birjand
– sequence: 4
  givenname: Kazem Shokoohi
  surname: Mehr
  fullname: Mehr, Kazem Shokoohi
  organization: Department of Electrical and Computer Engineering, University of Birjand
BookMark eNp9kM1OwzAQhC1UJErpC3CyxDmwtuOfHktVoBKiB-jZcpJNmxKcYKdCvD2hQYITp12tZmY13zkZ-cYjIZcMrhmAvompADVLgMsEQLI0gRMy5krxhEupRn_2MzKNcQ8AggudCjEmq2XsXFZXcVf5LV3mu4Y-d65D-oTdRxNeaeXpOhQYaNfQW6SbiMXx5uvKI523bV3lrqsaf0FOS1dHnP7MCdncLV8WD8nj-n61mD8mOTMakoJx5CWgyxhDNJnUwIwUIDOmGTf5LC24Uy4tRQaF5ihQKyVTo3JdGjlDMSFXQ24bmvcDxs7um0Pw_UvbtzLSAHDdq_igykMTY8DStqF6c-HTMrDf1OxAzfbU7JGahd4kBlPsxX6L4Tf6H9cXR9pu0g
Cites_doi 10.1016/j.eswa.2019.113082
10.1162/neco.2007.19.1.111
10.1016/j.neunet.2019.03.005
10.1109/IJCNN.2006.247295
10.1016/j.spa.2017.10.002
10.1016/j.renene.2020.04.042
10.1016/j.ins.2019.09.049
10.1109/TSP.2007.907881
10.1109/9.587328
10.1016/j.artmed.2018.11.004
10.1007/978-3-030-47439-3
10.1007/s10489-015-0652-3
10.1007/978-3-642-35289-8_36
10.1109/LCSYS.2019.2920720
10.1109/TNNLS.2016.2630802
10.2514/6.2021-0664
10.1016/j.neunet.2011.02.002
10.1007/s10208-017-9369-5
10.1016/j.neucom.2019.09.002
10.1109/IJCNN.2018.8489464
10.1109/83.748893
10.1016/j.cosrev.2009.03.005
10.1007/s43069-023-00196-6
10.1016/j.engappai.2022.105051
10.1142/S012906572150057X
10.1109/TSP.2014.2332440
10.1109/TITS.2016.2603007
10.1126/science.1091277
10.1016/j.neunet.2012.07.005
10.1109/TNN.2011.2161330
10.1109/ACSSC.2000.910958
10.1109/TNN.2007.912319
10.1016/j.knosys.2017.05.022
10.1016/j.neunet.2019.01.002
10.1016/j.simpat.2019.102031
10.1063/1.5079686
10.1016/j.ifacol.2018.07.326
10.1016/j.neunet.2019.05.006
10.1016/j.artmed.2018.02.002
10.1016/j.neuron.2007.01.006
10.1177/105971239500300405
10.1016/j.neunet.2012.08.008
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s43069-025-00514-0
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
EISSN 2662-2556
ExternalDocumentID 10_1007_s43069_025_00514_0
GroupedDBID 0R~
2JN
406
AACDK
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABBRH
ABDBE
ABFSG
ABRTQ
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACPIV
ACSTC
ACZOJ
AEFQL
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AGMZJ
AGQEE
AGRTI
AHPBZ
AHWEU
AIGIU
AIXLP
ALMA_UNASSIGNED_HOLDINGS
AMXSW
ATHPR
AYFIA
EBLON
FIGPU
GGCAI
IKXTQ
IWAJR
JZLTJ
LLZTM
NPVJJ
PT4
ROL
RSV
SJYHP
SNE
SOJ
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c1870-d12e2f0eab11ee8b570185305b17128c94d2a6a4f3b0d72e3e7665486c7f859e3
ISSN 2662-2556
IngestDate Wed Aug 13 04:42:56 EDT 2025
Wed Oct 01 05:23:00 EDT 2025
Tue Aug 12 01:11:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Mackey–Glass time series
Time series prediction
Least mean square algorithm
Echo state network
Online training
Reservoir computing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1870-d12e2f0eab11ee8b570185305b17128c94d2a6a4f3b0d72e3e7665486c7f859e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3238580027
PQPubID 6623304
ParticipantIDs proquest_journals_3238580027
crossref_primary_10_1007_s43069_025_00514_0
springer_journals_10_1007_s43069_025_00514_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Aachen
PublicationTitle Operations Research Forum
PublicationTitleAbbrev Oper. Res. Forum
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References J Heiny (514_CR47) 2018; 128
IB Yildiz (514_CR16) 2012; 35
T Lymburn (514_CR17) 2019; 29
SE Lacy (514_CR25) 2018; 86
Y Xue (514_CR29) 2021; 31
J Morton (514_CR1) 2016; 18
MC Ozturk (514_CR18) 2007; 19
C Gallicchio (514_CR44) 2011; 24
H Zhang (514_CR9) 2008; 19
RD Beer (514_CR10) 1995; 3
X Sun (514_CR24) 2017; 130
LB Armenio (514_CR23) 2019; 3
E Najibi (514_CR34) 2015; 43
L Guo (514_CR40) 1997; 42
514_CR33
514_CR32
J Chen (514_CR46) 2014; 62
M Lukoševičius (514_CR27) 2009; 3
514_CR39
Z Pang (514_CR8) 2020; 156
J Liu (514_CR15) 2020; 371
514_CR13
514_CR35
514_CR14
514_CR36
R Szczelina (514_CR48) 2018; 18
W Liu (514_CR38) 2008; 56
I Banerjee (514_CR2) 2019; 97
Q Ma (514_CR12) 2020; 511
Y Liu (514_CR3) 2020; 143
C Yang (514_CR28) 2019; 118
D Koryakin (514_CR43) 2012; 36
M Almiani (514_CR6) 2020; 101
H Jaeger (514_CR19) 2004; 304
G Tanaka (514_CR26) 2019; 115
FM Bianchi (514_CR37) 2016; 29
514_CR4
Y Kawai (514_CR31) 2019; 112
J Gonzalez (514_CR5) 2018; 51
H Zhao (514_CR7) 2011; 22
N Chouikhi (514_CR11) 2022; 114
514_CR22
514_CR45
514_CR20
M Elad (514_CR42) 1999; 8
514_CR41
UR Karmarkar (514_CR21) 2007; 53
J Saadat (514_CR30) 2017; 15
References_xml – volume: 143
  year: 2020
  ident: 514_CR3
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113082
– volume: 19
  start-page: 111
  issue: 1
  year: 2007
  ident: 514_CR18
  publication-title: Neural Comput
  doi: 10.1162/neco.2007.19.1.111
– volume: 115
  start-page: 100
  year: 2019
  ident: 514_CR26
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.03.005
– ident: 514_CR32
  doi: 10.1109/IJCNN.2006.247295
– volume: 128
  start-page: 2779
  issue: 8
  year: 2018
  ident: 514_CR47
  publication-title: Stoch Process Their Appl
  doi: 10.1016/j.spa.2017.10.002
– volume: 156
  start-page: 279
  year: 2020
  ident: 514_CR8
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.04.042
– ident: 514_CR36
– volume: 511
  start-page: 152
  year: 2020
  ident: 514_CR12
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.09.049
– volume: 56
  start-page: 543
  issue: 2
  year: 2008
  ident: 514_CR38
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2007.907881
– ident: 514_CR41
– volume: 42
  start-page: 761
  issue: 6
  year: 1997
  ident: 514_CR40
  publication-title: IEEE Trans Automat Control
  doi: 10.1109/9.587328
– volume: 97
  start-page: 79
  year: 2019
  ident: 514_CR2
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2018.11.004
– ident: 514_CR4
  doi: 10.1007/978-3-030-47439-3
– volume: 43
  start-page: 460
  issue: 2
  year: 2015
  ident: 514_CR34
  publication-title: Appl Intell
  doi: 10.1007/s10489-015-0652-3
– ident: 514_CR13
  doi: 10.1007/978-3-642-35289-8_36
– volume: 3
  start-page: 1044
  issue: 4
  year: 2019
  ident: 514_CR23
  publication-title: IEEE Control Syst Lett
  doi: 10.1109/LCSYS.2019.2920720
– volume: 29
  start-page: 427
  issue: 2
  year: 2016
  ident: 514_CR37
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2630802
– ident: 514_CR20
– ident: 514_CR22
  doi: 10.2514/6.2021-0664
– volume: 24
  start-page: 440
  issue: 5
  year: 2011
  ident: 514_CR44
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2011.02.002
– volume: 18
  start-page: 1299
  issue: 6
  year: 2018
  ident: 514_CR48
  publication-title: Found Comput Math
  doi: 10.1007/s10208-017-9369-5
– ident: 514_CR45
– volume: 371
  start-page: 100
  year: 2020
  ident: 514_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.002
– ident: 514_CR14
  doi: 10.1109/IJCNN.2018.8489464
– volume: 8
  start-page: 387
  issue: 3
  year: 1999
  ident: 514_CR42
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.748893
– volume: 3
  start-page: 127
  issue: 3
  year: 2009
  ident: 514_CR27
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2009.03.005
– ident: 514_CR33
  doi: 10.1007/s43069-023-00196-6
– volume: 114
  year: 2022
  ident: 514_CR11
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105051
– volume: 31
  issue: 12
  year: 2021
  ident: 514_CR29
  publication-title: Int J Neural Syst
  doi: 10.1142/S012906572150057X
– volume: 15
  start-page: 163
  issue: 1
  year: 2017
  ident: 514_CR30
  publication-title: Int J Artif Intell
– volume: 62
  start-page: 3990
  issue: 15
  year: 2014
  ident: 514_CR46
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2014.2332440
– volume: 18
  start-page: 1289
  issue: 5
  year: 2016
  ident: 514_CR1
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2016.2603007
– volume: 304
  start-page: 78
  issue: 5667
  year: 2004
  ident: 514_CR19
  publication-title: Science
  doi: 10.1126/science.1091277
– ident: 514_CR35
– volume: 35
  start-page: 1
  year: 2012
  ident: 514_CR16
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2012.07.005
– volume: 22
  start-page: 1494
  issue: 9
  year: 2011
  ident: 514_CR7
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2161330
– ident: 514_CR39
  doi: 10.1109/ACSSC.2000.910958
– volume: 19
  start-page: 855
  issue: 5
  year: 2008
  ident: 514_CR9
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2007.912319
– volume: 130
  start-page: 17
  year: 2017
  ident: 514_CR24
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.05.022
– volume: 112
  start-page: 15
  year: 2019
  ident: 514_CR31
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.01.002
– volume: 101
  year: 2020
  ident: 514_CR6
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2019.102031
– volume: 29
  start-page: 023118
  issue: 2
  year: 2019
  ident: 514_CR17
  publication-title: Chaos
  doi: 10.1063/1.5079686
– volume: 51
  start-page: 485
  issue: 13
  year: 2018
  ident: 514_CR5
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.07.326
– volume: 118
  start-page: 32
  year: 2019
  ident: 514_CR28
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.05.006
– volume: 86
  start-page: 53
  year: 2018
  ident: 514_CR25
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2018.02.002
– volume: 53
  start-page: 427
  issue: 3
  year: 2007
  ident: 514_CR21
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.01.006
– volume: 3
  start-page: 469
  issue: 4
  year: 1995
  ident: 514_CR10
  publication-title: Adapt Behav
  doi: 10.1177/105971239500300405
– volume: 36
  start-page: 35
  year: 2012
  ident: 514_CR43
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2012.08.008
SSID ssj0003237433
Score 2.3046281
Snippet Reservoir computing is an efficient computational framework which provides an appropriate approach for training recurrent neural networks. Echo state network...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 115
SubjectTerms Algorithms
Applications of Mathematics
Autocorrelation
Business and Management
Computation
Convergence
Eigenvalues
Math Applications in Computer Science
Mathematical and Computational Engineering
Neural networks
Online instruction
Operations Research/Decision Theory
Optimization
Recurrent neural networks
Time series
Title Establishing Echo State Network in Order to Be Used in Online Application
URI https://link.springer.com/article/10.1007/s43069-025-00514-0
https://www.proquest.com/docview/3238580027
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2662-2556
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003237433
  issn: 2662-2556
  databaseCode: AFBBN
  dateStart: 20200205
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage-GCQIAo7CIfEJcSlDhxHsctarWgbXuglXqL7GSiVIimbLoc9tfvjOM8lgUEXKLIkZxo5sv487zM2NtE-bguudrxokiSt0o4OheJExdJpnJV-IEih_5iGV5sgs9bue1DMaa65Kg_ZDe_rCv5H63iGOqVqmT_QbPdpDiA96hfvKKG8fpXOp4hteu8SDM0ZA13pCpeyrciX8aKWmsSwZwiv6whN2OmO0ZDQLNeM5airg5wZfPj2rS8ybxr2UDOGIXibUIY6ofKOwTgFrlsALOoyhoGaSE7VTeHY1_XNey6BwsobUbHDXybfCmrr1VV7oZ-CCG7RKu7fkhKsqbQR1snA8aWIQ0QDnU7GxrecIAvf2BEvabA855xb_I5aoRWiK-mL6Dm7Y7bL2Vt-H65Sueby8t0Pduu3x2-O3TIGAXj7YkrD9mJwEXAHbGT8_l0uuyccr4g5Pq2uMqUWN57210C0-9KfgqkG36yfsIe240FP29Q8pQ9gP0z9mmIEE4I4QYh3CKE7_bcIIQfKz4FTggxYwYhfICQ52wzn60_Xjj28Awn89AGO7knQBQuKO15ALGWkUvUzJXai5CTZEmQCxWqoPC1m0cCfIjoIOo4zKIilgn4L9hoX-3hJeNag4QMIgCQQZLrWKpYhSLGP1mFQeiP2aSVSHpoeqSkXTdsI78U5Zca-aXumJ22Qkvtv1SnKPhY0t4lGrP3rSD7x7-f7dWfZ3vNHvVYPWWj49U1nCGLPOo3Vve3-FNyew
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishing+Echo+State+Network+in+Order+to+Be+Used+in+Online+Application&rft.jtitle=Operations+Research+Forum&rft.au=Saadat%2C+Javad&rft.au=Farshad%2C+Mohsen&rft.au=Eliasi%2C+Hussein&rft.au=Mehr%2C+Kazem+Shokoohi&rft.date=2025-09-01&rft.pub=Springer+Nature+B.V&rft.eissn=2662-2556&rft.volume=6&rft.issue=3&rft.spage=115&rft_id=info:doi/10.1007%2Fs43069-025-00514-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-2556&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-2556&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-2556&client=summon