Establishing Echo State Network in Order to Be Used in Online Application
Reservoir computing is an efficient computational framework which provides an appropriate approach for training recurrent neural networks. Echo state network is a simple and new method for reservoir computing models which consists of three input layers, a dynamic reservoir, and an output layer. The...
Saved in:
| Published in | Operations Research Forum Vol. 6; no. 3; p. 115 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.09.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2662-2556 2662-2556 |
| DOI | 10.1007/s43069-025-00514-0 |
Cover
| Abstract | Reservoir computing is an efficient computational framework which provides an appropriate approach for training recurrent neural networks. Echo state network is a simple and new method for reservoir computing models which consists of three input layers, a dynamic reservoir, and an output layer. The weight of connections entered into the reservoir is randomly generated and remains fixed in the training process, so it is possible to use many units in the dynamic reservoir to generate more dynamics. In practice, it can be seen that the performance of some dynamic reservoir units is similar to each other. The similarity of the reservoir units’ performance causes a large eigenvalue spread of the network autocorrelation matrix. Therefore, the convergence speed of the online training algorithm is slowed down or the algorithm does not converge. In this study, using the mutual correlation criterion, similar dynamics are found and one (as a representative) from each group of units with similar functions and other similar units are disconnected from the output layer. In this case, without losing the dynamic diversity of the reservoir, the number of trainable connections is reduced. In addition to reducing the number of calculations, the proposed method reduces the eigenvalue spread of the autocorrelation matrix of the reservoir states. The proposed method simultaneously increases the speed of convergence and the accuracy of echo state network online training. At the end, Mackey–Glass time series prediction is used to show the efficiency of the proposed method. |
|---|---|
| AbstractList | Reservoir computing is an efficient computational framework which provides an appropriate approach for training recurrent neural networks. Echo state network is a simple and new method for reservoir computing models which consists of three input layers, a dynamic reservoir, and an output layer. The weight of connections entered into the reservoir is randomly generated and remains fixed in the training process, so it is possible to use many units in the dynamic reservoir to generate more dynamics. In practice, it can be seen that the performance of some dynamic reservoir units is similar to each other. The similarity of the reservoir units’ performance causes a large eigenvalue spread of the network autocorrelation matrix. Therefore, the convergence speed of the online training algorithm is slowed down or the algorithm does not converge. In this study, using the mutual correlation criterion, similar dynamics are found and one (as a representative) from each group of units with similar functions and other similar units are disconnected from the output layer. In this case, without losing the dynamic diversity of the reservoir, the number of trainable connections is reduced. In addition to reducing the number of calculations, the proposed method reduces the eigenvalue spread of the autocorrelation matrix of the reservoir states. The proposed method simultaneously increases the speed of convergence and the accuracy of echo state network online training. At the end, Mackey–Glass time series prediction is used to show the efficiency of the proposed method. |
| ArticleNumber | 115 |
| Author | Farshad, Mohsen Mehr, Kazem Shokoohi Eliasi, Hussein Saadat, Javad |
| Author_xml | – sequence: 1 givenname: Javad surname: Saadat fullname: Saadat, Javad organization: Department of Electrical and Computer Engineering, University of Birjand – sequence: 2 givenname: Mohsen surname: Farshad fullname: Farshad, Mohsen email: mfarshad@birjand.ac.ir organization: Department of Electrical and Computer Engineering, University of Birjand – sequence: 3 givenname: Hussein surname: Eliasi fullname: Eliasi, Hussein organization: Department of Electrical and Computer Engineering, University of Birjand – sequence: 4 givenname: Kazem Shokoohi surname: Mehr fullname: Mehr, Kazem Shokoohi organization: Department of Electrical and Computer Engineering, University of Birjand |
| BookMark | eNp9kM1OwzAQhC1UJErpC3CyxDmwtuOfHktVoBKiB-jZcpJNmxKcYKdCvD2hQYITp12tZmY13zkZ-cYjIZcMrhmAvompADVLgMsEQLI0gRMy5krxhEupRn_2MzKNcQ8AggudCjEmq2XsXFZXcVf5LV3mu4Y-d65D-oTdRxNeaeXpOhQYaNfQW6SbiMXx5uvKI523bV3lrqsaf0FOS1dHnP7MCdncLV8WD8nj-n61mD8mOTMakoJx5CWgyxhDNJnUwIwUIDOmGTf5LC24Uy4tRQaF5ihQKyVTo3JdGjlDMSFXQ24bmvcDxs7um0Pw_UvbtzLSAHDdq_igykMTY8DStqF6c-HTMrDf1OxAzfbU7JGahd4kBlPsxX6L4Tf6H9cXR9pu0g |
| Cites_doi | 10.1016/j.eswa.2019.113082 10.1162/neco.2007.19.1.111 10.1016/j.neunet.2019.03.005 10.1109/IJCNN.2006.247295 10.1016/j.spa.2017.10.002 10.1016/j.renene.2020.04.042 10.1016/j.ins.2019.09.049 10.1109/TSP.2007.907881 10.1109/9.587328 10.1016/j.artmed.2018.11.004 10.1007/978-3-030-47439-3 10.1007/s10489-015-0652-3 10.1007/978-3-642-35289-8_36 10.1109/LCSYS.2019.2920720 10.1109/TNNLS.2016.2630802 10.2514/6.2021-0664 10.1016/j.neunet.2011.02.002 10.1007/s10208-017-9369-5 10.1016/j.neucom.2019.09.002 10.1109/IJCNN.2018.8489464 10.1109/83.748893 10.1016/j.cosrev.2009.03.005 10.1007/s43069-023-00196-6 10.1016/j.engappai.2022.105051 10.1142/S012906572150057X 10.1109/TSP.2014.2332440 10.1109/TITS.2016.2603007 10.1126/science.1091277 10.1016/j.neunet.2012.07.005 10.1109/TNN.2011.2161330 10.1109/ACSSC.2000.910958 10.1109/TNN.2007.912319 10.1016/j.knosys.2017.05.022 10.1016/j.neunet.2019.01.002 10.1016/j.simpat.2019.102031 10.1063/1.5079686 10.1016/j.ifacol.2018.07.326 10.1016/j.neunet.2019.05.006 10.1016/j.artmed.2018.02.002 10.1016/j.neuron.2007.01.006 10.1177/105971239500300405 10.1016/j.neunet.2012.08.008 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s43069-025-00514-0 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2662-2556 |
| ExternalDocumentID | 10_1007_s43069_025_00514_0 |
| GroupedDBID | 0R~ 2JN 406 AACDK AAJBT AASML AATNV AAUYE ABAKF ABBRH ABDBE ABFSG ABRTQ ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACPIV ACSTC ACZOJ AEFQL AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFOHR AGMZJ AGQEE AGRTI AHPBZ AHWEU AIGIU AIXLP ALMA_UNASSIGNED_HOLDINGS AMXSW ATHPR AYFIA EBLON FIGPU GGCAI IKXTQ IWAJR JZLTJ LLZTM NPVJJ PT4 ROL RSV SJYHP SNE SOJ AAYXX CITATION JQ2 |
| ID | FETCH-LOGICAL-c1870-d12e2f0eab11ee8b570185305b17128c94d2a6a4f3b0d72e3e7665486c7f859e3 |
| ISSN | 2662-2556 |
| IngestDate | Wed Aug 13 04:42:56 EDT 2025 Wed Oct 01 05:23:00 EDT 2025 Tue Aug 12 01:11:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Mackey–Glass time series Time series prediction Least mean square algorithm Echo state network Online training Reservoir computing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1870-d12e2f0eab11ee8b570185305b17128c94d2a6a4f3b0d72e3e7665486c7f859e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3238580027 |
| PQPubID | 6623304 |
| ParticipantIDs | proquest_journals_3238580027 crossref_primary_10_1007_s43069_025_00514_0 springer_journals_10_1007_s43069_025_00514_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Aachen |
| PublicationTitle | Operations Research Forum |
| PublicationTitleAbbrev | Oper. Res. Forum |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | J Heiny (514_CR47) 2018; 128 IB Yildiz (514_CR16) 2012; 35 T Lymburn (514_CR17) 2019; 29 SE Lacy (514_CR25) 2018; 86 Y Xue (514_CR29) 2021; 31 J Morton (514_CR1) 2016; 18 MC Ozturk (514_CR18) 2007; 19 C Gallicchio (514_CR44) 2011; 24 H Zhang (514_CR9) 2008; 19 RD Beer (514_CR10) 1995; 3 X Sun (514_CR24) 2017; 130 LB Armenio (514_CR23) 2019; 3 E Najibi (514_CR34) 2015; 43 L Guo (514_CR40) 1997; 42 514_CR33 514_CR32 J Chen (514_CR46) 2014; 62 M Lukoševičius (514_CR27) 2009; 3 514_CR39 Z Pang (514_CR8) 2020; 156 J Liu (514_CR15) 2020; 371 514_CR13 514_CR35 514_CR14 514_CR36 R Szczelina (514_CR48) 2018; 18 W Liu (514_CR38) 2008; 56 I Banerjee (514_CR2) 2019; 97 Q Ma (514_CR12) 2020; 511 Y Liu (514_CR3) 2020; 143 C Yang (514_CR28) 2019; 118 D Koryakin (514_CR43) 2012; 36 M Almiani (514_CR6) 2020; 101 H Jaeger (514_CR19) 2004; 304 G Tanaka (514_CR26) 2019; 115 FM Bianchi (514_CR37) 2016; 29 514_CR4 Y Kawai (514_CR31) 2019; 112 J Gonzalez (514_CR5) 2018; 51 H Zhao (514_CR7) 2011; 22 N Chouikhi (514_CR11) 2022; 114 514_CR22 514_CR45 514_CR20 M Elad (514_CR42) 1999; 8 514_CR41 UR Karmarkar (514_CR21) 2007; 53 J Saadat (514_CR30) 2017; 15 |
| References_xml | – volume: 143 year: 2020 ident: 514_CR3 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.113082 – volume: 19 start-page: 111 issue: 1 year: 2007 ident: 514_CR18 publication-title: Neural Comput doi: 10.1162/neco.2007.19.1.111 – volume: 115 start-page: 100 year: 2019 ident: 514_CR26 publication-title: Neural Netw doi: 10.1016/j.neunet.2019.03.005 – ident: 514_CR32 doi: 10.1109/IJCNN.2006.247295 – volume: 128 start-page: 2779 issue: 8 year: 2018 ident: 514_CR47 publication-title: Stoch Process Their Appl doi: 10.1016/j.spa.2017.10.002 – volume: 156 start-page: 279 year: 2020 ident: 514_CR8 publication-title: Renew Energy doi: 10.1016/j.renene.2020.04.042 – ident: 514_CR36 – volume: 511 start-page: 152 year: 2020 ident: 514_CR12 publication-title: Inf Sci doi: 10.1016/j.ins.2019.09.049 – volume: 56 start-page: 543 issue: 2 year: 2008 ident: 514_CR38 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2007.907881 – ident: 514_CR41 – volume: 42 start-page: 761 issue: 6 year: 1997 ident: 514_CR40 publication-title: IEEE Trans Automat Control doi: 10.1109/9.587328 – volume: 97 start-page: 79 year: 2019 ident: 514_CR2 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2018.11.004 – ident: 514_CR4 doi: 10.1007/978-3-030-47439-3 – volume: 43 start-page: 460 issue: 2 year: 2015 ident: 514_CR34 publication-title: Appl Intell doi: 10.1007/s10489-015-0652-3 – ident: 514_CR13 doi: 10.1007/978-3-642-35289-8_36 – volume: 3 start-page: 1044 issue: 4 year: 2019 ident: 514_CR23 publication-title: IEEE Control Syst Lett doi: 10.1109/LCSYS.2019.2920720 – volume: 29 start-page: 427 issue: 2 year: 2016 ident: 514_CR37 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2630802 – ident: 514_CR20 – ident: 514_CR22 doi: 10.2514/6.2021-0664 – volume: 24 start-page: 440 issue: 5 year: 2011 ident: 514_CR44 publication-title: Neural Netw doi: 10.1016/j.neunet.2011.02.002 – volume: 18 start-page: 1299 issue: 6 year: 2018 ident: 514_CR48 publication-title: Found Comput Math doi: 10.1007/s10208-017-9369-5 – ident: 514_CR45 – volume: 371 start-page: 100 year: 2020 ident: 514_CR15 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.09.002 – ident: 514_CR14 doi: 10.1109/IJCNN.2018.8489464 – volume: 8 start-page: 387 issue: 3 year: 1999 ident: 514_CR42 publication-title: IEEE Trans Image Process doi: 10.1109/83.748893 – volume: 3 start-page: 127 issue: 3 year: 2009 ident: 514_CR27 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2009.03.005 – ident: 514_CR33 doi: 10.1007/s43069-023-00196-6 – volume: 114 year: 2022 ident: 514_CR11 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105051 – volume: 31 issue: 12 year: 2021 ident: 514_CR29 publication-title: Int J Neural Syst doi: 10.1142/S012906572150057X – volume: 15 start-page: 163 issue: 1 year: 2017 ident: 514_CR30 publication-title: Int J Artif Intell – volume: 62 start-page: 3990 issue: 15 year: 2014 ident: 514_CR46 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2014.2332440 – volume: 18 start-page: 1289 issue: 5 year: 2016 ident: 514_CR1 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2016.2603007 – volume: 304 start-page: 78 issue: 5667 year: 2004 ident: 514_CR19 publication-title: Science doi: 10.1126/science.1091277 – ident: 514_CR35 – volume: 35 start-page: 1 year: 2012 ident: 514_CR16 publication-title: Neural Netw doi: 10.1016/j.neunet.2012.07.005 – volume: 22 start-page: 1494 issue: 9 year: 2011 ident: 514_CR7 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2161330 – ident: 514_CR39 doi: 10.1109/ACSSC.2000.910958 – volume: 19 start-page: 855 issue: 5 year: 2008 ident: 514_CR9 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2007.912319 – volume: 130 start-page: 17 year: 2017 ident: 514_CR24 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.05.022 – volume: 112 start-page: 15 year: 2019 ident: 514_CR31 publication-title: Neural Netw doi: 10.1016/j.neunet.2019.01.002 – volume: 101 year: 2020 ident: 514_CR6 publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2019.102031 – volume: 29 start-page: 023118 issue: 2 year: 2019 ident: 514_CR17 publication-title: Chaos doi: 10.1063/1.5079686 – volume: 51 start-page: 485 issue: 13 year: 2018 ident: 514_CR5 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.07.326 – volume: 118 start-page: 32 year: 2019 ident: 514_CR28 publication-title: Neural Netw doi: 10.1016/j.neunet.2019.05.006 – volume: 86 start-page: 53 year: 2018 ident: 514_CR25 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2018.02.002 – volume: 53 start-page: 427 issue: 3 year: 2007 ident: 514_CR21 publication-title: Neuron doi: 10.1016/j.neuron.2007.01.006 – volume: 3 start-page: 469 issue: 4 year: 1995 ident: 514_CR10 publication-title: Adapt Behav doi: 10.1177/105971239500300405 – volume: 36 start-page: 35 year: 2012 ident: 514_CR43 publication-title: Neural Netw doi: 10.1016/j.neunet.2012.08.008 |
| SSID | ssj0003237433 |
| Score | 2.3046281 |
| Snippet | Reservoir computing is an efficient computational framework which provides an appropriate approach for training recurrent neural networks. Echo state network... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 115 |
| SubjectTerms | Algorithms Applications of Mathematics Autocorrelation Business and Management Computation Convergence Eigenvalues Math Applications in Computer Science Mathematical and Computational Engineering Neural networks Online instruction Operations Research/Decision Theory Optimization Recurrent neural networks Time series |
| Title | Establishing Echo State Network in Order to Be Used in Online Application |
| URI | https://link.springer.com/article/10.1007/s43069-025-00514-0 https://www.proquest.com/docview/3238580027 |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2662-2556 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003237433 issn: 2662-2556 databaseCode: AFBBN dateStart: 20200205 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage-GCQIAo7CIfEJcSlDhxHsctarWgbXuglXqL7GSiVIimbLoc9tfvjOM8lgUEXKLIkZxo5sv487zM2NtE-bguudrxokiSt0o4OheJExdJpnJV-IEih_5iGV5sgs9bue1DMaa65Kg_ZDe_rCv5H63iGOqVqmT_QbPdpDiA96hfvKKG8fpXOp4hteu8SDM0ZA13pCpeyrciX8aKWmsSwZwiv6whN2OmO0ZDQLNeM5airg5wZfPj2rS8ybxr2UDOGIXibUIY6ofKOwTgFrlsALOoyhoGaSE7VTeHY1_XNey6BwsobUbHDXybfCmrr1VV7oZ-CCG7RKu7fkhKsqbQR1snA8aWIQ0QDnU7GxrecIAvf2BEvabA855xb_I5aoRWiK-mL6Dm7Y7bL2Vt-H65Sueby8t0Pduu3x2-O3TIGAXj7YkrD9mJwEXAHbGT8_l0uuyccr4g5Pq2uMqUWN57210C0-9KfgqkG36yfsIe240FP29Q8pQ9gP0z9mmIEE4I4QYh3CKE7_bcIIQfKz4FTggxYwYhfICQ52wzn60_Xjj28Awn89AGO7knQBQuKO15ALGWkUvUzJXai5CTZEmQCxWqoPC1m0cCfIjoIOo4zKIilgn4L9hoX-3hJeNag4QMIgCQQZLrWKpYhSLGP1mFQeiP2aSVSHpoeqSkXTdsI78U5Zca-aXumJ22Qkvtv1SnKPhY0t4lGrP3rSD7x7-f7dWfZ3vNHvVYPWWj49U1nCGLPOo3Vve3-FNyew |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishing+Echo+State+Network+in+Order+to+Be+Used+in+Online+Application&rft.jtitle=Operations+Research+Forum&rft.au=Saadat%2C+Javad&rft.au=Farshad%2C+Mohsen&rft.au=Eliasi%2C+Hussein&rft.au=Mehr%2C+Kazem+Shokoohi&rft.date=2025-09-01&rft.pub=Springer+Nature+B.V&rft.eissn=2662-2556&rft.volume=6&rft.issue=3&rft.spage=115&rft_id=info:doi/10.1007%2Fs43069-025-00514-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-2556&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-2556&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-2556&client=summon |