Horse Herd optimization with deep learning based intrusion detection in cloud computing environment

The cloud offers applications, infrastructure, and storage services to consumers that must be secure by some strategies. Hence, security in the cloud is to protect consumer data and structure from malicious users by delivering integrity, availability, confidentiality, and in-time intrusion recogniti...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of information technology (Singapore. Online) Vol. 17; no. 1; pp. 387 - 393
Main Authors Nagamani, Samineni, Arivalagan, S., Senthil, M., Sudhakar, P.
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.01.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2511-2104
2511-2112
DOI10.1007/s41870-024-02199-w

Cover

Abstract The cloud offers applications, infrastructure, and storage services to consumers that must be secure by some strategies. Hence, security in the cloud is to protect consumer data and structure from malicious users by delivering integrity, availability, confidentiality, and in-time intrusion recognition. Utilizing deep learning (DL), intrusion detection systems (IDS) employ advanced neural networks to automatically recognize and respond to fraudulent activities,. By analyzing large-scale datasets of network traffic, DL techniques like Recurrent Neural Network (RNN) and Long Short-Term Memory network (LSTM), can distinguish patterns linked with several cyber-attacks. This study presents a novel Horse Herd Optimization with a Deep Learning based Intrusion Detection Approach (HHODL-IDA) methodology in Cloud Computing. The goal of the HHODL-IDA methodology is to achieve security in the cloud platform by employing intrusion detection. In the HHODL-IDA technique, min-max scalar is primarily utilized to scale the input data. To select the features, the HHODL-IDA technique involves the invasive weed optimization (IWO) technique. Next, the detection of intrusions takes place using attention-based bidirectional LSTM (A-BiLSTM) technique. Eventually, the HHO approach has been executed for the enhanced hyperparameter selection of the A-BiLSTM approach. The experimental value of the HHODL-IDA approach has been executed using a benchmark IDS database. The extensive comparison study stated that the HHODL-IDA approach outcomes in greater detection results in the CC platform.
AbstractList The cloud offers applications, infrastructure, and storage services to consumers that must be secure by some strategies. Hence, security in the cloud is to protect consumer data and structure from malicious users by delivering integrity, availability, confidentiality, and in-time intrusion recognition. Utilizing deep learning (DL), intrusion detection systems (IDS) employ advanced neural networks to automatically recognize and respond to fraudulent activities,. By analyzing large-scale datasets of network traffic, DL techniques like Recurrent Neural Network (RNN) and Long Short-Term Memory network (LSTM), can distinguish patterns linked with several cyber-attacks. This study presents a novel Horse Herd Optimization with a Deep Learning based Intrusion Detection Approach (HHODL-IDA) methodology in Cloud Computing. The goal of the HHODL-IDA methodology is to achieve security in the cloud platform by employing intrusion detection. In the HHODL-IDA technique, min-max scalar is primarily utilized to scale the input data. To select the features, the HHODL-IDA technique involves the invasive weed optimization (IWO) technique. Next, the detection of intrusions takes place using attention-based bidirectional LSTM (A-BiLSTM) technique. Eventually, the HHO approach has been executed for the enhanced hyperparameter selection of the A-BiLSTM approach. The experimental value of the HHODL-IDA approach has been executed using a benchmark IDS database. The extensive comparison study stated that the HHODL-IDA approach outcomes in greater detection results in the CC platform.
Author Senthil, M.
Sudhakar, P.
Arivalagan, S.
Nagamani, Samineni
Author_xml – sequence: 1
  givenname: Samineni
  surname: Nagamani
  fullname: Nagamani, Samineni
  email: maniramesh2004@gmail.com
  organization: Department of CSE, Annamalai University
– sequence: 2
  givenname: S.
  surname: Arivalagan
  fullname: Arivalagan, S.
  organization: Department of CSE, Annamalai University
– sequence: 3
  givenname: M.
  surname: Senthil
  fullname: Senthil, M.
  organization: Department of AIML, QIS College of Engineering and Technology
– sequence: 4
  givenname: P.
  surname: Sudhakar
  fullname: Sudhakar, P.
  organization: Department of CSE, Annamalai University
BookMark eNp9kD1PwzAQhi1UJErpH2CyxBzwZz5GVAFFqsQCs5XYl2LU2MF2iODXk7YINobT3fC8d6fnHM2cd4DQJSXXlJDiJgpaFiQjTExFqyobT9CcSUozRimb_c5EnKFljLYhnLKcy4LOkV77EAGvIRjs-2Q7-1Un6x0ebXrFBqDHO6iDs26LmzqCwdalMMQ9YiCBPsDWYb3zg8Had_2Q9jC4Dxu868ClC3Ta1rsIy5--QC_3d8-rdbZ5enhc3W4yTUs5ZjkhujENFJLRwkhBWgLSlKLJQcP0cMNlVdJa86psSVEbQnXV6oKRXDSSEcEX6Oq4tw_-fYCY1JsfgptOKs6kZExwxieKHSkdfIwBWtUH29XhU1Gi9j7V0aeafKqDTzVOIX4MxQl2Wwh_q_9JfQO3GHv2
Cites_doi 10.1007/s41870-023-01390-9
10.1016/j.advengsoft.2022.103402
10.1016/j.cose.2022.102975
10.1007/s10586-024-04458-8
10.1007/s11277-021-08569-y
10.1016/j.advengsoft.2022.103236
10.3390/sym12101666
10.1007/978-981-16-9089-1_25
10.1109/TITS.2020.3027390
10.3390/app13179588
10.3390/electronics10111257
10.1155/2022/6155925
10.1080/00051144.2023.2288489
10.1007/s41870-023-01509-y
10.1007/s10489-022-04427-x
10.3390/en17020415
10.1016/j.cose.2023.103656
10.1007/s41870-023-01159-0
10.1007/s41870-022-01115-4
10.1007/s11042-024-18162-7
10.1002/jnm.2948
10.3390/en15041488
10.1007/s41870-023-01529-8
10.1201/9781003427674-14
10.1142/S0219649223500582
ContentType Journal Article
Copyright Bharati Vidyapeeth's Institute of Computer Applications and Management 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Bharati Vidyapeeth's Institute of Computer Applications and Management 2024.
Copyright_xml – notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2024.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s41870-024-02199-w
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2511-2112
EndPage 393
ExternalDocumentID 10_1007_s41870_024_02199_w
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AGRTI
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
Z7Z
Z81
Z83
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BGLVJ
CCPQU
CITATION
K7-
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c185w-600cbdbe75217d540f0e5d84b6ece126b35981ac398f07ad01c9fc72064b52043
ISSN 2511-2104
IngestDate Tue Sep 30 03:22:25 EDT 2025
Wed Oct 01 02:38:23 EDT 2025
Fri Feb 21 02:37:02 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Deep learning
Cloud computing
Intrusion detection system
Data normalization
Horse herd optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c185w-600cbdbe75217d540f0e5d84b6ece126b35981ac398f07ad01c9fc72064b52043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255224323
PQPubID 2034493
PageCount 7
ParticipantIDs proquest_journals_3255224323
crossref_primary_10_1007_s41870_024_02199_w
springer_journals_10_1007_s41870_024_02199_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250100
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationSubtitle An Official Journal of Bharati Vidyapeeth's Institute of Computer Applications and Management
PublicationTitle International journal of information technology (Singapore. Online)
PublicationTitleAbbrev Int. j. inf. tecnol
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References 2199_CR25
2199_CR20
A Sarkar (2199_CR7) 2023; 15
2199_CR22
2199_CR21
M Sumathi (2199_CR9) 2023; 15
2199_CR4
2199_CR3
L Karuppusamy (2199_CR5) 2022; 35
2199_CR1
I Nasr (2199_CR6) 2024; 16
MA Wajid (2199_CR10) 2024; 16
BK Pandey (2199_CR19) 2023; 124
2199_CR13
2199_CR12
2199_CR15
2199_CR14
M Abd Elaziz (2199_CR11) 2023; 176
N Nandakumar (2199_CR24) 2024; 65
J Shu (2199_CR2) 2020; 22
L Wen (2199_CR17) 2022; 126
A Parameswari (2199_CR16) 2024; 139
F Sammy (2199_CR18) 2024; 23
A Kumar (2199_CR8) 2024; 16
B Li (2199_CR23) 2024; 17
References_xml – volume: 16
  start-page: 105
  year: 2024
  ident: 2199_CR6
  publication-title: Int j inf Tecnol
  doi: 10.1007/s41870-023-01390-9
– volume: 176
  start-page: 103402
  year: 2023
  ident: 2199_CR11
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2022.103402
– volume: 124
  start-page: 102975
  year: 2023
  ident: 2199_CR19
  publication-title: Computers Secur
  doi: 10.1016/j.cose.2022.102975
– ident: 2199_CR20
  doi: 10.1007/s10586-024-04458-8
– volume: 126
  start-page: 1917
  issue: 3
  year: 2022
  ident: 2199_CR17
  publication-title: Wireless Pers Commun
  doi: 10.1007/s11277-021-08569-y
– ident: 2199_CR13
  doi: 10.1016/j.advengsoft.2022.103236
– ident: 2199_CR25
  doi: 10.3390/sym12101666
– ident: 2199_CR4
  doi: 10.1007/978-981-16-9089-1_25
– volume: 22
  start-page: 4519
  issue: 7
  year: 2020
  ident: 2199_CR2
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.3027390
– ident: 2199_CR15
  doi: 10.3390/app13179588
– ident: 2199_CR1
  doi: 10.3390/electronics10111257
– ident: 2199_CR3
  doi: 10.1155/2022/6155925
– volume: 65
  start-page: 206
  issue: 1
  year: 2024
  ident: 2199_CR24
  publication-title: Automatika
  doi: 10.1080/00051144.2023.2288489
– volume: 16
  start-page: 891
  year: 2024
  ident: 2199_CR8
  publication-title: Int j inf Tecnol
  doi: 10.1007/s41870-023-01509-y
– ident: 2199_CR22
  doi: 10.1007/s10489-022-04427-x
– volume: 17
  start-page: 415
  issue: 2
  year: 2024
  ident: 2199_CR23
  publication-title: Energies
  doi: 10.3390/en17020415
– volume: 139
  start-page: 103656
  year: 2024
  ident: 2199_CR16
  publication-title: Computers Secur
  doi: 10.1016/j.cose.2023.103656
– volume: 15
  start-page: 1357
  year: 2023
  ident: 2199_CR9
  publication-title: Int j inf Tecnol
  doi: 10.1007/s41870-023-01159-0
– volume: 15
  start-page: 423
  year: 2023
  ident: 2199_CR7
  publication-title: Int j inf Tecnol
  doi: 10.1007/s41870-022-01115-4
– ident: 2199_CR12
  doi: 10.1007/s11042-024-18162-7
– volume: 35
  start-page: e2948
  issue: 1
  year: 2022
  ident: 2199_CR5
  publication-title: Int J Numer Model Electron Networks Devices Fields
  doi: 10.1002/jnm.2948
– ident: 2199_CR21
  doi: 10.3390/en15041488
– volume: 16
  start-page: 853
  year: 2024
  ident: 2199_CR10
  publication-title: Int j inf Tecnol
  doi: 10.1007/s41870-023-01529-8
– ident: 2199_CR14
  doi: 10.1201/9781003427674-14
– volume: 23
  start-page: 2350058
  issue: 01
  year: 2024
  ident: 2199_CR18
  publication-title: J Inform Knowl Manage
  doi: 10.1142/S0219649223500582
SSID ssib031263571
ssj0002710285
Score 2.2809477
Snippet The cloud offers applications, infrastructure, and storage services to consumers that must be secure by some strategies. Hence, security in the cloud is to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 387
SubjectTerms Accuracy
Artificial Intelligence
Classification
Cloud computing
Communications traffic
Computer Imaging
Computer Science
Cybersecurity
Datasets
Deep learning
Deer
Feature selection
Image Processing and Computer Vision
Intrusion detection systems
Machine Learning
Neural networks
Optimization
Optimization algorithms
Original Research
Pattern Recognition and Graphics
Recurrent neural networks
Software
Software Engineering
Support vector machines
Vision
Title Horse Herd optimization with deep learning based intrusion detection in cloud computing environment
URI https://link.springer.com/article/10.1007/s41870-024-02199-w
https://www.proquest.com/docview/3255224323
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2511-2112
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: AFBBN
  dateStart: 20170301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JbxMxFLZCeoFDxSpSCvIBcRmmmn05pkAUtqhSWqm3kbd0gSRDkygSv5EfxXu2Z2sAAYeMIs_Imnnvs9_itxDyUs7CLE155qa-AAMl4onLAq7cTEbc50wl0sN858-TZHwWfTiPz3u9H62opc2aH4nvv8wr-R-uwhjwFbNk_4Gz9aQwAP-Bv3AFDsP1r3g8Xt6sFEiOG-ksYenPbU6lca5KpcqqKcSFg9IKyyxhjgU-ItVaiSrQUXxdbnR2W7nRUdCt7Le28tr1HnZqTtQ5kM669tWj8jrFjtslVsp02kVNjf-ZXbC5aSnlTNkcbi6uGvxdAaHgga57dgpvdGm81k0f5I28ZF9MnPhJ24kRxLecGJUTEyO08dykTrLBfRCNIDewXYqPVHvM727k6Q5gza4cWpluBHxoWjLuyA4TLrKK_Ax78QQR_Pw8d7eNpKyiA8bDaXHydlR8ej_5-Kr85mIPMzzrtw1d7pC9AGSM1yd7w9Hx8aTa30IfK_9Y9ftaH_qieodRtvU32rwund258yZd3akxiG6d4WvV6PQ-2bc2DR0agD4gPbV4SO61Kl0-IkJDlSJUaRuqFKFKEaq0girVUKU1VGkNVRijGqq0hiptQfUxORu9O30zdm1_D1eAlrh1QdcWXHKVggqZSjAdZp6KZQb7hRIKaMWxuqTPRJhnMy9l0vNFPhNpAFo0jzGn-wnpL5YL9ZTQWOaJDCKeJp6IcpmxJMpkLlTmwQ7lCTYgTkW5ojRlXIq6YLemcwF0LjSdi-2AHFbELexiWhUhGN-g74ZBOCCvK4I3t38_28GfZ3tG7jYr4pD0gbjqOSi6a_7C4ucngR-sXQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Horse+Herd+optimization+with+deep+learning+based+intrusion+detection+in+cloud+computing+environment&rft.jtitle=International+journal+of+information+technology+%28Singapore.+Online%29&rft.au=Nagamani%2C+Samineni&rft.au=Arivalagan%2C+S&rft.au=Senthil%2C+M&rft.au=Sudhakar%2C+P&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=2511-2104&rft.eissn=2511-2112&rft.volume=17&rft.issue=1&rft.spage=387&rft.epage=393&rft_id=info:doi/10.1007%2Fs41870-024-02199-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-2104&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-2104&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-2104&client=summon