Horse Herd optimization with deep learning based intrusion detection in cloud computing environment
The cloud offers applications, infrastructure, and storage services to consumers that must be secure by some strategies. Hence, security in the cloud is to protect consumer data and structure from malicious users by delivering integrity, availability, confidentiality, and in-time intrusion recogniti...
        Saved in:
      
    
          | Published in | International journal of information technology (Singapore. Online) Vol. 17; no. 1; pp. 387 - 393 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Singapore
          Springer Nature Singapore
    
        01.01.2025
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2511-2104 2511-2112  | 
| DOI | 10.1007/s41870-024-02199-w | 
Cover
| Abstract | The cloud offers applications, infrastructure, and storage services to consumers that must be secure by some strategies. Hence, security in the cloud is to protect consumer data and structure from malicious users by delivering integrity, availability, confidentiality, and in-time intrusion recognition. Utilizing deep learning (DL), intrusion detection systems (IDS) employ advanced neural networks to automatically recognize and respond to fraudulent activities,. By analyzing large-scale datasets of network traffic, DL techniques like Recurrent Neural Network (RNN) and Long Short-Term Memory network (LSTM), can distinguish patterns linked with several cyber-attacks. This study presents a novel Horse Herd Optimization with a Deep Learning based Intrusion Detection Approach (HHODL-IDA) methodology in Cloud Computing. The goal of the HHODL-IDA methodology is to achieve security in the cloud platform by employing intrusion detection. In the HHODL-IDA technique, min-max scalar is primarily utilized to scale the input data. To select the features, the HHODL-IDA technique involves the invasive weed optimization (IWO) technique. Next, the detection of intrusions takes place using attention-based bidirectional LSTM (A-BiLSTM) technique. Eventually, the HHO approach has been executed for the enhanced hyperparameter selection of the A-BiLSTM approach. The experimental value of the HHODL-IDA approach has been executed using a benchmark IDS database. The extensive comparison study stated that the HHODL-IDA approach outcomes in greater detection results in the CC platform. | 
    
|---|---|
| AbstractList | The cloud offers applications, infrastructure, and storage services to consumers that must be secure by some strategies. Hence, security in the cloud is to protect consumer data and structure from malicious users by delivering integrity, availability, confidentiality, and in-time intrusion recognition. Utilizing deep learning (DL), intrusion detection systems (IDS) employ advanced neural networks to automatically recognize and respond to fraudulent activities,. By analyzing large-scale datasets of network traffic, DL techniques like Recurrent Neural Network (RNN) and Long Short-Term Memory network (LSTM), can distinguish patterns linked with several cyber-attacks. This study presents a novel Horse Herd Optimization with a Deep Learning based Intrusion Detection Approach (HHODL-IDA) methodology in Cloud Computing. The goal of the HHODL-IDA methodology is to achieve security in the cloud platform by employing intrusion detection. In the HHODL-IDA technique, min-max scalar is primarily utilized to scale the input data. To select the features, the HHODL-IDA technique involves the invasive weed optimization (IWO) technique. Next, the detection of intrusions takes place using attention-based bidirectional LSTM (A-BiLSTM) technique. Eventually, the HHO approach has been executed for the enhanced hyperparameter selection of the A-BiLSTM approach. The experimental value of the HHODL-IDA approach has been executed using a benchmark IDS database. The extensive comparison study stated that the HHODL-IDA approach outcomes in greater detection results in the CC platform. | 
    
| Author | Senthil, M. Sudhakar, P. Arivalagan, S. Nagamani, Samineni  | 
    
| Author_xml | – sequence: 1 givenname: Samineni surname: Nagamani fullname: Nagamani, Samineni email: maniramesh2004@gmail.com organization: Department of CSE, Annamalai University – sequence: 2 givenname: S. surname: Arivalagan fullname: Arivalagan, S. organization: Department of CSE, Annamalai University – sequence: 3 givenname: M. surname: Senthil fullname: Senthil, M. organization: Department of AIML, QIS College of Engineering and Technology – sequence: 4 givenname: P. surname: Sudhakar fullname: Sudhakar, P. organization: Department of CSE, Annamalai University  | 
    
| BookMark | eNp9kD1PwzAQhi1UJErpH2CyxBzwZz5GVAFFqsQCs5XYl2LU2MF2iODXk7YINobT3fC8d6fnHM2cd4DQJSXXlJDiJgpaFiQjTExFqyobT9CcSUozRimb_c5EnKFljLYhnLKcy4LOkV77EAGvIRjs-2Q7-1Un6x0ebXrFBqDHO6iDs26LmzqCwdalMMQ9YiCBPsDWYb3zg8Had_2Q9jC4Dxu868ClC3Ta1rsIy5--QC_3d8-rdbZ5enhc3W4yTUs5ZjkhujENFJLRwkhBWgLSlKLJQcP0cMNlVdJa86psSVEbQnXV6oKRXDSSEcEX6Oq4tw_-fYCY1JsfgptOKs6kZExwxieKHSkdfIwBWtUH29XhU1Gi9j7V0aeafKqDTzVOIX4MxQl2Wwh_q_9JfQO3GHv2 | 
    
| Cites_doi | 10.1007/s41870-023-01390-9 10.1016/j.advengsoft.2022.103402 10.1016/j.cose.2022.102975 10.1007/s10586-024-04458-8 10.1007/s11277-021-08569-y 10.1016/j.advengsoft.2022.103236 10.3390/sym12101666 10.1007/978-981-16-9089-1_25 10.1109/TITS.2020.3027390 10.3390/app13179588 10.3390/electronics10111257 10.1155/2022/6155925 10.1080/00051144.2023.2288489 10.1007/s41870-023-01509-y 10.1007/s10489-022-04427-x 10.3390/en17020415 10.1016/j.cose.2023.103656 10.1007/s41870-023-01159-0 10.1007/s41870-022-01115-4 10.1007/s11042-024-18162-7 10.1002/jnm.2948 10.3390/en15041488 10.1007/s41870-023-01529-8 10.1201/9781003427674-14 10.1142/S0219649223500582  | 
    
| ContentType | Journal Article | 
    
| Copyright | Bharati Vidyapeeth's Institute of Computer Applications and Management 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Bharati Vidyapeeth's Institute of Computer Applications and Management 2024.  | 
    
| Copyright_xml | – notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2024.  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1007/s41870-024-02199-w | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 2511-2112 | 
    
| EndPage | 393 | 
    
| ExternalDocumentID | 10_1007_s41870_024_02199_w | 
    
| GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAIAL AAJBT AANZL AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFQWF AGDGC AGMZJ AGQEE AGRTI AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW Z7Z Z81 Z83 Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA BGLVJ CCPQU CITATION K7- PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c185w-600cbdbe75217d540f0e5d84b6ece126b35981ac398f07ad01c9fc72064b52043 | 
    
| ISSN | 2511-2104 | 
    
| IngestDate | Tue Sep 30 03:22:25 EDT 2025 Wed Oct 01 02:38:23 EDT 2025 Fri Feb 21 02:37:02 EST 2025  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Deep learning Cloud computing Intrusion detection system Data normalization Horse herd optimization  | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c185w-600cbdbe75217d540f0e5d84b6ece126b35981ac398f07ad01c9fc72064b52043 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3255224323 | 
    
| PQPubID | 2034493 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | proquest_journals_3255224323 crossref_primary_10_1007_s41870_024_02199_w springer_journals_10_1007_s41870_024_02199_w  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20250100 | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – month: 1 year: 2025 text: 20250100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Singapore | 
    
| PublicationPlace_xml | – name: Singapore – name: Heidelberg  | 
    
| PublicationSubtitle | An Official Journal of Bharati Vidyapeeth's Institute of Computer Applications and Management | 
    
| PublicationTitle | International journal of information technology (Singapore. Online) | 
    
| PublicationTitleAbbrev | Int. j. inf. tecnol | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer Nature Singapore Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V  | 
    
| References | 2199_CR25 2199_CR20 A Sarkar (2199_CR7) 2023; 15 2199_CR22 2199_CR21 M Sumathi (2199_CR9) 2023; 15 2199_CR4 2199_CR3 L Karuppusamy (2199_CR5) 2022; 35 2199_CR1 I Nasr (2199_CR6) 2024; 16 MA Wajid (2199_CR10) 2024; 16 BK Pandey (2199_CR19) 2023; 124 2199_CR13 2199_CR12 2199_CR15 2199_CR14 M Abd Elaziz (2199_CR11) 2023; 176 N Nandakumar (2199_CR24) 2024; 65 J Shu (2199_CR2) 2020; 22 L Wen (2199_CR17) 2022; 126 A Parameswari (2199_CR16) 2024; 139 F Sammy (2199_CR18) 2024; 23 A Kumar (2199_CR8) 2024; 16 B Li (2199_CR23) 2024; 17  | 
    
| References_xml | – volume: 16 start-page: 105 year: 2024 ident: 2199_CR6 publication-title: Int j inf Tecnol doi: 10.1007/s41870-023-01390-9 – volume: 176 start-page: 103402 year: 2023 ident: 2199_CR11 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2022.103402 – volume: 124 start-page: 102975 year: 2023 ident: 2199_CR19 publication-title: Computers Secur doi: 10.1016/j.cose.2022.102975 – ident: 2199_CR20 doi: 10.1007/s10586-024-04458-8 – volume: 126 start-page: 1917 issue: 3 year: 2022 ident: 2199_CR17 publication-title: Wireless Pers Commun doi: 10.1007/s11277-021-08569-y – ident: 2199_CR13 doi: 10.1016/j.advengsoft.2022.103236 – ident: 2199_CR25 doi: 10.3390/sym12101666 – ident: 2199_CR4 doi: 10.1007/978-981-16-9089-1_25 – volume: 22 start-page: 4519 issue: 7 year: 2020 ident: 2199_CR2 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.3027390 – ident: 2199_CR15 doi: 10.3390/app13179588 – ident: 2199_CR1 doi: 10.3390/electronics10111257 – ident: 2199_CR3 doi: 10.1155/2022/6155925 – volume: 65 start-page: 206 issue: 1 year: 2024 ident: 2199_CR24 publication-title: Automatika doi: 10.1080/00051144.2023.2288489 – volume: 16 start-page: 891 year: 2024 ident: 2199_CR8 publication-title: Int j inf Tecnol doi: 10.1007/s41870-023-01509-y – ident: 2199_CR22 doi: 10.1007/s10489-022-04427-x – volume: 17 start-page: 415 issue: 2 year: 2024 ident: 2199_CR23 publication-title: Energies doi: 10.3390/en17020415 – volume: 139 start-page: 103656 year: 2024 ident: 2199_CR16 publication-title: Computers Secur doi: 10.1016/j.cose.2023.103656 – volume: 15 start-page: 1357 year: 2023 ident: 2199_CR9 publication-title: Int j inf Tecnol doi: 10.1007/s41870-023-01159-0 – volume: 15 start-page: 423 year: 2023 ident: 2199_CR7 publication-title: Int j inf Tecnol doi: 10.1007/s41870-022-01115-4 – ident: 2199_CR12 doi: 10.1007/s11042-024-18162-7 – volume: 35 start-page: e2948 issue: 1 year: 2022 ident: 2199_CR5 publication-title: Int J Numer Model Electron Networks Devices Fields doi: 10.1002/jnm.2948 – ident: 2199_CR21 doi: 10.3390/en15041488 – volume: 16 start-page: 853 year: 2024 ident: 2199_CR10 publication-title: Int j inf Tecnol doi: 10.1007/s41870-023-01529-8 – ident: 2199_CR14 doi: 10.1201/9781003427674-14 – volume: 23 start-page: 2350058 issue: 01 year: 2024 ident: 2199_CR18 publication-title: J Inform Knowl Manage doi: 10.1142/S0219649223500582  | 
    
| SSID | ssib031263571 ssj0002710285  | 
    
| Score | 2.2809477 | 
    
| Snippet | The cloud offers applications, infrastructure, and storage services to consumers that must be secure by some strategies. Hence, security in the cloud is to... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 387 | 
    
| SubjectTerms | Accuracy Artificial Intelligence Classification Cloud computing Communications traffic Computer Imaging Computer Science Cybersecurity Datasets Deep learning Deer Feature selection Image Processing and Computer Vision Intrusion detection systems Machine Learning Neural networks Optimization Optimization algorithms Original Research Pattern Recognition and Graphics Recurrent neural networks Software Software Engineering Support vector machines Vision  | 
    
| Title | Horse Herd optimization with deep learning based intrusion detection in cloud computing environment | 
    
| URI | https://link.springer.com/article/10.1007/s41870-024-02199-w https://www.proquest.com/docview/3255224323  | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2511-2112 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002710285 issn: 2511-2104 databaseCode: AFBBN dateStart: 20170301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JbxMxFLZCeoFDxSpSCvIBcRmmmn05pkAUtqhSWqm3kbd0gSRDkygSv5EfxXu2Z2sAAYeMIs_Imnnvs9_itxDyUs7CLE155qa-AAMl4onLAq7cTEbc50wl0sN858-TZHwWfTiPz3u9H62opc2aH4nvv8wr-R-uwhjwFbNk_4Gz9aQwAP-Bv3AFDsP1r3g8Xt6sFEiOG-ksYenPbU6lca5KpcqqKcSFg9IKyyxhjgU-ItVaiSrQUXxdbnR2W7nRUdCt7Le28tr1HnZqTtQ5kM669tWj8jrFjtslVsp02kVNjf-ZXbC5aSnlTNkcbi6uGvxdAaHgga57dgpvdGm81k0f5I28ZF9MnPhJ24kRxLecGJUTEyO08dykTrLBfRCNIDewXYqPVHvM727k6Q5gza4cWpluBHxoWjLuyA4TLrKK_Ax78QQR_Pw8d7eNpKyiA8bDaXHydlR8ej_5-Kr85mIPMzzrtw1d7pC9AGSM1yd7w9Hx8aTa30IfK_9Y9ftaH_qieodRtvU32rwund258yZd3akxiG6d4WvV6PQ-2bc2DR0agD4gPbV4SO61Kl0-IkJDlSJUaRuqFKFKEaq0girVUKU1VGkNVRijGqq0hiptQfUxORu9O30zdm1_D1eAlrh1QdcWXHKVggqZSjAdZp6KZQb7hRIKaMWxuqTPRJhnMy9l0vNFPhNpAFo0jzGn-wnpL5YL9ZTQWOaJDCKeJp6IcpmxJMpkLlTmwQ7lCTYgTkW5ojRlXIq6YLemcwF0LjSdi-2AHFbELexiWhUhGN-g74ZBOCCvK4I3t38_28GfZ3tG7jYr4pD0gbjqOSi6a_7C4ucngR-sXQ | 
    
| linkProvider | Library Specific Holdings | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Horse+Herd+optimization+with+deep+learning+based+intrusion+detection+in+cloud+computing+environment&rft.jtitle=International+journal+of+information+technology+%28Singapore.+Online%29&rft.au=Nagamani%2C+Samineni&rft.au=Arivalagan%2C+S&rft.au=Senthil%2C+M&rft.au=Sudhakar%2C+P&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=2511-2104&rft.eissn=2511-2112&rft.volume=17&rft.issue=1&rft.spage=387&rft.epage=393&rft_id=info:doi/10.1007%2Fs41870-024-02199-w&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-2104&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-2104&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-2104&client=summon |