Photovoltaic power prediction based on multi-scale photovoltaic power fluctuation characteristics and multi-channel LSTM prediction models
The global shortage of non-renewable energy sources has catalyzed the vigorous development of photovoltaic (PV) energy. Accurate prediction of PV power output is essential for ensuring the safety and stability of integrating small-scale PV systems into the power grid. Therefore, this paper proposes...
Saved in:
| Published in | Renewable energy Vol. 246; p. 122866 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.06.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0960-1481 |
| DOI | 10.1016/j.renene.2025.122866 |
Cover
| Abstract | The global shortage of non-renewable energy sources has catalyzed the vigorous development of photovoltaic (PV) energy. Accurate prediction of PV power output is essential for ensuring the safety and stability of integrating small-scale PV systems into the power grid. Therefore, this paper proposes a hybrid multi-station parallel PV power prediction method (MCFC-MAOA-MCLSTM-Attention) based on multi-scale historical PV power fluctuation feature extraction. First, for the problem of variable weather types due to the existence of strong fluctuations in meteorological factors, a weather classification algorithm based on multi-scale fluctuation characteristics (MCFC) is proposed, and combined with the similar day algorithm to select the classified meteorological data secondly and improve the correlation between the data. Subsequently, this paper proposes a multi-channel structured long and short-term neural network modeling method (MCLSTM) to further extract the spatio-temporal correlation of different PV sites in the region and realize the integrated prediction based on geographic location and time series. To address the challenges associated with calibrating model parameters, which significantly impact the prediction accuracy, the modified Archimedean optimization approach (MAOA) was employed to optimize these parameters. The experimental results demonstrate that the model is both highly reliable and generalizable for predicting photovoltaic power data.
•A new PV power prediction model is proposed.•Analyzed PV power fluctuation characteristics for weather classification.•Multi-Channel Prediction Models Based on Long and Short-Term Networks.•Experimental results show the advantages of the method for PV prediction. |
|---|---|
| AbstractList | The global shortage of non-renewable energy sources has catalyzed the vigorous development of photovoltaic (PV) energy. Accurate prediction of PV power output is essential for ensuring the safety and stability of integrating small-scale PV systems into the power grid. Therefore, this paper proposes a hybrid multi-station parallel PV power prediction method (MCFC-MAOA-MCLSTM-Attention) based on multi-scale historical PV power fluctuation feature extraction. First, for the problem of variable weather types due to the existence of strong fluctuations in meteorological factors, a weather classification algorithm based on multi-scale fluctuation characteristics (MCFC) is proposed, and combined with the similar day algorithm to select the classified meteorological data secondly and improve the correlation between the data. Subsequently, this paper proposes a multi-channel structured long and short-term neural network modeling method (MCLSTM) to further extract the spatio-temporal correlation of different PV sites in the region and realize the integrated prediction based on geographic location and time series. To address the challenges associated with calibrating model parameters, which significantly impact the prediction accuracy, the modified Archimedean optimization approach (MAOA) was employed to optimize these parameters. The experimental results demonstrate that the model is both highly reliable and generalizable for predicting photovoltaic power data.
•A new PV power prediction model is proposed.•Analyzed PV power fluctuation characteristics for weather classification.•Multi-Channel Prediction Models Based on Long and Short-Term Networks.•Experimental results show the advantages of the method for PV prediction. |
| ArticleNumber | 122866 |
| Author | Bian, Wenlin Wang, Qinghong Wang, Shuang Sun, Fengpeng Li, Longhao Bian, Dunxin |
| Author_xml | – sequence: 1 givenname: Fengpeng surname: Sun fullname: Sun, Fengpeng – sequence: 2 givenname: Longhao surname: Li fullname: Li, Longhao email: lilonghao@sdut.edu.cn – sequence: 3 givenname: Dunxin surname: Bian fullname: Bian, Dunxin – sequence: 4 givenname: Wenlin surname: Bian fullname: Bian, Wenlin – sequence: 5 givenname: Qinghong surname: Wang fullname: Wang, Qinghong – sequence: 6 givenname: Shuang surname: Wang fullname: Wang, Shuang |
| BookMark | eNp9kN1KAzEQhXNRwbb6Bl7sC-yaZP-yN4IU_2BFwXodstkJTUmTJUkrvoJP7dbthSDIXMyB4TszcxZoZp0FhK4Izggm1fU282DHyiimZUYoZVU1Q3PcVDglBSPnaBHCFmNSsrqYo6_XjYvu4EwUWiaD-wCfDB56LaN2NulEgD4ZxW5vok6DFAaS4S-izF7Gvfhh5EZ4ISN4HaKWIRG2P-HjxFowSfu2fv69Zed6MOECnSlhAlye-hK939-tV49p-_LwtLptU0lYGdMa45qSMqd5jUVTYMy6vIKik3XeqI4ppqqmYEyBGCWtCWUUN0D6mvVAKyXyJSomX-ldCB4UH7zeCf_JCebHDPmWTxnyY4Z8ynDEbiZsPBUOGjwPUoOV4xceZOS90_8bfAOX3oQi |
| Cites_doi | 10.1007/s11783-023-1688-y 10.1016/j.egyr.2023.05.128 10.1016/j.enconman.2023.116907 10.1016/j.renene.2021.02.161 10.1016/j.measurement.2023.112462 10.1016/j.renene.2023.01.118 10.1007/s10489-020-01893-z 10.1016/j.energy.2022.123587 10.1016/j.energy.2023.127009 10.3390/en15062243 10.1016/j.energy.2023.127557 10.1109/TIA.2022.3213008 10.1016/j.rser.2022.112680 10.1016/j.renene.2023.03.029 10.1016/j.energy.2023.127348 10.1016/j.ref.2023.04.010 10.1063/5.0198444 10.1016/j.epsr.2022.109035 10.1016/j.energy.2022.125592 10.1016/j.renene.2021.02.103 10.1016/j.apenergy.2024.122709 10.1016/j.measurement.2023.113208 10.1016/j.apenergy.2024.123239 10.1007/s00521-022-07925-8 10.1016/j.enconman.2018.10.015 10.1016/j.renene.2019.12.131 10.1016/j.apenergy.2021.117083 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.renene.2025.122866 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_renene_2025_122866 S0960148125005282 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSR SST SSZ T5K TN5 ZCA ~02 ~G- 29P AAQXK AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEUPX AFPUW AGQPQ AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SAC SEN SET WUQ ~HD |
| ID | FETCH-LOGICAL-c185t-700721532370a94008b36e4bc739fb8f8f69488feaf8f27128209e1d78de26fa3 |
| IEDL.DBID | .~1 |
| ISSN | 0960-1481 |
| IngestDate | Wed Oct 01 06:31:56 EDT 2025 Sat May 24 17:06:36 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Spatio-temporal correlation, MCLSTM PV power fluctuations Artificial neural network Solar photovoltaic power forecast |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c185t-700721532370a94008b36e4bc739fb8f8f69488feaf8f27128209e1d78de26fa3 |
| ParticipantIDs | crossref_primary_10_1016_j_renene_2025_122866 elsevier_sciencedirect_doi_10_1016_j_renene_2025_122866 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-15 |
| PublicationDateYYYYMMDD | 2025-06-15 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Renewable energy |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Dou, Wang, Shan, Li, Wang, Zhang, Wei, Sreeram (bib11) 2024; 365 Neggaz, Neggaz, Fizazi (bib17) 2023; 35 Thaker, Höller (bib15) 2024 Yu, Niu, Wang, Du, Yu, Sun, Wang (bib24) 2023; 275 Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (bib16) 2021; 51 Zhang, Zhen, Liu, Zhao, Sun, Feng, Wang (bib12) 2022; 59 Zheng, Su, Sun, Guo (bib30) 2023; 271 Zhu, Li, Luo, Zhang, Cui, Yu (bib5) 2023; 208 Wang, Mao, Xie, Liao, Zhang, Li (bib9) 2023; 262 Sadeghi, Golshanfard, Eslami, Rahbar, Kari (bib2) 2023; 45 Lu (bib28) 2023; 220 Heo, Song, Han, Lee (bib22) 2021; 295 Fathy, Babu, Abdelkareem, Rezk, Yousri (bib19) 2022; 248 Akhter, Mekhilef, Mokhlis, Almohaimeed, Muhammad, Khairuddin, Akram, Hussain (bib10) 2022; 15 Qin, Jiang, Lu, Yao, Zhou (bib1) 2022; 167 Li, Li, Zhang, Jiao, Wang, Liu, Wu (bib21) 2023; 277 Zhang, Zhen, Liu, Zhao, Sun, Feng, Wang (bib6) 2022; 59 Kharrich, Selim, Kamel, Kim (bib20) 2023; 283 Huang, Li, Tai, Chen, Zhang, Shi, Gao, Liu (bib32) 2021; 171 Li, Wei, Yang (bib26) 2023; 208 Sharadga, Hajimirza, Balog (bib31) 2020; 150 Lin, Peng, Lai, Cheng, Chen, Wu (bib25) 2018; 177 Wang, Ma, Wang, Kari, Tang (bib27) 2024; 16 Limouni, Yaagoubi, Bouziane, Guissi, Baali (bib8) 2023; 205 Hassan, Bailek, Bouchouicha, Nwokolo (bib3) 2021; 171 Zhang, Liu, Chen (bib4) 2023; 216 Gong, Ji, Tang, Zhou (bib7) 2023; 9 Netsanet, Zheng, Zhang, Teshager (bib23) 2022; 8 Hu, Gao, Ji, Mae, Imaizumi (bib13) 2024; 359 Zhu, Li, Luo, Zhang, Cui, Yu (bib29) 2023; 208 Li, Li, Huang, Liu, Wang (bib18) 2023; 75 Wang, Wang, Wu (bib14) 2023; 17 Dou (10.1016/j.renene.2025.122866_bib11) 2024; 365 Li (10.1016/j.renene.2025.122866_bib21) 2023; 277 Akhter (10.1016/j.renene.2025.122866_bib10) 2022; 15 Yu (10.1016/j.renene.2025.122866_bib24) 2023; 275 Wang (10.1016/j.renene.2025.122866_bib27) 2024; 16 Hassan (10.1016/j.renene.2025.122866_bib3) 2021; 171 Qin (10.1016/j.renene.2025.122866_bib1) 2022; 167 Fathy (10.1016/j.renene.2025.122866_bib19) 2022; 248 Zhang (10.1016/j.renene.2025.122866_bib12) 2022; 59 Lu (10.1016/j.renene.2025.122866_bib28) 2023; 220 Wang (10.1016/j.renene.2025.122866_bib14) 2023; 17 Li (10.1016/j.renene.2025.122866_bib26) 2023; 208 Hashim (10.1016/j.renene.2025.122866_bib16) 2021; 51 Netsanet (10.1016/j.renene.2025.122866_bib23) 2022; 8 Hu (10.1016/j.renene.2025.122866_bib13) 2024; 359 Huang (10.1016/j.renene.2025.122866_bib32) 2021; 171 Zhang (10.1016/j.renene.2025.122866_bib4) 2023; 216 Neggaz (10.1016/j.renene.2025.122866_bib17) 2023; 35 Thaker (10.1016/j.renene.2025.122866_bib15) 2024 Li (10.1016/j.renene.2025.122866_bib18) 2023; 75 Sadeghi (10.1016/j.renene.2025.122866_bib2) 2023; 45 Wang (10.1016/j.renene.2025.122866_bib9) 2023; 262 Kharrich (10.1016/j.renene.2025.122866_bib20) 2023; 283 Limouni (10.1016/j.renene.2025.122866_bib8) 2023; 205 Gong (10.1016/j.renene.2025.122866_bib7) 2023; 9 Lin (10.1016/j.renene.2025.122866_bib25) 2018; 177 Zhu (10.1016/j.renene.2025.122866_bib29) 2023; 208 Zheng (10.1016/j.renene.2025.122866_bib30) 2023; 271 Zhu (10.1016/j.renene.2025.122866_bib5) 2023; 208 Zhang (10.1016/j.renene.2025.122866_bib6) 2022; 59 Heo (10.1016/j.renene.2025.122866_bib22) 2021; 295 Sharadga (10.1016/j.renene.2025.122866_bib31) 2020; 150 |
| References_xml | – volume: 359 year: 2024 ident: bib13 article-title: Improved multistep ahead photovoltaic power prediction model based on lstm and self-attention with weather forecast data publication-title: Appl. Energy – volume: 150 start-page: 797 year: 2020 end-page: 807 ident: bib31 article-title: Time series forecasting of solar power generation for large-scale photovoltaic plants publication-title: Renew. Energy – volume: 208 year: 2023 ident: bib26 article-title: Decomposition integration and error correction method for photovoltaic power forecasting publication-title: Measurement – volume: 216 year: 2023 ident: bib4 article-title: Interval prediction of ultra-short-term photovoltaic power based on a hybrid model publication-title: Elec. Power Syst. Res. – year: 2024 ident: bib15 article-title: Hybrid Model for Intra-day Probabilistic Pv Power Forecast – volume: 59 start-page: 345 year: 2022 end-page: 357 ident: bib12 article-title: Optimal graph structure based short-term solar pv power forecasting method considering surrounding spatio-temporal correlations publication-title: IEEE Trans. Ind. Appl. – volume: 51 start-page: 1531 year: 2021 end-page: 1551 ident: bib16 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl. Intell. – volume: 295 year: 2021 ident: bib22 article-title: Multi-channel convolutional neural network for integration of meteorological and geographical features in solar power forecasting publication-title: Appl. Energy – volume: 171 start-page: 191 year: 2021 end-page: 209 ident: bib3 article-title: Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks publication-title: Renew. Energy – volume: 275 year: 2023 ident: bib24 article-title: Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and woa-bilstm-attention and considering weather classification publication-title: Energy – volume: 208 start-page: 141 year: 2023 end-page: 151 ident: bib29 article-title: Short-term pv power forecast methodology based on multi-scale fluctuation characteristics extraction publication-title: Renew. Energy – volume: 171 start-page: 1041 year: 2021 end-page: 1060 ident: bib32 article-title: Hybrid deep neural model for hourly solar irradiance forecasting publication-title: Renew. Energy – volume: 248 year: 2022 ident: bib19 article-title: Recent approach based heterogeneous comprehensive learning archimedes optimization algorithm for identifying the optimal parameters of different fuel cells publication-title: Energy – volume: 283 year: 2023 ident: bib20 article-title: An effective design of hybrid renewable energy system using an improved Archimedes Optimization Algorithm: A case study of Farafra, Egypt publication-title: Energy Convers. Manag. – volume: 35 start-page: 3903 year: 2023 end-page: 3923 ident: bib17 article-title: Boosting archimedes optimization algorithm using trigonometric operators based on feature selection for facial analysis publication-title: Neural Comput. Appl. – volume: 205 start-page: 1010 year: 2023 end-page: 1024 ident: bib8 article-title: Accurate one step and multistep forecasting of very short-term pv power using lstm-tcn model publication-title: Renew. Energy – volume: 8 year: 2022 ident: bib23 article-title: Short-term pv power forecasting using variational mode decomposition integrated with ant colony optimization and neural network publication-title: Energy Rep. – volume: 167 year: 2022 ident: bib1 article-title: Enhancing solar pv output forecast by integrating ground and satellite observations with deep learning publication-title: Renew. Sustain. Energy Rev. – volume: 262 year: 2023 ident: bib9 article-title: Accurate solar pv power prediction interval method based on frequency-domain decomposition and lstm model publication-title: Energy – volume: 365 year: 2024 ident: bib11 article-title: Day-ahead numerical weather prediction solar irradiance correction using a clustering method based on weather conditions publication-title: Appl. Energy – volume: 16 year: 2024 ident: bib27 article-title: Short-term photovoltaic power prediction model based on hierarchical clustering of k-means++ algorithm and deep learning hybrid model publication-title: J. Renew. Sustain. Energy – volume: 220 year: 2023 ident: bib28 article-title: Day-ahead photovoltaic power forecasting using hybrid k-means++ and improved deep neural network publication-title: Measurement – volume: 9 start-page: 135 year: 2023 end-page: 143 ident: bib7 article-title: Multi-scale regional photovoltaic power generation forecasting method based on sequence coding reconstruction publication-title: Energy Rep. – volume: 75 year: 2023 ident: bib18 article-title: Photovoltaic power prediction method for zero energy consumption buildings based on multi-feature fuzzy clustering and maoa-esn publication-title: J. Build. Eng. – volume: 45 start-page: 242 year: 2023 end-page: 258 ident: bib2 article-title: Improving pv power plant forecast accuracy: a hybrid deep learning approach compared across short, medium, and long-term horizons publication-title: Renew. Energy Focus – volume: 208 start-page: 141 year: 2023 end-page: 151 ident: bib5 article-title: Short-term pv power forecast methodology based on multi-scale fluctuation characteristics extraction publication-title: Renew. Energy – volume: 277 year: 2023 ident: bib21 article-title: Research on short-term photovoltaic power prediction based on multi-scale similar days and esn-kelm dual core prediction model publication-title: Energy – volume: 17 start-page: 88 year: 2023 ident: bib14 article-title: A novel hybrid model for water quality prediction based on vmd and igoa optimized for lstm publication-title: Front. Environ. Sci. Eng. – volume: 177 start-page: 704 year: 2018 end-page: 717 ident: bib25 article-title: Short-term power prediction for photovoltaic power plants using a hybrid improved kmeans-gra-elman model based on multivariate meteorological factors and historical power datasets publication-title: Energy Convers. Manag. – volume: 15 start-page: 2243 year: 2022 ident: bib10 article-title: An hour-ahead pv power forecasting method based on an rnn-lstm model for three different pv plants publication-title: Energies – volume: 59 start-page: 345 year: 2022 end-page: 357 ident: bib6 article-title: Optimal graph structure based short-term solar pv power forecasting method considering surrounding spatio-temporal correlations publication-title: IEEE Trans. Ind. Appl. – volume: 271 year: 2023 ident: bib30 article-title: Historical pv-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of pv output publication-title: Energy – volume: 17 start-page: 88 year: 2023 ident: 10.1016/j.renene.2025.122866_bib14 article-title: A novel hybrid model for water quality prediction based on vmd and igoa optimized for lstm publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-023-1688-y – volume: 9 start-page: 135 year: 2023 ident: 10.1016/j.renene.2025.122866_bib7 article-title: Multi-scale regional photovoltaic power generation forecasting method based on sequence coding reconstruction publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.05.128 – volume: 283 year: 2023 ident: 10.1016/j.renene.2025.122866_bib20 article-title: An effective design of hybrid renewable energy system using an improved Archimedes Optimization Algorithm: A case study of Farafra, Egypt publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2023.116907 – volume: 171 start-page: 1041 year: 2021 ident: 10.1016/j.renene.2025.122866_bib32 article-title: Hybrid deep neural model for hourly solar irradiance forecasting publication-title: Renew. Energy doi: 10.1016/j.renene.2021.02.161 – volume: 208 year: 2023 ident: 10.1016/j.renene.2025.122866_bib26 article-title: Decomposition integration and error correction method for photovoltaic power forecasting publication-title: Measurement doi: 10.1016/j.measurement.2023.112462 – volume: 8 year: 2022 ident: 10.1016/j.renene.2025.122866_bib23 article-title: Short-term pv power forecasting using variational mode decomposition integrated with ant colony optimization and neural network publication-title: Energy Rep. – volume: 205 start-page: 1010 year: 2023 ident: 10.1016/j.renene.2025.122866_bib8 article-title: Accurate one step and multistep forecasting of very short-term pv power using lstm-tcn model publication-title: Renew. Energy doi: 10.1016/j.renene.2023.01.118 – volume: 51 start-page: 1531 year: 2021 ident: 10.1016/j.renene.2025.122866_bib16 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl. Intell. doi: 10.1007/s10489-020-01893-z – volume: 248 year: 2022 ident: 10.1016/j.renene.2025.122866_bib19 article-title: Recent approach based heterogeneous comprehensive learning archimedes optimization algorithm for identifying the optimal parameters of different fuel cells publication-title: Energy doi: 10.1016/j.energy.2022.123587 – volume: 271 year: 2023 ident: 10.1016/j.renene.2025.122866_bib30 article-title: Historical pv-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of pv output publication-title: Energy doi: 10.1016/j.energy.2023.127009 – volume: 15 start-page: 2243 year: 2022 ident: 10.1016/j.renene.2025.122866_bib10 article-title: An hour-ahead pv power forecasting method based on an rnn-lstm model for three different pv plants publication-title: Energies doi: 10.3390/en15062243 – volume: 277 year: 2023 ident: 10.1016/j.renene.2025.122866_bib21 article-title: Research on short-term photovoltaic power prediction based on multi-scale similar days and esn-kelm dual core prediction model publication-title: Energy doi: 10.1016/j.energy.2023.127557 – volume: 59 start-page: 345 year: 2022 ident: 10.1016/j.renene.2025.122866_bib12 article-title: Optimal graph structure based short-term solar pv power forecasting method considering surrounding spatio-temporal correlations publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2022.3213008 – year: 2024 ident: 10.1016/j.renene.2025.122866_bib15 – volume: 75 year: 2023 ident: 10.1016/j.renene.2025.122866_bib18 article-title: Photovoltaic power prediction method for zero energy consumption buildings based on multi-feature fuzzy clustering and maoa-esn publication-title: J. Build. Eng. – volume: 167 year: 2022 ident: 10.1016/j.renene.2025.122866_bib1 article-title: Enhancing solar pv output forecast by integrating ground and satellite observations with deep learning publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112680 – volume: 208 start-page: 141 year: 2023 ident: 10.1016/j.renene.2025.122866_bib5 article-title: Short-term pv power forecast methodology based on multi-scale fluctuation characteristics extraction publication-title: Renew. Energy doi: 10.1016/j.renene.2023.03.029 – volume: 275 year: 2023 ident: 10.1016/j.renene.2025.122866_bib24 article-title: Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and woa-bilstm-attention and considering weather classification publication-title: Energy doi: 10.1016/j.energy.2023.127348 – volume: 208 start-page: 141 year: 2023 ident: 10.1016/j.renene.2025.122866_bib29 article-title: Short-term pv power forecast methodology based on multi-scale fluctuation characteristics extraction publication-title: Renew. Energy doi: 10.1016/j.renene.2023.03.029 – volume: 45 start-page: 242 year: 2023 ident: 10.1016/j.renene.2025.122866_bib2 article-title: Improving pv power plant forecast accuracy: a hybrid deep learning approach compared across short, medium, and long-term horizons publication-title: Renew. Energy Focus doi: 10.1016/j.ref.2023.04.010 – volume: 16 year: 2024 ident: 10.1016/j.renene.2025.122866_bib27 article-title: Short-term photovoltaic power prediction model based on hierarchical clustering of k-means++ algorithm and deep learning hybrid model publication-title: J. Renew. Sustain. Energy doi: 10.1063/5.0198444 – volume: 216 year: 2023 ident: 10.1016/j.renene.2025.122866_bib4 article-title: Interval prediction of ultra-short-term photovoltaic power based on a hybrid model publication-title: Elec. Power Syst. Res. doi: 10.1016/j.epsr.2022.109035 – volume: 262 year: 2023 ident: 10.1016/j.renene.2025.122866_bib9 article-title: Accurate solar pv power prediction interval method based on frequency-domain decomposition and lstm model publication-title: Energy doi: 10.1016/j.energy.2022.125592 – volume: 171 start-page: 191 year: 2021 ident: 10.1016/j.renene.2025.122866_bib3 article-title: Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks publication-title: Renew. Energy doi: 10.1016/j.renene.2021.02.103 – volume: 359 year: 2024 ident: 10.1016/j.renene.2025.122866_bib13 article-title: Improved multistep ahead photovoltaic power prediction model based on lstm and self-attention with weather forecast data publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.122709 – volume: 220 year: 2023 ident: 10.1016/j.renene.2025.122866_bib28 article-title: Day-ahead photovoltaic power forecasting using hybrid k-means++ and improved deep neural network publication-title: Measurement doi: 10.1016/j.measurement.2023.113208 – volume: 365 year: 2024 ident: 10.1016/j.renene.2025.122866_bib11 article-title: Day-ahead numerical weather prediction solar irradiance correction using a clustering method based on weather conditions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.123239 – volume: 35 start-page: 3903 year: 2023 ident: 10.1016/j.renene.2025.122866_bib17 article-title: Boosting archimedes optimization algorithm using trigonometric operators based on feature selection for facial analysis publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07925-8 – volume: 177 start-page: 704 year: 2018 ident: 10.1016/j.renene.2025.122866_bib25 article-title: Short-term power prediction for photovoltaic power plants using a hybrid improved kmeans-gra-elman model based on multivariate meteorological factors and historical power datasets publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.10.015 – volume: 150 start-page: 797 year: 2020 ident: 10.1016/j.renene.2025.122866_bib31 article-title: Time series forecasting of solar power generation for large-scale photovoltaic plants publication-title: Renew. Energy doi: 10.1016/j.renene.2019.12.131 – volume: 295 year: 2021 ident: 10.1016/j.renene.2025.122866_bib22 article-title: Multi-channel convolutional neural network for integration of meteorological and geographical features in solar power forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117083 – volume: 59 start-page: 345 year: 2022 ident: 10.1016/j.renene.2025.122866_bib6 article-title: Optimal graph structure based short-term solar pv power forecasting method considering surrounding spatio-temporal correlations publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2022.3213008 |
| SSID | ssj0015874 |
| Score | 2.4842489 |
| Snippet | The global shortage of non-renewable energy sources has catalyzed the vigorous development of photovoltaic (PV) energy. Accurate prediction of PV power output... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 122866 |
| SubjectTerms | Artificial neural network PV power fluctuations Solar photovoltaic power forecast Spatio-temporal correlation, MCLSTM |
| Title | Photovoltaic power prediction based on multi-scale photovoltaic power fluctuation characteristics and multi-channel LSTM prediction models |
| URI | https://dx.doi.org/10.1016/j.renene.2025.122866 |
| Volume | 246 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0960-1481 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0015874 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0960-1481 databaseCode: ACRLP dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0015874 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0960-1481 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0015874 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0960-1481 databaseCode: AIKHN dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0015874 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0960-1481 databaseCode: AKRWK dateStart: 19910101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015874 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwELUQvbSHqqtKF-RDrwbixLFzRKiILqBKgMQtsrGtUqEQQbj2A_rV9WSpQK166M2JPEo047znJDNvELpnkfap0pIoqywJHEUTxT1JpJbU0x1PUwYFzsNROJgGTzM2q6FeVQsDaZUl9heYnqN1eaZderOdLhbtMWy-3WbeMTR82xSAw0HAoYtB6-M7zcNjolBidpMJzK7K5_IcL1CNTEAsk7KWR6nItRJ_oacdyumfoONyr4i7xe2coppJztDRjoLgOfp8fVtlKwcx7g1_jlNoeYbTNfx8AYdj4CiN3SDPGyQbFxCD058mdrmFQpLcZr4v4YxloktzKBJOzBK_jCfD3avk3XQ2F2jaf5j0BqRsr0DmjqQzwkE13AEe9XlHQn90ofzQBGrO_cgqYYUNI_d4WyPdkHJHZLQTGU9zoQ0NrfQvUT1ZJeYKYZ8bKV1YfUFNYMJQSBsyahnjEbeR9hqIVF6N00JFI67Sy97jIgoxRCEuotBAvHJ9vLcaYgf0f1pe_9vyBh3CEaSBeewW1bP11ty5DUemmvmKaqKD7uPzYPQF60nZNQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QHIAD4ine5MA125o2TXpEE9OADSGxSbtVyZKIoamr2HblB_CrsftAQyAO3KI2Vis79eek9mdCrkViQ26sZsYbzyKAaGZkoJm2mge2FVgusMC5_xh3h9H9SIzWSLuuhcG0ysr3lz698NbVlWalzWY-mTSfMfiGYB4QGs82FfjhjUhwiTuwxvtXnkcgVEnFDLMZTq_r54okL6SNzJAtk4tGwLkqyBJ_wacVzOnskp0qWKQ35fvskTWX7ZPtFQrBA_Lx9DJbzMDHwBZ_THPseUbzN_z7ghqnCFKWwqBIHGRzsIij-U8RP11iJUkhM_7O4Ux1ZitxrBLO3JT2ngf91acU7XTmh2TYuR20u6zqr8DGgNILJpE2HDweD2VLY4N0ZcLYRWYsw8Qb5ZWPE_i-vdMw5BKQjLcSF1iprOOx1-ERWc9mmTsmNJROa7BrqLiLXBwr7WPBvRAykT6xwQlhtVbTvKTRSOv8ste0tEKKVkhLK5wQWas-_bYcUvD0f0qe_lvyimx2B_1e2rt7fDgjW3gHc8ICcU7WF29LdwHRx8JcFqvrExKl2so |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photovoltaic+power+prediction+based+on+multi-scale+photovoltaic+power+fluctuation+characteristics+and+multi-channel+LSTM+prediction+models&rft.jtitle=Renewable+energy&rft.au=Sun%2C+Fengpeng&rft.au=Li%2C+Longhao&rft.au=Bian%2C+Dunxin&rft.au=Bian%2C+Wenlin&rft.date=2025-06-15&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.volume=246&rft_id=info:doi/10.1016%2Fj.renene.2025.122866&rft.externalDocID=S0960148125005282 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |