Photovoltaic power prediction based on multi-scale photovoltaic power fluctuation characteristics and multi-channel LSTM prediction models

The global shortage of non-renewable energy sources has catalyzed the vigorous development of photovoltaic (PV) energy. Accurate prediction of PV power output is essential for ensuring the safety and stability of integrating small-scale PV systems into the power grid. Therefore, this paper proposes...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 246; p. 122866
Main Authors Sun, Fengpeng, Li, Longhao, Bian, Dunxin, Bian, Wenlin, Wang, Qinghong, Wang, Shuang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.06.2025
Subjects
Online AccessGet full text
ISSN0960-1481
DOI10.1016/j.renene.2025.122866

Cover

Abstract The global shortage of non-renewable energy sources has catalyzed the vigorous development of photovoltaic (PV) energy. Accurate prediction of PV power output is essential for ensuring the safety and stability of integrating small-scale PV systems into the power grid. Therefore, this paper proposes a hybrid multi-station parallel PV power prediction method (MCFC-MAOA-MCLSTM-Attention) based on multi-scale historical PV power fluctuation feature extraction. First, for the problem of variable weather types due to the existence of strong fluctuations in meteorological factors, a weather classification algorithm based on multi-scale fluctuation characteristics (MCFC) is proposed, and combined with the similar day algorithm to select the classified meteorological data secondly and improve the correlation between the data. Subsequently, this paper proposes a multi-channel structured long and short-term neural network modeling method (MCLSTM) to further extract the spatio-temporal correlation of different PV sites in the region and realize the integrated prediction based on geographic location and time series. To address the challenges associated with calibrating model parameters, which significantly impact the prediction accuracy, the modified Archimedean optimization approach (MAOA) was employed to optimize these parameters. The experimental results demonstrate that the model is both highly reliable and generalizable for predicting photovoltaic power data. •A new PV power prediction model is proposed.•Analyzed PV power fluctuation characteristics for weather classification.•Multi-Channel Prediction Models Based on Long and Short-Term Networks.•Experimental results show the advantages of the method for PV prediction.
AbstractList The global shortage of non-renewable energy sources has catalyzed the vigorous development of photovoltaic (PV) energy. Accurate prediction of PV power output is essential for ensuring the safety and stability of integrating small-scale PV systems into the power grid. Therefore, this paper proposes a hybrid multi-station parallel PV power prediction method (MCFC-MAOA-MCLSTM-Attention) based on multi-scale historical PV power fluctuation feature extraction. First, for the problem of variable weather types due to the existence of strong fluctuations in meteorological factors, a weather classification algorithm based on multi-scale fluctuation characteristics (MCFC) is proposed, and combined with the similar day algorithm to select the classified meteorological data secondly and improve the correlation between the data. Subsequently, this paper proposes a multi-channel structured long and short-term neural network modeling method (MCLSTM) to further extract the spatio-temporal correlation of different PV sites in the region and realize the integrated prediction based on geographic location and time series. To address the challenges associated with calibrating model parameters, which significantly impact the prediction accuracy, the modified Archimedean optimization approach (MAOA) was employed to optimize these parameters. The experimental results demonstrate that the model is both highly reliable and generalizable for predicting photovoltaic power data. •A new PV power prediction model is proposed.•Analyzed PV power fluctuation characteristics for weather classification.•Multi-Channel Prediction Models Based on Long and Short-Term Networks.•Experimental results show the advantages of the method for PV prediction.
ArticleNumber 122866
Author Bian, Wenlin
Wang, Qinghong
Wang, Shuang
Sun, Fengpeng
Li, Longhao
Bian, Dunxin
Author_xml – sequence: 1
  givenname: Fengpeng
  surname: Sun
  fullname: Sun, Fengpeng
– sequence: 2
  givenname: Longhao
  surname: Li
  fullname: Li, Longhao
  email: lilonghao@sdut.edu.cn
– sequence: 3
  givenname: Dunxin
  surname: Bian
  fullname: Bian, Dunxin
– sequence: 4
  givenname: Wenlin
  surname: Bian
  fullname: Bian, Wenlin
– sequence: 5
  givenname: Qinghong
  surname: Wang
  fullname: Wang, Qinghong
– sequence: 6
  givenname: Shuang
  surname: Wang
  fullname: Wang, Shuang
BookMark eNp9kN1KAzEQhXNRwbb6Bl7sC-yaZP-yN4IU_2BFwXodstkJTUmTJUkrvoJP7dbthSDIXMyB4TszcxZoZp0FhK4Izggm1fU282DHyiimZUYoZVU1Q3PcVDglBSPnaBHCFmNSsrqYo6_XjYvu4EwUWiaD-wCfDB56LaN2NulEgD4ZxW5vok6DFAaS4S-izF7Gvfhh5EZ4ISN4HaKWIRG2P-HjxFowSfu2fv69Zed6MOECnSlhAlye-hK939-tV49p-_LwtLptU0lYGdMa45qSMqd5jUVTYMy6vIKik3XeqI4ppqqmYEyBGCWtCWUUN0D6mvVAKyXyJSomX-ldCB4UH7zeCf_JCebHDPmWTxnyY4Z8ynDEbiZsPBUOGjwPUoOV4xceZOS90_8bfAOX3oQi
Cites_doi 10.1007/s11783-023-1688-y
10.1016/j.egyr.2023.05.128
10.1016/j.enconman.2023.116907
10.1016/j.renene.2021.02.161
10.1016/j.measurement.2023.112462
10.1016/j.renene.2023.01.118
10.1007/s10489-020-01893-z
10.1016/j.energy.2022.123587
10.1016/j.energy.2023.127009
10.3390/en15062243
10.1016/j.energy.2023.127557
10.1109/TIA.2022.3213008
10.1016/j.rser.2022.112680
10.1016/j.renene.2023.03.029
10.1016/j.energy.2023.127348
10.1016/j.ref.2023.04.010
10.1063/5.0198444
10.1016/j.epsr.2022.109035
10.1016/j.energy.2022.125592
10.1016/j.renene.2021.02.103
10.1016/j.apenergy.2024.122709
10.1016/j.measurement.2023.113208
10.1016/j.apenergy.2024.123239
10.1007/s00521-022-07925-8
10.1016/j.enconman.2018.10.015
10.1016/j.renene.2019.12.131
10.1016/j.apenergy.2021.117083
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.renene.2025.122866
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_renene_2025_122866
S0960148125005282
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSR
SST
SSZ
T5K
TN5
ZCA
~02
~G-
29P
AAQXK
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEUPX
AFPUW
AGQPQ
AIGII
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SAC
SEN
SET
WUQ
~HD
ID FETCH-LOGICAL-c185t-700721532370a94008b36e4bc739fb8f8f69488feaf8f27128209e1d78de26fa3
IEDL.DBID .~1
ISSN 0960-1481
IngestDate Wed Oct 01 06:31:56 EDT 2025
Sat May 24 17:06:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Spatio-temporal correlation, MCLSTM
PV power fluctuations
Artificial neural network
Solar photovoltaic power forecast
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c185t-700721532370a94008b36e4bc739fb8f8f69488feaf8f27128209e1d78de26fa3
ParticipantIDs crossref_primary_10_1016_j_renene_2025_122866
elsevier_sciencedirect_doi_10_1016_j_renene_2025_122866
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-15
PublicationDateYYYYMMDD 2025-06-15
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dou, Wang, Shan, Li, Wang, Zhang, Wei, Sreeram (bib11) 2024; 365
Neggaz, Neggaz, Fizazi (bib17) 2023; 35
Thaker, Höller (bib15) 2024
Yu, Niu, Wang, Du, Yu, Sun, Wang (bib24) 2023; 275
Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (bib16) 2021; 51
Zhang, Zhen, Liu, Zhao, Sun, Feng, Wang (bib12) 2022; 59
Zheng, Su, Sun, Guo (bib30) 2023; 271
Zhu, Li, Luo, Zhang, Cui, Yu (bib5) 2023; 208
Wang, Mao, Xie, Liao, Zhang, Li (bib9) 2023; 262
Sadeghi, Golshanfard, Eslami, Rahbar, Kari (bib2) 2023; 45
Lu (bib28) 2023; 220
Heo, Song, Han, Lee (bib22) 2021; 295
Fathy, Babu, Abdelkareem, Rezk, Yousri (bib19) 2022; 248
Akhter, Mekhilef, Mokhlis, Almohaimeed, Muhammad, Khairuddin, Akram, Hussain (bib10) 2022; 15
Qin, Jiang, Lu, Yao, Zhou (bib1) 2022; 167
Li, Li, Zhang, Jiao, Wang, Liu, Wu (bib21) 2023; 277
Zhang, Zhen, Liu, Zhao, Sun, Feng, Wang (bib6) 2022; 59
Kharrich, Selim, Kamel, Kim (bib20) 2023; 283
Huang, Li, Tai, Chen, Zhang, Shi, Gao, Liu (bib32) 2021; 171
Li, Wei, Yang (bib26) 2023; 208
Sharadga, Hajimirza, Balog (bib31) 2020; 150
Lin, Peng, Lai, Cheng, Chen, Wu (bib25) 2018; 177
Wang, Ma, Wang, Kari, Tang (bib27) 2024; 16
Limouni, Yaagoubi, Bouziane, Guissi, Baali (bib8) 2023; 205
Hassan, Bailek, Bouchouicha, Nwokolo (bib3) 2021; 171
Zhang, Liu, Chen (bib4) 2023; 216
Gong, Ji, Tang, Zhou (bib7) 2023; 9
Netsanet, Zheng, Zhang, Teshager (bib23) 2022; 8
Hu, Gao, Ji, Mae, Imaizumi (bib13) 2024; 359
Zhu, Li, Luo, Zhang, Cui, Yu (bib29) 2023; 208
Li, Li, Huang, Liu, Wang (bib18) 2023; 75
Wang, Wang, Wu (bib14) 2023; 17
Dou (10.1016/j.renene.2025.122866_bib11) 2024; 365
Li (10.1016/j.renene.2025.122866_bib21) 2023; 277
Akhter (10.1016/j.renene.2025.122866_bib10) 2022; 15
Yu (10.1016/j.renene.2025.122866_bib24) 2023; 275
Wang (10.1016/j.renene.2025.122866_bib27) 2024; 16
Hassan (10.1016/j.renene.2025.122866_bib3) 2021; 171
Qin (10.1016/j.renene.2025.122866_bib1) 2022; 167
Fathy (10.1016/j.renene.2025.122866_bib19) 2022; 248
Zhang (10.1016/j.renene.2025.122866_bib12) 2022; 59
Lu (10.1016/j.renene.2025.122866_bib28) 2023; 220
Wang (10.1016/j.renene.2025.122866_bib14) 2023; 17
Li (10.1016/j.renene.2025.122866_bib26) 2023; 208
Hashim (10.1016/j.renene.2025.122866_bib16) 2021; 51
Netsanet (10.1016/j.renene.2025.122866_bib23) 2022; 8
Hu (10.1016/j.renene.2025.122866_bib13) 2024; 359
Huang (10.1016/j.renene.2025.122866_bib32) 2021; 171
Zhang (10.1016/j.renene.2025.122866_bib4) 2023; 216
Neggaz (10.1016/j.renene.2025.122866_bib17) 2023; 35
Thaker (10.1016/j.renene.2025.122866_bib15) 2024
Li (10.1016/j.renene.2025.122866_bib18) 2023; 75
Sadeghi (10.1016/j.renene.2025.122866_bib2) 2023; 45
Wang (10.1016/j.renene.2025.122866_bib9) 2023; 262
Kharrich (10.1016/j.renene.2025.122866_bib20) 2023; 283
Limouni (10.1016/j.renene.2025.122866_bib8) 2023; 205
Gong (10.1016/j.renene.2025.122866_bib7) 2023; 9
Lin (10.1016/j.renene.2025.122866_bib25) 2018; 177
Zhu (10.1016/j.renene.2025.122866_bib29) 2023; 208
Zheng (10.1016/j.renene.2025.122866_bib30) 2023; 271
Zhu (10.1016/j.renene.2025.122866_bib5) 2023; 208
Zhang (10.1016/j.renene.2025.122866_bib6) 2022; 59
Heo (10.1016/j.renene.2025.122866_bib22) 2021; 295
Sharadga (10.1016/j.renene.2025.122866_bib31) 2020; 150
References_xml – volume: 359
  year: 2024
  ident: bib13
  article-title: Improved multistep ahead photovoltaic power prediction model based on lstm and self-attention with weather forecast data
  publication-title: Appl. Energy
– volume: 150
  start-page: 797
  year: 2020
  end-page: 807
  ident: bib31
  article-title: Time series forecasting of solar power generation for large-scale photovoltaic plants
  publication-title: Renew. Energy
– volume: 208
  year: 2023
  ident: bib26
  article-title: Decomposition integration and error correction method for photovoltaic power forecasting
  publication-title: Measurement
– volume: 216
  year: 2023
  ident: bib4
  article-title: Interval prediction of ultra-short-term photovoltaic power based on a hybrid model
  publication-title: Elec. Power Syst. Res.
– year: 2024
  ident: bib15
  article-title: Hybrid Model for Intra-day Probabilistic Pv Power Forecast
– volume: 59
  start-page: 345
  year: 2022
  end-page: 357
  ident: bib12
  article-title: Optimal graph structure based short-term solar pv power forecasting method considering surrounding spatio-temporal correlations
  publication-title: IEEE Trans. Ind. Appl.
– volume: 51
  start-page: 1531
  year: 2021
  end-page: 1551
  ident: bib16
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Appl. Intell.
– volume: 295
  year: 2021
  ident: bib22
  article-title: Multi-channel convolutional neural network for integration of meteorological and geographical features in solar power forecasting
  publication-title: Appl. Energy
– volume: 171
  start-page: 191
  year: 2021
  end-page: 209
  ident: bib3
  article-title: Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks
  publication-title: Renew. Energy
– volume: 275
  year: 2023
  ident: bib24
  article-title: Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and woa-bilstm-attention and considering weather classification
  publication-title: Energy
– volume: 208
  start-page: 141
  year: 2023
  end-page: 151
  ident: bib29
  article-title: Short-term pv power forecast methodology based on multi-scale fluctuation characteristics extraction
  publication-title: Renew. Energy
– volume: 171
  start-page: 1041
  year: 2021
  end-page: 1060
  ident: bib32
  article-title: Hybrid deep neural model for hourly solar irradiance forecasting
  publication-title: Renew. Energy
– volume: 248
  year: 2022
  ident: bib19
  article-title: Recent approach based heterogeneous comprehensive learning archimedes optimization algorithm for identifying the optimal parameters of different fuel cells
  publication-title: Energy
– volume: 283
  year: 2023
  ident: bib20
  article-title: An effective design of hybrid renewable energy system using an improved Archimedes Optimization Algorithm: A case study of Farafra, Egypt
  publication-title: Energy Convers. Manag.
– volume: 35
  start-page: 3903
  year: 2023
  end-page: 3923
  ident: bib17
  article-title: Boosting archimedes optimization algorithm using trigonometric operators based on feature selection for facial analysis
  publication-title: Neural Comput. Appl.
– volume: 205
  start-page: 1010
  year: 2023
  end-page: 1024
  ident: bib8
  article-title: Accurate one step and multistep forecasting of very short-term pv power using lstm-tcn model
  publication-title: Renew. Energy
– volume: 8
  year: 2022
  ident: bib23
  article-title: Short-term pv power forecasting using variational mode decomposition integrated with ant colony optimization and neural network
  publication-title: Energy Rep.
– volume: 167
  year: 2022
  ident: bib1
  article-title: Enhancing solar pv output forecast by integrating ground and satellite observations with deep learning
  publication-title: Renew. Sustain. Energy Rev.
– volume: 262
  year: 2023
  ident: bib9
  article-title: Accurate solar pv power prediction interval method based on frequency-domain decomposition and lstm model
  publication-title: Energy
– volume: 365
  year: 2024
  ident: bib11
  article-title: Day-ahead numerical weather prediction solar irradiance correction using a clustering method based on weather conditions
  publication-title: Appl. Energy
– volume: 16
  year: 2024
  ident: bib27
  article-title: Short-term photovoltaic power prediction model based on hierarchical clustering of k-means++ algorithm and deep learning hybrid model
  publication-title: J. Renew. Sustain. Energy
– volume: 220
  year: 2023
  ident: bib28
  article-title: Day-ahead photovoltaic power forecasting using hybrid k-means++ and improved deep neural network
  publication-title: Measurement
– volume: 9
  start-page: 135
  year: 2023
  end-page: 143
  ident: bib7
  article-title: Multi-scale regional photovoltaic power generation forecasting method based on sequence coding reconstruction
  publication-title: Energy Rep.
– volume: 75
  year: 2023
  ident: bib18
  article-title: Photovoltaic power prediction method for zero energy consumption buildings based on multi-feature fuzzy clustering and maoa-esn
  publication-title: J. Build. Eng.
– volume: 45
  start-page: 242
  year: 2023
  end-page: 258
  ident: bib2
  article-title: Improving pv power plant forecast accuracy: a hybrid deep learning approach compared across short, medium, and long-term horizons
  publication-title: Renew. Energy Focus
– volume: 208
  start-page: 141
  year: 2023
  end-page: 151
  ident: bib5
  article-title: Short-term pv power forecast methodology based on multi-scale fluctuation characteristics extraction
  publication-title: Renew. Energy
– volume: 277
  year: 2023
  ident: bib21
  article-title: Research on short-term photovoltaic power prediction based on multi-scale similar days and esn-kelm dual core prediction model
  publication-title: Energy
– volume: 17
  start-page: 88
  year: 2023
  ident: bib14
  article-title: A novel hybrid model for water quality prediction based on vmd and igoa optimized for lstm
  publication-title: Front. Environ. Sci. Eng.
– volume: 177
  start-page: 704
  year: 2018
  end-page: 717
  ident: bib25
  article-title: Short-term power prediction for photovoltaic power plants using a hybrid improved kmeans-gra-elman model based on multivariate meteorological factors and historical power datasets
  publication-title: Energy Convers. Manag.
– volume: 15
  start-page: 2243
  year: 2022
  ident: bib10
  article-title: An hour-ahead pv power forecasting method based on an rnn-lstm model for three different pv plants
  publication-title: Energies
– volume: 59
  start-page: 345
  year: 2022
  end-page: 357
  ident: bib6
  article-title: Optimal graph structure based short-term solar pv power forecasting method considering surrounding spatio-temporal correlations
  publication-title: IEEE Trans. Ind. Appl.
– volume: 271
  year: 2023
  ident: bib30
  article-title: Historical pv-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of pv output
  publication-title: Energy
– volume: 17
  start-page: 88
  year: 2023
  ident: 10.1016/j.renene.2025.122866_bib14
  article-title: A novel hybrid model for water quality prediction based on vmd and igoa optimized for lstm
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-023-1688-y
– volume: 9
  start-page: 135
  year: 2023
  ident: 10.1016/j.renene.2025.122866_bib7
  article-title: Multi-scale regional photovoltaic power generation forecasting method based on sequence coding reconstruction
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.05.128
– volume: 283
  year: 2023
  ident: 10.1016/j.renene.2025.122866_bib20
  article-title: An effective design of hybrid renewable energy system using an improved Archimedes Optimization Algorithm: A case study of Farafra, Egypt
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2023.116907
– volume: 171
  start-page: 1041
  year: 2021
  ident: 10.1016/j.renene.2025.122866_bib32
  article-title: Hybrid deep neural model for hourly solar irradiance forecasting
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.02.161
– volume: 208
  year: 2023
  ident: 10.1016/j.renene.2025.122866_bib26
  article-title: Decomposition integration and error correction method for photovoltaic power forecasting
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112462
– volume: 8
  year: 2022
  ident: 10.1016/j.renene.2025.122866_bib23
  article-title: Short-term pv power forecasting using variational mode decomposition integrated with ant colony optimization and neural network
  publication-title: Energy Rep.
– volume: 205
  start-page: 1010
  year: 2023
  ident: 10.1016/j.renene.2025.122866_bib8
  article-title: Accurate one step and multistep forecasting of very short-term pv power using lstm-tcn model
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.01.118
– volume: 51
  start-page: 1531
  year: 2021
  ident: 10.1016/j.renene.2025.122866_bib16
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01893-z
– volume: 248
  year: 2022
  ident: 10.1016/j.renene.2025.122866_bib19
  article-title: Recent approach based heterogeneous comprehensive learning archimedes optimization algorithm for identifying the optimal parameters of different fuel cells
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123587
– volume: 271
  year: 2023
  ident: 10.1016/j.renene.2025.122866_bib30
  article-title: Historical pv-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of pv output
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127009
– volume: 15
  start-page: 2243
  year: 2022
  ident: 10.1016/j.renene.2025.122866_bib10
  article-title: An hour-ahead pv power forecasting method based on an rnn-lstm model for three different pv plants
  publication-title: Energies
  doi: 10.3390/en15062243
– volume: 277
  year: 2023
  ident: 10.1016/j.renene.2025.122866_bib21
  article-title: Research on short-term photovoltaic power prediction based on multi-scale similar days and esn-kelm dual core prediction model
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127557
– volume: 59
  start-page: 345
  year: 2022
  ident: 10.1016/j.renene.2025.122866_bib12
  article-title: Optimal graph structure based short-term solar pv power forecasting method considering surrounding spatio-temporal correlations
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2022.3213008
– year: 2024
  ident: 10.1016/j.renene.2025.122866_bib15
– volume: 75
  year: 2023
  ident: 10.1016/j.renene.2025.122866_bib18
  article-title: Photovoltaic power prediction method for zero energy consumption buildings based on multi-feature fuzzy clustering and maoa-esn
  publication-title: J. Build. Eng.
– volume: 167
  year: 2022
  ident: 10.1016/j.renene.2025.122866_bib1
  article-title: Enhancing solar pv output forecast by integrating ground and satellite observations with deep learning
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112680
– volume: 208
  start-page: 141
  year: 2023
  ident: 10.1016/j.renene.2025.122866_bib5
  article-title: Short-term pv power forecast methodology based on multi-scale fluctuation characteristics extraction
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.03.029
– volume: 275
  year: 2023
  ident: 10.1016/j.renene.2025.122866_bib24
  article-title: Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and woa-bilstm-attention and considering weather classification
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127348
– volume: 208
  start-page: 141
  year: 2023
  ident: 10.1016/j.renene.2025.122866_bib29
  article-title: Short-term pv power forecast methodology based on multi-scale fluctuation characteristics extraction
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.03.029
– volume: 45
  start-page: 242
  year: 2023
  ident: 10.1016/j.renene.2025.122866_bib2
  article-title: Improving pv power plant forecast accuracy: a hybrid deep learning approach compared across short, medium, and long-term horizons
  publication-title: Renew. Energy Focus
  doi: 10.1016/j.ref.2023.04.010
– volume: 16
  year: 2024
  ident: 10.1016/j.renene.2025.122866_bib27
  article-title: Short-term photovoltaic power prediction model based on hierarchical clustering of k-means++ algorithm and deep learning hybrid model
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/5.0198444
– volume: 216
  year: 2023
  ident: 10.1016/j.renene.2025.122866_bib4
  article-title: Interval prediction of ultra-short-term photovoltaic power based on a hybrid model
  publication-title: Elec. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.109035
– volume: 262
  year: 2023
  ident: 10.1016/j.renene.2025.122866_bib9
  article-title: Accurate solar pv power prediction interval method based on frequency-domain decomposition and lstm model
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125592
– volume: 171
  start-page: 191
  year: 2021
  ident: 10.1016/j.renene.2025.122866_bib3
  article-title: Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.02.103
– volume: 359
  year: 2024
  ident: 10.1016/j.renene.2025.122866_bib13
  article-title: Improved multistep ahead photovoltaic power prediction model based on lstm and self-attention with weather forecast data
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.122709
– volume: 220
  year: 2023
  ident: 10.1016/j.renene.2025.122866_bib28
  article-title: Day-ahead photovoltaic power forecasting using hybrid k-means++ and improved deep neural network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113208
– volume: 365
  year: 2024
  ident: 10.1016/j.renene.2025.122866_bib11
  article-title: Day-ahead numerical weather prediction solar irradiance correction using a clustering method based on weather conditions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.123239
– volume: 35
  start-page: 3903
  year: 2023
  ident: 10.1016/j.renene.2025.122866_bib17
  article-title: Boosting archimedes optimization algorithm using trigonometric operators based on feature selection for facial analysis
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07925-8
– volume: 177
  start-page: 704
  year: 2018
  ident: 10.1016/j.renene.2025.122866_bib25
  article-title: Short-term power prediction for photovoltaic power plants using a hybrid improved kmeans-gra-elman model based on multivariate meteorological factors and historical power datasets
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.10.015
– volume: 150
  start-page: 797
  year: 2020
  ident: 10.1016/j.renene.2025.122866_bib31
  article-title: Time series forecasting of solar power generation for large-scale photovoltaic plants
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.12.131
– volume: 295
  year: 2021
  ident: 10.1016/j.renene.2025.122866_bib22
  article-title: Multi-channel convolutional neural network for integration of meteorological and geographical features in solar power forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117083
– volume: 59
  start-page: 345
  year: 2022
  ident: 10.1016/j.renene.2025.122866_bib6
  article-title: Optimal graph structure based short-term solar pv power forecasting method considering surrounding spatio-temporal correlations
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2022.3213008
SSID ssj0015874
Score 2.4842489
Snippet The global shortage of non-renewable energy sources has catalyzed the vigorous development of photovoltaic (PV) energy. Accurate prediction of PV power output...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 122866
SubjectTerms Artificial neural network
PV power fluctuations
Solar photovoltaic power forecast
Spatio-temporal correlation, MCLSTM
Title Photovoltaic power prediction based on multi-scale photovoltaic power fluctuation characteristics and multi-channel LSTM prediction models
URI https://dx.doi.org/10.1016/j.renene.2025.122866
Volume 246
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0960-1481
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0015874
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0960-1481
  databaseCode: ACRLP
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0015874
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0960-1481
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0015874
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 0960-1481
  databaseCode: AIKHN
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0015874
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0960-1481
  databaseCode: AKRWK
  dateStart: 19910101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015874
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwELUQvbSHqqtKF-RDrwbixLFzRKiILqBKgMQtsrGtUqEQQbj2A_rV9WSpQK166M2JPEo047znJDNvELpnkfap0pIoqywJHEUTxT1JpJbU0x1PUwYFzsNROJgGTzM2q6FeVQsDaZUl9heYnqN1eaZderOdLhbtMWy-3WbeMTR82xSAw0HAoYtB6-M7zcNjolBidpMJzK7K5_IcL1CNTEAsk7KWR6nItRJ_oacdyumfoONyr4i7xe2coppJztDRjoLgOfp8fVtlKwcx7g1_jlNoeYbTNfx8AYdj4CiN3SDPGyQbFxCD058mdrmFQpLcZr4v4YxloktzKBJOzBK_jCfD3avk3XQ2F2jaf5j0BqRsr0DmjqQzwkE13AEe9XlHQn90ofzQBGrO_cgqYYUNI_d4WyPdkHJHZLQTGU9zoQ0NrfQvUT1ZJeYKYZ8bKV1YfUFNYMJQSBsyahnjEbeR9hqIVF6N00JFI67Sy97jIgoxRCEuotBAvHJ9vLcaYgf0f1pe_9vyBh3CEaSBeewW1bP11ty5DUemmvmKaqKD7uPzYPQF60nZNQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QHIAD4ine5MA125o2TXpEE9OADSGxSbtVyZKIoamr2HblB_CrsftAQyAO3KI2Vis79eek9mdCrkViQ26sZsYbzyKAaGZkoJm2mge2FVgusMC5_xh3h9H9SIzWSLuuhcG0ysr3lz698NbVlWalzWY-mTSfMfiGYB4QGs82FfjhjUhwiTuwxvtXnkcgVEnFDLMZTq_r54okL6SNzJAtk4tGwLkqyBJ_wacVzOnskp0qWKQ35fvskTWX7ZPtFQrBA_Lx9DJbzMDHwBZ_THPseUbzN_z7ghqnCFKWwqBIHGRzsIij-U8RP11iJUkhM_7O4Ux1ZitxrBLO3JT2ngf91acU7XTmh2TYuR20u6zqr8DGgNILJpE2HDweD2VLY4N0ZcLYRWYsw8Qb5ZWPE_i-vdMw5BKQjLcSF1iprOOx1-ERWc9mmTsmNJROa7BrqLiLXBwr7WPBvRAykT6xwQlhtVbTvKTRSOv8ste0tEKKVkhLK5wQWas-_bYcUvD0f0qe_lvyimx2B_1e2rt7fDgjW3gHc8ICcU7WF29LdwHRx8JcFqvrExKl2so
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photovoltaic+power+prediction+based+on+multi-scale+photovoltaic+power+fluctuation+characteristics+and+multi-channel+LSTM+prediction+models&rft.jtitle=Renewable+energy&rft.au=Sun%2C+Fengpeng&rft.au=Li%2C+Longhao&rft.au=Bian%2C+Dunxin&rft.au=Bian%2C+Wenlin&rft.date=2025-06-15&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.volume=246&rft_id=info:doi/10.1016%2Fj.renene.2025.122866&rft.externalDocID=S0960148125005282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon