KMDSAN: A novel method for cross-domain and unsupervised bearing fault diagnosis

•A novel method of subdomain adaptation is proposed.•The method is used for cross-domain and unsupervised bearing fault diagnosis.•Combining K-means clustering algorithm, a novel local maximum mean discrepancy (KLMMD) is designed.•The effectiveness of the method is verified by two related bearing da...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 312; p. 113170
Main Authors Wu, Shuping, Shi, Peiming, Xu, Xuefang, Yang, Xu, Li, Ruixiong, Qiao, Zijian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.03.2025
Subjects
Online AccessGet full text
ISSN0950-7051
DOI10.1016/j.knosys.2025.113170

Cover

Abstract •A novel method of subdomain adaptation is proposed.•The method is used for cross-domain and unsupervised bearing fault diagnosis.•Combining K-means clustering algorithm, a novel local maximum mean discrepancy (KLMMD) is designed.•The effectiveness of the method is verified by two related bearing datasets. Cross-domain bearing fault diagnosis is a serious challenge due to the unlabeled dataset. Deep subdomain adaptation network assisted by K-means clustering algorithm (KMDSAN), a diagnosis method based on non-adversarial network and alignment of subdomain, is proposed in this paper. Taking deep subdomain adaptation network (DSAN) as basic framework is the main difference between KMDSAN and most existing methods, because DSAN emphasizes the subdomain alignment rather than global alignment. Additionally, the K-means clustering algorithm is utilized to optimize the local maximum mean discrepancy to improve the performance of DSAN. Finally, a deep network with an improved attention mechanism is designed for the feature extraction of original bearing vibration signal. In comparison to other methods, KMDSAN is concise yet highly effective, and results from two datasets related to bearing demonstrate that the proposed method achieves excellent diagnosis accuracy.
AbstractList •A novel method of subdomain adaptation is proposed.•The method is used for cross-domain and unsupervised bearing fault diagnosis.•Combining K-means clustering algorithm, a novel local maximum mean discrepancy (KLMMD) is designed.•The effectiveness of the method is verified by two related bearing datasets. Cross-domain bearing fault diagnosis is a serious challenge due to the unlabeled dataset. Deep subdomain adaptation network assisted by K-means clustering algorithm (KMDSAN), a diagnosis method based on non-adversarial network and alignment of subdomain, is proposed in this paper. Taking deep subdomain adaptation network (DSAN) as basic framework is the main difference between KMDSAN and most existing methods, because DSAN emphasizes the subdomain alignment rather than global alignment. Additionally, the K-means clustering algorithm is utilized to optimize the local maximum mean discrepancy to improve the performance of DSAN. Finally, a deep network with an improved attention mechanism is designed for the feature extraction of original bearing vibration signal. In comparison to other methods, KMDSAN is concise yet highly effective, and results from two datasets related to bearing demonstrate that the proposed method achieves excellent diagnosis accuracy.
ArticleNumber 113170
Author Yang, Xu
Li, Ruixiong
Shi, Peiming
Xu, Xuefang
Wu, Shuping
Qiao, Zijian
Author_xml – sequence: 1
  givenname: Shuping
  surname: Wu
  fullname: Wu, Shuping
  organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, PR China
– sequence: 2
  givenname: Peiming
  surname: Shi
  fullname: Shi, Peiming
  email: spm@ysu.edu.cn
  organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, PR China
– sequence: 3
  givenname: Xuefang
  surname: Xu
  fullname: Xu, Xuefang
  organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, PR China
– sequence: 4
  givenname: Xu
  surname: Yang
  fullname: Yang, Xu
  organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, PR China
– sequence: 5
  givenname: Ruixiong
  surname: Li
  fullname: Li, Ruixiong
  organization: School of Energy and Power Engineering, Xi 'an Jiaotong University, Xi 'an, Shanxi 710048, PR China
– sequence: 6
  givenname: Zijian
  surname: Qiao
  fullname: Qiao, Zijian
  organization: School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang 315211, PR China
BookMark eNp9kMtOAjEUhrvAREDfwEVfYMZzZpgO48KE4DXiJVHXTWlPsQgtaQcS3l5wXLv68y_-S74B6_ngibELhBwBxeUy__Yh7VNeQFHliCXW0GN9aCrIaqjwlA1SWgJAUeC4z96enm_eJy9XfMJ92NGKr6n9CobbELmOIaXMhLVynitv-Nan7YbiziUyfE4qOr_gVm1XLTdOLQ67Lp2xE6tWic7_dMg-724_pg_Z7PX-cTqZZRrHVZuhgaKxYMhanAtR6ZFAW0NZa7BGNFgagbVojnauNdR6TGVFpVUjAaJpdDlko67392UkKzfRrVXcSwR5JCGXsiMhjyRkR-IQu-5idPi2cxRl0o68JuMi6Vaa4P4v-AEhiW1N
Cites_doi 10.1016/j.knosys.2022.110175
10.1016/j.ymssp.2023.110098
10.1016/j.aei.2023.101877
10.1016/j.jmsy.2022.09.004
10.1016/j.suscom.2022.100695
10.1016/j.engappai.2022.105794
10.1016/j.asoc.2022.108582
10.1016/j.egyr.2022.08.041
10.1016/j.engappai.2022.105269
10.1016/j.knosys.2022.108381
10.1016/j.knosys.2022.110070
10.1016/j.engappai.2022.105656
10.1016/j.ymssp.2021.107963
10.1016/j.isatra.2021.12.037
10.1109/CVPR.2019.00060
10.1016/j.measurement.2022.110752
10.1016/j.neucom.2022.10.057
10.1109/TNNLS.2020.2988928
10.1016/j.measurement.2022.112282
10.3389/fmolb.2020.00132
10.1016/j.engappai.2022.104932
10.1016/j.measurement.2022.112352
10.1109/CVPR.2016.90
10.1016/j.cie.2020.106427
10.1016/j.ins.2022.11.139
10.1016/j.ress.2022.108968
10.1016/j.knosys.2023.110395
10.1016/j.isatra.2021.11.024
10.1109/TMECH.2022.3177174
10.1016/j.heliyon.2023.e14545
10.1016/j.patcog.2023.109404
10.1016/j.knosys.2022.109493
10.1016/j.patcog.2022.109269
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2025.113170
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_knosys_2025_113170
S0950705125002175
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
AAQXK
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
~HD
ID FETCH-LOGICAL-c185t-1d029f0deff1b665c461f7037c0fd6913d617697c0fbcc07c8e35e3fa460699c3
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Wed Oct 01 06:30:06 EDT 2025
Sat May 03 15:57:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Attention mechanism
Cross-domain fault diagnosis
K-means clustering algorithm
Subdomain alignment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c185t-1d029f0deff1b665c461f7037c0fd6913d617697c0fbcc07c8e35e3fa460699c3
ParticipantIDs crossref_primary_10_1016_j_knosys_2025_113170
elsevier_sciencedirect_doi_10_1016_j_knosys_2025_113170
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-15
PublicationDateYYYYMMDD 2025-03-15
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xiao, Shao, Han, Huo, Wan (bib0003) 2022; 27
Che, Wang, Ni, Fu (bib0009) 2020; 143
Spiwok, Kí (bib0030) 2020; 7
Liang, Wang, Jiang, Li, Zhang (bib0018) 2023; 118
2016, pp. 770–778.
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0033) 2014; 15
Ma, Han, Lei (bib0012) 2023; 261
Ghorvei, Kavianpour, Beheshti, Ramezani (bib0016) 2023; 517
vol. 32, no. 4, pp. 1713–1722, 2020.
Wang, Xiong, He (bib0002) 2023; 266
Zeng (bib0010) 2023; 207
Ruan, Wang, Yan, Gühmann (bib0023) 2023; 55
Guo, Yang, Huang (bib0025) 2022; 8
Li (bib0038) 2019
Liu, Chen, Wei, Wu, Chen, Chen (bib0014) 2023; 230
Wan, Li, Chen, Gong, Li (bib0007) 2022; 191
Y. Zhu et al., "Deep subdomain adaptation network for image classification,"
Shao, Li, Cai, Wan, Xiao, Yan (bib0001) 2023
Chen, Shao, Dou, Li, Liu (bib0028) 2022
Tong, Tang, Wu, Pan, Zheng (bib0032) 2023; 206
vol. 161, p. 107963, 2021/12/01/2021
Luo, Shao, Cao, Chen, Cai, Liu (bib0017) 2022; 65
2019, pp. 510–519.
Yao, Qian, Qin, Guo, Wu (bib0011) 2022; 113
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in
.
Ikotun, Ezugwu, Abualigah, Abuhaija, Heming (bib0022) 2023; 622
K.A. Loparo, “Case Western Reserve University Bearing Data Center.” Available
Su, Yang, Xiang, Hu, Xu (bib0008) 2022; 242
K. Zhang, B. Tang, L. Deng, Q. Tan, and H. Yu, "A fault diagnosis method for wind turbines gearbox based on adaptive loss weighted meta-ResNet under noisy labels,"
Wu, Jiang, Zhu, Wang (bib0005) 2023; 189
Gupta, Wadhvani, Rasool (bib0004) 2023; 259
Chen, Wei, Xue, Zhang (bib0036) 2022; 119
Lin (bib0015) 2022; 252
Chen, Zhao, He, Wei, Yang (bib0029) 2022; 129
Chu, Li, Yang, Chen, Shen, Wang (bib0013) 2023; 9
Jia, Chow, Yuan (bib0024) 2023; 119
W. Zeng, H. Li, G. Hu, and D. Liang, "Identification of maize leaf diseases by using the SKPSNet-50 convolutional neural network model,"
Gao, Xu, Zhang, Pei (bib0006) 2022; 128
Mussabayev, Mladenovic, Jarboui, Mussabayev (bib0021) 2023; 137
X. Li, W. Wang, X. Hu, and J. Yang, "Selective kernel networks," in
Hu, Liu, Zhang, Fang (bib0020) 2023; 139
Liang, Wang, Yuan, Liu, Zhang, Cheng (bib0027) 2022; 115
vol. 35, p. 100695, 2022/09/01/2022
Ruan (10.1016/j.knosys.2025.113170_bib0023) 2023; 55
Liang (10.1016/j.knosys.2025.113170_bib0027) 2022; 115
Su (10.1016/j.knosys.2025.113170_bib0008) 2022; 242
Chen (10.1016/j.knosys.2025.113170_bib0029) 2022; 129
10.1016/j.knosys.2025.113170_bib0026
Shao (10.1016/j.knosys.2025.113170_bib0001) 2023
Gupta (10.1016/j.knosys.2025.113170_bib0004) 2023; 259
Spiwok (10.1016/j.knosys.2025.113170_bib0030) 2020; 7
Hu (10.1016/j.knosys.2025.113170_bib0020) 2023; 139
Tong (10.1016/j.knosys.2025.113170_bib0032) 2023; 206
Liu (10.1016/j.knosys.2025.113170_bib0014) 2023; 230
Luo (10.1016/j.knosys.2025.113170_bib0017) 2022; 65
Yao (10.1016/j.knosys.2025.113170_bib0011) 2022; 113
Ma (10.1016/j.knosys.2025.113170_bib0012) 2023; 261
Ghorvei (10.1016/j.knosys.2025.113170_bib0016) 2023; 517
Ikotun (10.1016/j.knosys.2025.113170_bib0022) 2023; 622
Liang (10.1016/j.knosys.2025.113170_bib0018) 2023; 118
Mussabayev (10.1016/j.knosys.2025.113170_bib0021) 2023; 137
10.1016/j.knosys.2025.113170_bib0031
Gao (10.1016/j.knosys.2025.113170_bib0006) 2022; 128
Lin (10.1016/j.knosys.2025.113170_bib0015) 2022; 252
10.1016/j.knosys.2025.113170_bib0034
Chen (10.1016/j.knosys.2025.113170_bib0028) 2022
10.1016/j.knosys.2025.113170_bib0035
Jia (10.1016/j.knosys.2025.113170_bib0024) 2023; 119
10.1016/j.knosys.2025.113170_bib0037
Guo (10.1016/j.knosys.2025.113170_bib0025) 2022; 8
Chen (10.1016/j.knosys.2025.113170_bib0036) 2022; 119
10.1016/j.knosys.2025.113170_bib0019
Chu (10.1016/j.knosys.2025.113170_bib0013) 2023; 9
Srivastava (10.1016/j.knosys.2025.113170_bib0033) 2014; 15
Che (10.1016/j.knosys.2025.113170_bib0009) 2020; 143
Xiao (10.1016/j.knosys.2025.113170_bib0003) 2022; 27
Li (10.1016/j.knosys.2025.113170_bib0038) 2019
Wu (10.1016/j.knosys.2025.113170_bib0005) 2023; 189
Zeng (10.1016/j.knosys.2025.113170_bib0010) 2023; 207
Wang (10.1016/j.knosys.2025.113170_bib0002) 2023; 266
Wan (10.1016/j.knosys.2025.113170_bib0007) 2022; 191
References_xml – volume: 622
  start-page: 178
  year: 2023
  end-page: 210
  ident: bib0022
  article-title: K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data
  publication-title: Inf. Sci.
– volume: 139
  year: 2023
  ident: bib0020
  article-title: An effective and adaptable K-means algorithm for big data cluster analysis
  publication-title: Pattern Recognit.
– volume: 191
  year: 2022
  ident: bib0007
  article-title: A novel deep convolution multi-adversarial domain adaptation model for rolling bearing fault diagnosis
  publication-title: Measurement
– reference: Y. Zhu et al., "Deep subdomain adaptation network for image classification,"
– volume: 242
  year: 2022
  ident: bib0008
  article-title: A novel method based on deep transfer unsupervised learning network for bearing fault diagnosis under variable working condition of unequal quantity
  publication-title: Knowl.-Based Syst.
– volume: 137
  year: 2023
  ident: bib0021
  article-title: How to use K-means for big data clustering?
  publication-title: Pattern Recognit.
– volume: 119
  year: 2023
  ident: bib0024
  article-title: GTFE-net: A gramian time frequency enhancement CNN for bearing fault diagnosis
  publication-title: Eng. Appl. Artif. Intell.
– volume: 266
  year: 2023
  ident: bib0002
  article-title: Bearing fault diagnosis under various conditions using an incremental learning-based multi-task shared classifier
  publication-title: Knowl.-Based Syst.
– volume: 252
  year: 2022
  ident: bib0015
  article-title: Cross-domain fault diagnosis of bearing using improved semi-supervised meta-learning towards interference of out-of-distribution samples
  publication-title: Knowl.-Based Syst.
– volume: 55
  year: 2023
  ident: bib0023
  article-title: CNN parameter design based on fault signal analysis and its application in bearing fault diagnosis
  publication-title: Adv. Eng. Inf.
– volume: 230
  year: 2023
  ident: bib0014
  article-title: A tensor-based domain alignment method for intelligent fault diagnosis of rolling bearing in rotating machinery
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib0033
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– reference: vol. 32, no. 4, pp. 1713–1722, 2020.
– volume: 119
  year: 2022
  ident: bib0036
  article-title: Feature fusion and kernel selective in Inception-v4 network
  publication-title: Appl. Soft Comput.
– volume: 7
  year: 2020
  ident: bib0030
  article-title: Time-lagged t-distributed stochastic neighbor embedding (t-SNE) of molecular simulation trajectories
  publication-title: Front. Mol. Biosci.
– volume: 118
  year: 2023
  ident: bib0018
  article-title: Unsupervised fault diagnosis of wind turbine bearing via a deep residual deformable convolution network based on subdomain adaptation under time-varying speeds
  publication-title: Eng. Appl. Artif. Intell.
– reference: X. Li, W. Wang, X. Hu, and J. Yang, "Selective kernel networks," in
– reference: K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in
– reference: W. Zeng, H. Li, G. Hu, and D. Liang, "Identification of maize leaf diseases by using the SKPSNet-50 convolutional neural network model,"
– volume: 261
  year: 2023
  ident: bib0012
  article-title: Cross-domain meta learning fault diagnosis based on multi-scale dilated convolution and adaptive relation module
  publication-title: Knowl.-Based Syst.
– reference: K.A. Loparo, “Case Western Reserve University Bearing Data Center.” Available:
– volume: 8
  start-page: 904
  year: 2022
  end-page: 913
  ident: bib0025
  article-title: Bearing fault diagnosis based on speed signal and CNN model
  publication-title: Energy Rep.
– volume: 207
  year: 2023
  ident: bib0010
  article-title: A multi-target domain adaptive method for intelligent transfer fault diagnosis
  publication-title: Measurement
– volume: 27
  start-page: 5254
  year: 2022
  end-page: 5263
  ident: bib0003
  article-title: Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 206
  year: 2023
  ident: bib0032
  article-title: A fault diagnosis method of rolling bearing based on improved deep residual shrinkage networks
  publication-title: Measurement
– reference: , vol. 161, p. 107963, 2021/12/01/2021,
– volume: 129
  start-page: 504
  year: 2022
  end-page: 519
  ident: bib0029
  article-title: Unsupervised domain adaptation of bearing fault diagnosis based on join sliced Wasserstein distance
  publication-title: ISA Trans.
– volume: 9
  start-page: e14545
  year: 2023
  ident: bib0013
  article-title: Exploring the essence of compound fault diagnosis: a novel multi-label domain adaptation method and its application to bearings
  publication-title: Heliyon
– volume: 189
  year: 2023
  ident: bib0005
  article-title: A knowledge dynamic matching unit-guided multi-source domain adaptation network with attention mechanism for rolling bearing fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
– reference: , 2016, pp. 770–778.
– volume: 65
  start-page: 180
  year: 2022
  end-page: 191
  ident: bib0017
  article-title: Modified DSAN for unsupervised cross-domain fault diagnosis of bearing under speed fluctuation
  publication-title: J. Manuf. Syst.
– reference: K. Zhang, B. Tang, L. Deng, Q. Tan, and H. Yu, "A fault diagnosis method for wind turbines gearbox based on adaptive loss weighted meta-ResNet under noisy labels,"
– reference: .
– reference: , 2019, pp. 510–519.
– volume: 128
  start-page: 485
  year: 2022
  end-page: 502
  ident: bib0006
  article-title: Rolling bearing fault diagnosis based on SSA optimized self-adaptive DBN
  publication-title: ISA Trans.
– start-page: 1
  year: 2023
  end-page: 10
  ident: bib0001
  article-title: Dual-threshold attention-guided gan and limited infrared thermal images for rotating machinery fault diagnosis under speed fluctuation
  publication-title: IEEE Trans. Ind. Inf.
– volume: 113
  year: 2022
  ident: bib0011
  article-title: Adversarial domain adaptation network with pseudo-siamese feature extractors for cross-bearing fault transfer diagnosis
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 531
  year: 2019
  end-page: 539
  ident: bib0038
  article-title: Multi-instance multi-scale CNN for medical image classification
  publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI2019: 22nd International Conference, Shenzhen, China
– start-page: 1
  year: 2022
  end-page: 9
  ident: bib0028
  article-title: Data augmentation and intelligent fault diagnosis of planetary gearbox using ILoFGAN under extremely limited samples
  publication-title: IEEE Trans. Reliab.
– volume: 517
  start-page: 44
  year: 2023
  end-page: 61
  ident: bib0016
  article-title: Spatial graph convolutional neural network via structured subdomain adaptation and domain adversarial learning for bearing fault diagnosis
  publication-title: Neurocomputing
– volume: 143
  year: 2020
  ident: bib0009
  article-title: Domain adaptive deep belief network for rolling bearing fault diagnosis
  publication-title: Comput. Ind. Eng.
– reference: , vol. 35, p. 100695, 2022/09/01/2022,
– volume: 259
  year: 2023
  ident: bib0004
  article-title: A real-time adaptive model for bearing fault classification and remaining useful life estimation using deep neural network
  publication-title: Knowl.-Based Syst.
– volume: 115
  year: 2022
  ident: bib0027
  article-title: Intelligent fault diagnosis of rolling bearing based on wavelet transform and improved ResNet under noisy labels and environment
  publication-title: Eng. Appl. Artif. Intell.
– volume: 261
  year: 2023
  ident: 10.1016/j.knosys.2025.113170_bib0012
  article-title: Cross-domain meta learning fault diagnosis based on multi-scale dilated convolution and adaptive relation module
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.110175
– volume: 189
  year: 2023
  ident: 10.1016/j.knosys.2025.113170_bib0005
  article-title: A knowledge dynamic matching unit-guided multi-source domain adaptation network with attention mechanism for rolling bearing fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2023.110098
– volume: 55
  year: 2023
  ident: 10.1016/j.knosys.2025.113170_bib0023
  article-title: CNN parameter design based on fault signal analysis and its application in bearing fault diagnosis
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2023.101877
– ident: 10.1016/j.knosys.2025.113170_bib0037
– volume: 65
  start-page: 180
  year: 2022
  ident: 10.1016/j.knosys.2025.113170_bib0017
  article-title: Modified DSAN for unsupervised cross-domain fault diagnosis of bearing under speed fluctuation
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2022.09.004
– ident: 10.1016/j.knosys.2025.113170_bib0035
  doi: 10.1016/j.suscom.2022.100695
– volume: 119
  year: 2023
  ident: 10.1016/j.knosys.2025.113170_bib0024
  article-title: GTFE-net: A gramian time frequency enhancement CNN for bearing fault diagnosis
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105794
– volume: 119
  year: 2022
  ident: 10.1016/j.knosys.2025.113170_bib0036
  article-title: Feature fusion and kernel selective in Inception-v4 network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108582
– volume: 8
  start-page: 904
  year: 2022
  ident: 10.1016/j.knosys.2025.113170_bib0025
  article-title: Bearing fault diagnosis based on speed signal and CNN model
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.08.041
– volume: 115
  year: 2022
  ident: 10.1016/j.knosys.2025.113170_bib0027
  article-title: Intelligent fault diagnosis of rolling bearing based on wavelet transform and improved ResNet under noisy labels and environment
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105269
– volume: 242
  year: 2022
  ident: 10.1016/j.knosys.2025.113170_bib0008
  article-title: A novel method based on deep transfer unsupervised learning network for bearing fault diagnosis under variable working condition of unequal quantity
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108381
– volume: 259
  year: 2023
  ident: 10.1016/j.knosys.2025.113170_bib0004
  article-title: A real-time adaptive model for bearing fault classification and remaining useful life estimation using deep neural network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.110070
– volume: 118
  year: 2023
  ident: 10.1016/j.knosys.2025.113170_bib0018
  article-title: Unsupervised fault diagnosis of wind turbine bearing via a deep residual deformable convolution network based on subdomain adaptation under time-varying speeds
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105656
– ident: 10.1016/j.knosys.2025.113170_bib0031
  doi: 10.1016/j.ymssp.2021.107963
– volume: 129
  start-page: 504
  year: 2022
  ident: 10.1016/j.knosys.2025.113170_bib0029
  article-title: Unsupervised domain adaptation of bearing fault diagnosis based on join sliced Wasserstein distance
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.12.037
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.knosys.2025.113170_bib0033
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2023
  ident: 10.1016/j.knosys.2025.113170_bib0001
  article-title: Dual-threshold attention-guided gan and limited infrared thermal images for rotating machinery fault diagnosis under speed fluctuation
  publication-title: IEEE Trans. Ind. Inf.
– ident: 10.1016/j.knosys.2025.113170_bib0034
  doi: 10.1109/CVPR.2019.00060
– volume: 191
  year: 2022
  ident: 10.1016/j.knosys.2025.113170_bib0007
  article-title: A novel deep convolution multi-adversarial domain adaptation model for rolling bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110752
– volume: 517
  start-page: 44
  year: 2023
  ident: 10.1016/j.knosys.2025.113170_bib0016
  article-title: Spatial graph convolutional neural network via structured subdomain adaptation and domain adversarial learning for bearing fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.10.057
– ident: 10.1016/j.knosys.2025.113170_bib0019
  doi: 10.1109/TNNLS.2020.2988928
– volume: 206
  year: 2023
  ident: 10.1016/j.knosys.2025.113170_bib0032
  article-title: A fault diagnosis method of rolling bearing based on improved deep residual shrinkage networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112282
– volume: 7
  year: 2020
  ident: 10.1016/j.knosys.2025.113170_bib0030
  article-title: Time-lagged t-distributed stochastic neighbor embedding (t-SNE) of molecular simulation trajectories
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2020.00132
– volume: 113
  year: 2022
  ident: 10.1016/j.knosys.2025.113170_bib0011
  article-title: Adversarial domain adaptation network with pseudo-siamese feature extractors for cross-bearing fault transfer diagnosis
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104932
– volume: 207
  year: 2023
  ident: 10.1016/j.knosys.2025.113170_bib0010
  article-title: A multi-target domain adaptive method for intelligent transfer fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112352
– ident: 10.1016/j.knosys.2025.113170_bib0026
  doi: 10.1109/CVPR.2016.90
– volume: 143
  year: 2020
  ident: 10.1016/j.knosys.2025.113170_bib0009
  article-title: Domain adaptive deep belief network for rolling bearing fault diagnosis
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106427
– volume: 622
  start-page: 178
  year: 2023
  ident: 10.1016/j.knosys.2025.113170_bib0022
  article-title: K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.11.139
– start-page: 1
  year: 2022
  ident: 10.1016/j.knosys.2025.113170_bib0028
  article-title: Data augmentation and intelligent fault diagnosis of planetary gearbox using ILoFGAN under extremely limited samples
  publication-title: IEEE Trans. Reliab.
– volume: 230
  year: 2023
  ident: 10.1016/j.knosys.2025.113170_bib0014
  article-title: A tensor-based domain alignment method for intelligent fault diagnosis of rolling bearing in rotating machinery
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108968
– volume: 266
  year: 2023
  ident: 10.1016/j.knosys.2025.113170_bib0002
  article-title: Bearing fault diagnosis under various conditions using an incremental learning-based multi-task shared classifier
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110395
– volume: 128
  start-page: 485
  year: 2022
  ident: 10.1016/j.knosys.2025.113170_bib0006
  article-title: Rolling bearing fault diagnosis based on SSA optimized self-adaptive DBN
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.11.024
– volume: 27
  start-page: 5254
  issue: 6
  year: 2022
  ident: 10.1016/j.knosys.2025.113170_bib0003
  article-title: Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3177174
– volume: 9
  start-page: e14545
  issue: 3
  year: 2023
  ident: 10.1016/j.knosys.2025.113170_bib0013
  article-title: Exploring the essence of compound fault diagnosis: a novel multi-label domain adaptation method and its application to bearings
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e14545
– volume: 139
  year: 2023
  ident: 10.1016/j.knosys.2025.113170_bib0020
  article-title: An effective and adaptable K-means algorithm for big data cluster analysis
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109404
– volume: 252
  year: 2022
  ident: 10.1016/j.knosys.2025.113170_bib0015
  article-title: Cross-domain fault diagnosis of bearing using improved semi-supervised meta-learning towards interference of out-of-distribution samples
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109493
– start-page: 531
  year: 2019
  ident: 10.1016/j.knosys.2025.113170_bib0038
  article-title: Multi-instance multi-scale CNN for medical image classification
– volume: 137
  year: 2023
  ident: 10.1016/j.knosys.2025.113170_bib0021
  article-title: How to use K-means for big data clustering?
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109269
SSID ssj0002218
Score 2.4379196
Snippet •A novel method of subdomain adaptation is proposed.•The method is used for cross-domain and unsupervised bearing fault diagnosis.•Combining K-means clustering...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 113170
SubjectTerms Attention mechanism
Cross-domain fault diagnosis
K-means clustering algorithm
Subdomain alignment
Title KMDSAN: A novel method for cross-domain and unsupervised bearing fault diagnosis
URI https://dx.doi.org/10.1016/j.knosys.2025.113170
Volume 312
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0950-7051
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002218
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0950-7051
  databaseCode: ACRLP
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002218
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0950-7051
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002218
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0950-7051
  databaseCode: AIKHN
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002218
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0950-7051
  databaseCode: AKRWK
  dateStart: 19871201
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jXrz4Lc4vcvAa17RJa72N6ZiODWEOdivpmwSqsx22Fbz42036gQriwWNKQsuT5H2flOfNg9AF9ThQoTnhUkvCIAyISXpgjiqKShGDcoStRp7O_PGC3S_5soOGbS2MlVU2sb-O6VW0bp70GzT76yTpzw05MOvVJCxeEWtbaM5YYF0MLj--ZB6uW_3js52J7d2Wz1Uar-c0y9_tpd0ut-Ym1FoW_5aevqWc0Q7aargiHtSfs4s6Kt1D260PA2625T56mExv5oPZNR7gNHtTK1zbQmPDR3H1GiKzF5GkWKQSl2lerm2AyJXEsVnnJndhLcpVgWUtu0vyA7QY3T4Ox6RxSiBg8m1BqHTcUDtSaU1j3-fAfKrNXg7A0dIPqScNUfFD24wBnACulMeVpwUz55cwBO8QddMsVUcIc25NDkAqTzhMAoRgIJRUMw4CAo_1EGkBitb1hRhRqxR7impAIwtoVAPaQ0GLYvRjYiMTs_8cefzvkSdo07asVIzyU9QtXkt1ZrhDEZ9Xi-McbQzuJuPZJ7LYxH0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD6ymcRInhK0qVIU-hNRW6hY5Z1sKlKQiKRILvx07DwESYmBMYivRl_N9d9Z3PoQuqcOAcsUIE0oQFwKfaNIDnapIKngE0uKmGnk09voz92HO5g3UrWthjKyy8v2lTy-8dXWnXaHZXsZxe6KDA22vmrBYEVizNbTuMts3GdjVx5fOw7aLTT4zmpjhdf1cIfJ6TtLs3ZzabTPT3YSansW_8dM3zuntoK0qWMSd8nt2UUMme2i7bsSAq3W5jx4Ho9tJZ3yDOzhJ3-QCl32hsQ5IcfEaItIXHieYJwKvkmy1NB4ikwJH2tA1eWHFV4sci1J3F2cHaNa7m3b7pGqVQEATbk6osOxAWUIqRSPPY-B6VOnF7IOlhBdQR-hIxQvMZQRg-XAtHSYdxV2dwAQBOIeomaSJPEKYMdPlAIR0uOUKgAA0hIIqlwEH33FbiNQAhcvyRIywloo9hSWgoQE0LAFtIb9GMfzxZ0PttP-cefzvmRdooz8dDcPh_XhwgjbNE6Mbo-wUNfPXlTzTgUQenReG8gl7pcYS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KMDSAN%3A+A+novel+method+for+cross-domain+and+unsupervised+bearing+fault+diagnosis&rft.jtitle=Knowledge-based+systems&rft.au=Wu%2C+Shuping&rft.au=Shi%2C+Peiming&rft.au=Xu%2C+Xuefang&rft.au=Yang%2C+Xu&rft.date=2025-03-15&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.volume=312&rft_id=info:doi/10.1016%2Fj.knosys.2025.113170&rft.externalDocID=S0950705125002175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon