KMDSAN: A novel method for cross-domain and unsupervised bearing fault diagnosis
•A novel method of subdomain adaptation is proposed.•The method is used for cross-domain and unsupervised bearing fault diagnosis.•Combining K-means clustering algorithm, a novel local maximum mean discrepancy (KLMMD) is designed.•The effectiveness of the method is verified by two related bearing da...
Saved in:
| Published in | Knowledge-based systems Vol. 312; p. 113170 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
15.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0950-7051 |
| DOI | 10.1016/j.knosys.2025.113170 |
Cover
| Abstract | •A novel method of subdomain adaptation is proposed.•The method is used for cross-domain and unsupervised bearing fault diagnosis.•Combining K-means clustering algorithm, a novel local maximum mean discrepancy (KLMMD) is designed.•The effectiveness of the method is verified by two related bearing datasets.
Cross-domain bearing fault diagnosis is a serious challenge due to the unlabeled dataset. Deep subdomain adaptation network assisted by K-means clustering algorithm (KMDSAN), a diagnosis method based on non-adversarial network and alignment of subdomain, is proposed in this paper. Taking deep subdomain adaptation network (DSAN) as basic framework is the main difference between KMDSAN and most existing methods, because DSAN emphasizes the subdomain alignment rather than global alignment. Additionally, the K-means clustering algorithm is utilized to optimize the local maximum mean discrepancy to improve the performance of DSAN. Finally, a deep network with an improved attention mechanism is designed for the feature extraction of original bearing vibration signal. In comparison to other methods, KMDSAN is concise yet highly effective, and results from two datasets related to bearing demonstrate that the proposed method achieves excellent diagnosis accuracy. |
|---|---|
| AbstractList | •A novel method of subdomain adaptation is proposed.•The method is used for cross-domain and unsupervised bearing fault diagnosis.•Combining K-means clustering algorithm, a novel local maximum mean discrepancy (KLMMD) is designed.•The effectiveness of the method is verified by two related bearing datasets.
Cross-domain bearing fault diagnosis is a serious challenge due to the unlabeled dataset. Deep subdomain adaptation network assisted by K-means clustering algorithm (KMDSAN), a diagnosis method based on non-adversarial network and alignment of subdomain, is proposed in this paper. Taking deep subdomain adaptation network (DSAN) as basic framework is the main difference between KMDSAN and most existing methods, because DSAN emphasizes the subdomain alignment rather than global alignment. Additionally, the K-means clustering algorithm is utilized to optimize the local maximum mean discrepancy to improve the performance of DSAN. Finally, a deep network with an improved attention mechanism is designed for the feature extraction of original bearing vibration signal. In comparison to other methods, KMDSAN is concise yet highly effective, and results from two datasets related to bearing demonstrate that the proposed method achieves excellent diagnosis accuracy. |
| ArticleNumber | 113170 |
| Author | Yang, Xu Li, Ruixiong Shi, Peiming Xu, Xuefang Wu, Shuping Qiao, Zijian |
| Author_xml | – sequence: 1 givenname: Shuping surname: Wu fullname: Wu, Shuping organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, PR China – sequence: 2 givenname: Peiming surname: Shi fullname: Shi, Peiming email: spm@ysu.edu.cn organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, PR China – sequence: 3 givenname: Xuefang surname: Xu fullname: Xu, Xuefang organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, PR China – sequence: 4 givenname: Xu surname: Yang fullname: Yang, Xu organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, PR China – sequence: 5 givenname: Ruixiong surname: Li fullname: Li, Ruixiong organization: School of Energy and Power Engineering, Xi 'an Jiaotong University, Xi 'an, Shanxi 710048, PR China – sequence: 6 givenname: Zijian surname: Qiao fullname: Qiao, Zijian organization: School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang 315211, PR China |
| BookMark | eNp9kMtOAjEUhrvAREDfwEVfYMZzZpgO48KE4DXiJVHXTWlPsQgtaQcS3l5wXLv68y_-S74B6_ngibELhBwBxeUy__Yh7VNeQFHliCXW0GN9aCrIaqjwlA1SWgJAUeC4z96enm_eJy9XfMJ92NGKr6n9CobbELmOIaXMhLVynitv-Nan7YbiziUyfE4qOr_gVm1XLTdOLQ67Lp2xE6tWic7_dMg-724_pg_Z7PX-cTqZZRrHVZuhgaKxYMhanAtR6ZFAW0NZa7BGNFgagbVojnauNdR6TGVFpVUjAaJpdDlko67392UkKzfRrVXcSwR5JCGXsiMhjyRkR-IQu-5idPi2cxRl0o68JuMi6Vaa4P4v-AEhiW1N |
| Cites_doi | 10.1016/j.knosys.2022.110175 10.1016/j.ymssp.2023.110098 10.1016/j.aei.2023.101877 10.1016/j.jmsy.2022.09.004 10.1016/j.suscom.2022.100695 10.1016/j.engappai.2022.105794 10.1016/j.asoc.2022.108582 10.1016/j.egyr.2022.08.041 10.1016/j.engappai.2022.105269 10.1016/j.knosys.2022.108381 10.1016/j.knosys.2022.110070 10.1016/j.engappai.2022.105656 10.1016/j.ymssp.2021.107963 10.1016/j.isatra.2021.12.037 10.1109/CVPR.2019.00060 10.1016/j.measurement.2022.110752 10.1016/j.neucom.2022.10.057 10.1109/TNNLS.2020.2988928 10.1016/j.measurement.2022.112282 10.3389/fmolb.2020.00132 10.1016/j.engappai.2022.104932 10.1016/j.measurement.2022.112352 10.1109/CVPR.2016.90 10.1016/j.cie.2020.106427 10.1016/j.ins.2022.11.139 10.1016/j.ress.2022.108968 10.1016/j.knosys.2023.110395 10.1016/j.isatra.2021.11.024 10.1109/TMECH.2022.3177174 10.1016/j.heliyon.2023.e14545 10.1016/j.patcog.2023.109404 10.1016/j.knosys.2022.109493 10.1016/j.patcog.2022.109269 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.knosys.2025.113170 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_knosys_2025_113170 S0950705125002175 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I AAQXK AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ~HD |
| ID | FETCH-LOGICAL-c185t-1d029f0deff1b665c461f7037c0fd6913d617697c0fbcc07c8e35e3fa460699c3 |
| IEDL.DBID | .~1 |
| ISSN | 0950-7051 |
| IngestDate | Wed Oct 01 06:30:06 EDT 2025 Sat May 03 15:57:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Attention mechanism Cross-domain fault diagnosis K-means clustering algorithm Subdomain alignment |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c185t-1d029f0deff1b665c461f7037c0fd6913d617697c0fbcc07c8e35e3fa460699c3 |
| ParticipantIDs | crossref_primary_10_1016_j_knosys_2025_113170 elsevier_sciencedirect_doi_10_1016_j_knosys_2025_113170 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-15 |
| PublicationDateYYYYMMDD | 2025-03-15 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Xiao, Shao, Han, Huo, Wan (bib0003) 2022; 27 Che, Wang, Ni, Fu (bib0009) 2020; 143 Spiwok, Kí (bib0030) 2020; 7 Liang, Wang, Jiang, Li, Zhang (bib0018) 2023; 118 2016, pp. 770–778. Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0033) 2014; 15 Ma, Han, Lei (bib0012) 2023; 261 Ghorvei, Kavianpour, Beheshti, Ramezani (bib0016) 2023; 517 vol. 32, no. 4, pp. 1713–1722, 2020. Wang, Xiong, He (bib0002) 2023; 266 Zeng (bib0010) 2023; 207 Ruan, Wang, Yan, Gühmann (bib0023) 2023; 55 Guo, Yang, Huang (bib0025) 2022; 8 Li (bib0038) 2019 Liu, Chen, Wei, Wu, Chen, Chen (bib0014) 2023; 230 Wan, Li, Chen, Gong, Li (bib0007) 2022; 191 Y. Zhu et al., "Deep subdomain adaptation network for image classification," Shao, Li, Cai, Wan, Xiao, Yan (bib0001) 2023 Chen, Shao, Dou, Li, Liu (bib0028) 2022 Tong, Tang, Wu, Pan, Zheng (bib0032) 2023; 206 vol. 161, p. 107963, 2021/12/01/2021 Luo, Shao, Cao, Chen, Cai, Liu (bib0017) 2022; 65 2019, pp. 510–519. Yao, Qian, Qin, Guo, Wu (bib0011) 2022; 113 K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in . Ikotun, Ezugwu, Abualigah, Abuhaija, Heming (bib0022) 2023; 622 K.A. Loparo, “Case Western Reserve University Bearing Data Center.” Available Su, Yang, Xiang, Hu, Xu (bib0008) 2022; 242 K. Zhang, B. Tang, L. Deng, Q. Tan, and H. Yu, "A fault diagnosis method for wind turbines gearbox based on adaptive loss weighted meta-ResNet under noisy labels," Wu, Jiang, Zhu, Wang (bib0005) 2023; 189 Gupta, Wadhvani, Rasool (bib0004) 2023; 259 Chen, Wei, Xue, Zhang (bib0036) 2022; 119 Lin (bib0015) 2022; 252 Chen, Zhao, He, Wei, Yang (bib0029) 2022; 129 Chu, Li, Yang, Chen, Shen, Wang (bib0013) 2023; 9 Jia, Chow, Yuan (bib0024) 2023; 119 W. Zeng, H. Li, G. Hu, and D. Liang, "Identification of maize leaf diseases by using the SKPSNet-50 convolutional neural network model," Gao, Xu, Zhang, Pei (bib0006) 2022; 128 Mussabayev, Mladenovic, Jarboui, Mussabayev (bib0021) 2023; 137 X. Li, W. Wang, X. Hu, and J. Yang, "Selective kernel networks," in Hu, Liu, Zhang, Fang (bib0020) 2023; 139 Liang, Wang, Yuan, Liu, Zhang, Cheng (bib0027) 2022; 115 vol. 35, p. 100695, 2022/09/01/2022 Ruan (10.1016/j.knosys.2025.113170_bib0023) 2023; 55 Liang (10.1016/j.knosys.2025.113170_bib0027) 2022; 115 Su (10.1016/j.knosys.2025.113170_bib0008) 2022; 242 Chen (10.1016/j.knosys.2025.113170_bib0029) 2022; 129 10.1016/j.knosys.2025.113170_bib0026 Shao (10.1016/j.knosys.2025.113170_bib0001) 2023 Gupta (10.1016/j.knosys.2025.113170_bib0004) 2023; 259 Spiwok (10.1016/j.knosys.2025.113170_bib0030) 2020; 7 Hu (10.1016/j.knosys.2025.113170_bib0020) 2023; 139 Tong (10.1016/j.knosys.2025.113170_bib0032) 2023; 206 Liu (10.1016/j.knosys.2025.113170_bib0014) 2023; 230 Luo (10.1016/j.knosys.2025.113170_bib0017) 2022; 65 Yao (10.1016/j.knosys.2025.113170_bib0011) 2022; 113 Ma (10.1016/j.knosys.2025.113170_bib0012) 2023; 261 Ghorvei (10.1016/j.knosys.2025.113170_bib0016) 2023; 517 Ikotun (10.1016/j.knosys.2025.113170_bib0022) 2023; 622 Liang (10.1016/j.knosys.2025.113170_bib0018) 2023; 118 Mussabayev (10.1016/j.knosys.2025.113170_bib0021) 2023; 137 10.1016/j.knosys.2025.113170_bib0031 Gao (10.1016/j.knosys.2025.113170_bib0006) 2022; 128 Lin (10.1016/j.knosys.2025.113170_bib0015) 2022; 252 10.1016/j.knosys.2025.113170_bib0034 Chen (10.1016/j.knosys.2025.113170_bib0028) 2022 10.1016/j.knosys.2025.113170_bib0035 Jia (10.1016/j.knosys.2025.113170_bib0024) 2023; 119 10.1016/j.knosys.2025.113170_bib0037 Guo (10.1016/j.knosys.2025.113170_bib0025) 2022; 8 Chen (10.1016/j.knosys.2025.113170_bib0036) 2022; 119 10.1016/j.knosys.2025.113170_bib0019 Chu (10.1016/j.knosys.2025.113170_bib0013) 2023; 9 Srivastava (10.1016/j.knosys.2025.113170_bib0033) 2014; 15 Che (10.1016/j.knosys.2025.113170_bib0009) 2020; 143 Xiao (10.1016/j.knosys.2025.113170_bib0003) 2022; 27 Li (10.1016/j.knosys.2025.113170_bib0038) 2019 Wu (10.1016/j.knosys.2025.113170_bib0005) 2023; 189 Zeng (10.1016/j.knosys.2025.113170_bib0010) 2023; 207 Wang (10.1016/j.knosys.2025.113170_bib0002) 2023; 266 Wan (10.1016/j.knosys.2025.113170_bib0007) 2022; 191 |
| References_xml | – volume: 622 start-page: 178 year: 2023 end-page: 210 ident: bib0022 article-title: K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data publication-title: Inf. Sci. – volume: 139 year: 2023 ident: bib0020 article-title: An effective and adaptable K-means algorithm for big data cluster analysis publication-title: Pattern Recognit. – volume: 191 year: 2022 ident: bib0007 article-title: A novel deep convolution multi-adversarial domain adaptation model for rolling bearing fault diagnosis publication-title: Measurement – reference: Y. Zhu et al., "Deep subdomain adaptation network for image classification," – volume: 242 year: 2022 ident: bib0008 article-title: A novel method based on deep transfer unsupervised learning network for bearing fault diagnosis under variable working condition of unequal quantity publication-title: Knowl.-Based Syst. – volume: 137 year: 2023 ident: bib0021 article-title: How to use K-means for big data clustering? publication-title: Pattern Recognit. – volume: 119 year: 2023 ident: bib0024 article-title: GTFE-net: A gramian time frequency enhancement CNN for bearing fault diagnosis publication-title: Eng. Appl. Artif. Intell. – volume: 266 year: 2023 ident: bib0002 article-title: Bearing fault diagnosis under various conditions using an incremental learning-based multi-task shared classifier publication-title: Knowl.-Based Syst. – volume: 252 year: 2022 ident: bib0015 article-title: Cross-domain fault diagnosis of bearing using improved semi-supervised meta-learning towards interference of out-of-distribution samples publication-title: Knowl.-Based Syst. – volume: 55 year: 2023 ident: bib0023 article-title: CNN parameter design based on fault signal analysis and its application in bearing fault diagnosis publication-title: Adv. Eng. Inf. – volume: 230 year: 2023 ident: bib0014 article-title: A tensor-based domain alignment method for intelligent fault diagnosis of rolling bearing in rotating machinery publication-title: Reliab. Eng. Syst. Saf. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib0033 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – reference: vol. 32, no. 4, pp. 1713–1722, 2020. – volume: 119 year: 2022 ident: bib0036 article-title: Feature fusion and kernel selective in Inception-v4 network publication-title: Appl. Soft Comput. – volume: 7 year: 2020 ident: bib0030 article-title: Time-lagged t-distributed stochastic neighbor embedding (t-SNE) of molecular simulation trajectories publication-title: Front. Mol. Biosci. – volume: 118 year: 2023 ident: bib0018 article-title: Unsupervised fault diagnosis of wind turbine bearing via a deep residual deformable convolution network based on subdomain adaptation under time-varying speeds publication-title: Eng. Appl. Artif. Intell. – reference: X. Li, W. Wang, X. Hu, and J. Yang, "Selective kernel networks," in – reference: K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in – reference: W. Zeng, H. Li, G. Hu, and D. Liang, "Identification of maize leaf diseases by using the SKPSNet-50 convolutional neural network model," – volume: 261 year: 2023 ident: bib0012 article-title: Cross-domain meta learning fault diagnosis based on multi-scale dilated convolution and adaptive relation module publication-title: Knowl.-Based Syst. – reference: K.A. Loparo, “Case Western Reserve University Bearing Data Center.” Available: – volume: 8 start-page: 904 year: 2022 end-page: 913 ident: bib0025 article-title: Bearing fault diagnosis based on speed signal and CNN model publication-title: Energy Rep. – volume: 207 year: 2023 ident: bib0010 article-title: A multi-target domain adaptive method for intelligent transfer fault diagnosis publication-title: Measurement – volume: 27 start-page: 5254 year: 2022 end-page: 5263 ident: bib0003 article-title: Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain publication-title: IEEE/ASME Trans. Mechatron. – volume: 206 year: 2023 ident: bib0032 article-title: A fault diagnosis method of rolling bearing based on improved deep residual shrinkage networks publication-title: Measurement – reference: , vol. 161, p. 107963, 2021/12/01/2021, – volume: 129 start-page: 504 year: 2022 end-page: 519 ident: bib0029 article-title: Unsupervised domain adaptation of bearing fault diagnosis based on join sliced Wasserstein distance publication-title: ISA Trans. – volume: 9 start-page: e14545 year: 2023 ident: bib0013 article-title: Exploring the essence of compound fault diagnosis: a novel multi-label domain adaptation method and its application to bearings publication-title: Heliyon – volume: 189 year: 2023 ident: bib0005 article-title: A knowledge dynamic matching unit-guided multi-source domain adaptation network with attention mechanism for rolling bearing fault diagnosis publication-title: Mech. Syst. Sig. Process. – reference: , 2016, pp. 770–778. – volume: 65 start-page: 180 year: 2022 end-page: 191 ident: bib0017 article-title: Modified DSAN for unsupervised cross-domain fault diagnosis of bearing under speed fluctuation publication-title: J. Manuf. Syst. – reference: K. Zhang, B. Tang, L. Deng, Q. Tan, and H. Yu, "A fault diagnosis method for wind turbines gearbox based on adaptive loss weighted meta-ResNet under noisy labels," – reference: . – reference: , 2019, pp. 510–519. – volume: 128 start-page: 485 year: 2022 end-page: 502 ident: bib0006 article-title: Rolling bearing fault diagnosis based on SSA optimized self-adaptive DBN publication-title: ISA Trans. – start-page: 1 year: 2023 end-page: 10 ident: bib0001 article-title: Dual-threshold attention-guided gan and limited infrared thermal images for rotating machinery fault diagnosis under speed fluctuation publication-title: IEEE Trans. Ind. Inf. – volume: 113 year: 2022 ident: bib0011 article-title: Adversarial domain adaptation network with pseudo-siamese feature extractors for cross-bearing fault transfer diagnosis publication-title: Eng. Appl. Artif. Intell. – start-page: 531 year: 2019 end-page: 539 ident: bib0038 article-title: Multi-instance multi-scale CNN for medical image classification publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI2019: 22nd International Conference, Shenzhen, China – start-page: 1 year: 2022 end-page: 9 ident: bib0028 article-title: Data augmentation and intelligent fault diagnosis of planetary gearbox using ILoFGAN under extremely limited samples publication-title: IEEE Trans. Reliab. – volume: 517 start-page: 44 year: 2023 end-page: 61 ident: bib0016 article-title: Spatial graph convolutional neural network via structured subdomain adaptation and domain adversarial learning for bearing fault diagnosis publication-title: Neurocomputing – volume: 143 year: 2020 ident: bib0009 article-title: Domain adaptive deep belief network for rolling bearing fault diagnosis publication-title: Comput. Ind. Eng. – reference: , vol. 35, p. 100695, 2022/09/01/2022, – volume: 259 year: 2023 ident: bib0004 article-title: A real-time adaptive model for bearing fault classification and remaining useful life estimation using deep neural network publication-title: Knowl.-Based Syst. – volume: 115 year: 2022 ident: bib0027 article-title: Intelligent fault diagnosis of rolling bearing based on wavelet transform and improved ResNet under noisy labels and environment publication-title: Eng. Appl. Artif. Intell. – volume: 261 year: 2023 ident: 10.1016/j.knosys.2025.113170_bib0012 article-title: Cross-domain meta learning fault diagnosis based on multi-scale dilated convolution and adaptive relation module publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.110175 – volume: 189 year: 2023 ident: 10.1016/j.knosys.2025.113170_bib0005 article-title: A knowledge dynamic matching unit-guided multi-source domain adaptation network with attention mechanism for rolling bearing fault diagnosis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2023.110098 – volume: 55 year: 2023 ident: 10.1016/j.knosys.2025.113170_bib0023 article-title: CNN parameter design based on fault signal analysis and its application in bearing fault diagnosis publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2023.101877 – ident: 10.1016/j.knosys.2025.113170_bib0037 – volume: 65 start-page: 180 year: 2022 ident: 10.1016/j.knosys.2025.113170_bib0017 article-title: Modified DSAN for unsupervised cross-domain fault diagnosis of bearing under speed fluctuation publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2022.09.004 – ident: 10.1016/j.knosys.2025.113170_bib0035 doi: 10.1016/j.suscom.2022.100695 – volume: 119 year: 2023 ident: 10.1016/j.knosys.2025.113170_bib0024 article-title: GTFE-net: A gramian time frequency enhancement CNN for bearing fault diagnosis publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105794 – volume: 119 year: 2022 ident: 10.1016/j.knosys.2025.113170_bib0036 article-title: Feature fusion and kernel selective in Inception-v4 network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108582 – volume: 8 start-page: 904 year: 2022 ident: 10.1016/j.knosys.2025.113170_bib0025 article-title: Bearing fault diagnosis based on speed signal and CNN model publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.08.041 – volume: 115 year: 2022 ident: 10.1016/j.knosys.2025.113170_bib0027 article-title: Intelligent fault diagnosis of rolling bearing based on wavelet transform and improved ResNet under noisy labels and environment publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105269 – volume: 242 year: 2022 ident: 10.1016/j.knosys.2025.113170_bib0008 article-title: A novel method based on deep transfer unsupervised learning network for bearing fault diagnosis under variable working condition of unequal quantity publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108381 – volume: 259 year: 2023 ident: 10.1016/j.knosys.2025.113170_bib0004 article-title: A real-time adaptive model for bearing fault classification and remaining useful life estimation using deep neural network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.110070 – volume: 118 year: 2023 ident: 10.1016/j.knosys.2025.113170_bib0018 article-title: Unsupervised fault diagnosis of wind turbine bearing via a deep residual deformable convolution network based on subdomain adaptation under time-varying speeds publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105656 – ident: 10.1016/j.knosys.2025.113170_bib0031 doi: 10.1016/j.ymssp.2021.107963 – volume: 129 start-page: 504 year: 2022 ident: 10.1016/j.knosys.2025.113170_bib0029 article-title: Unsupervised domain adaptation of bearing fault diagnosis based on join sliced Wasserstein distance publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.12.037 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.knosys.2025.113170_bib0033 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – start-page: 1 year: 2023 ident: 10.1016/j.knosys.2025.113170_bib0001 article-title: Dual-threshold attention-guided gan and limited infrared thermal images for rotating machinery fault diagnosis under speed fluctuation publication-title: IEEE Trans. Ind. Inf. – ident: 10.1016/j.knosys.2025.113170_bib0034 doi: 10.1109/CVPR.2019.00060 – volume: 191 year: 2022 ident: 10.1016/j.knosys.2025.113170_bib0007 article-title: A novel deep convolution multi-adversarial domain adaptation model for rolling bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2022.110752 – volume: 517 start-page: 44 year: 2023 ident: 10.1016/j.knosys.2025.113170_bib0016 article-title: Spatial graph convolutional neural network via structured subdomain adaptation and domain adversarial learning for bearing fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.10.057 – ident: 10.1016/j.knosys.2025.113170_bib0019 doi: 10.1109/TNNLS.2020.2988928 – volume: 206 year: 2023 ident: 10.1016/j.knosys.2025.113170_bib0032 article-title: A fault diagnosis method of rolling bearing based on improved deep residual shrinkage networks publication-title: Measurement doi: 10.1016/j.measurement.2022.112282 – volume: 7 year: 2020 ident: 10.1016/j.knosys.2025.113170_bib0030 article-title: Time-lagged t-distributed stochastic neighbor embedding (t-SNE) of molecular simulation trajectories publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2020.00132 – volume: 113 year: 2022 ident: 10.1016/j.knosys.2025.113170_bib0011 article-title: Adversarial domain adaptation network with pseudo-siamese feature extractors for cross-bearing fault transfer diagnosis publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104932 – volume: 207 year: 2023 ident: 10.1016/j.knosys.2025.113170_bib0010 article-title: A multi-target domain adaptive method for intelligent transfer fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2022.112352 – ident: 10.1016/j.knosys.2025.113170_bib0026 doi: 10.1109/CVPR.2016.90 – volume: 143 year: 2020 ident: 10.1016/j.knosys.2025.113170_bib0009 article-title: Domain adaptive deep belief network for rolling bearing fault diagnosis publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106427 – volume: 622 start-page: 178 year: 2023 ident: 10.1016/j.knosys.2025.113170_bib0022 article-title: K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.11.139 – start-page: 1 year: 2022 ident: 10.1016/j.knosys.2025.113170_bib0028 article-title: Data augmentation and intelligent fault diagnosis of planetary gearbox using ILoFGAN under extremely limited samples publication-title: IEEE Trans. Reliab. – volume: 230 year: 2023 ident: 10.1016/j.knosys.2025.113170_bib0014 article-title: A tensor-based domain alignment method for intelligent fault diagnosis of rolling bearing in rotating machinery publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108968 – volume: 266 year: 2023 ident: 10.1016/j.knosys.2025.113170_bib0002 article-title: Bearing fault diagnosis under various conditions using an incremental learning-based multi-task shared classifier publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110395 – volume: 128 start-page: 485 year: 2022 ident: 10.1016/j.knosys.2025.113170_bib0006 article-title: Rolling bearing fault diagnosis based on SSA optimized self-adaptive DBN publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.11.024 – volume: 27 start-page: 5254 issue: 6 year: 2022 ident: 10.1016/j.knosys.2025.113170_bib0003 article-title: Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3177174 – volume: 9 start-page: e14545 issue: 3 year: 2023 ident: 10.1016/j.knosys.2025.113170_bib0013 article-title: Exploring the essence of compound fault diagnosis: a novel multi-label domain adaptation method and its application to bearings publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e14545 – volume: 139 year: 2023 ident: 10.1016/j.knosys.2025.113170_bib0020 article-title: An effective and adaptable K-means algorithm for big data cluster analysis publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.109404 – volume: 252 year: 2022 ident: 10.1016/j.knosys.2025.113170_bib0015 article-title: Cross-domain fault diagnosis of bearing using improved semi-supervised meta-learning towards interference of out-of-distribution samples publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109493 – start-page: 531 year: 2019 ident: 10.1016/j.knosys.2025.113170_bib0038 article-title: Multi-instance multi-scale CNN for medical image classification – volume: 137 year: 2023 ident: 10.1016/j.knosys.2025.113170_bib0021 article-title: How to use K-means for big data clustering? publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109269 |
| SSID | ssj0002218 |
| Score | 2.4379196 |
| Snippet | •A novel method of subdomain adaptation is proposed.•The method is used for cross-domain and unsupervised bearing fault diagnosis.•Combining K-means clustering... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 113170 |
| SubjectTerms | Attention mechanism Cross-domain fault diagnosis K-means clustering algorithm Subdomain alignment |
| Title | KMDSAN: A novel method for cross-domain and unsupervised bearing fault diagnosis |
| URI | https://dx.doi.org/10.1016/j.knosys.2025.113170 |
| Volume | 312 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0950-7051 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002218 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0950-7051 databaseCode: ACRLP dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002218 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0950-7051 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002218 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0950-7051 databaseCode: AIKHN dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002218 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0950-7051 databaseCode: AKRWK dateStart: 19871201 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jXrz4Lc4vcvAa17RJa72N6ZiODWEOdivpmwSqsx22Fbz42036gQriwWNKQsuT5H2flOfNg9AF9ThQoTnhUkvCIAyISXpgjiqKShGDcoStRp7O_PGC3S_5soOGbS2MlVU2sb-O6VW0bp70GzT76yTpzw05MOvVJCxeEWtbaM5YYF0MLj--ZB6uW_3js52J7d2Wz1Uar-c0y9_tpd0ut-Ym1FoW_5aevqWc0Q7aargiHtSfs4s6Kt1D260PA2625T56mExv5oPZNR7gNHtTK1zbQmPDR3H1GiKzF5GkWKQSl2lerm2AyJXEsVnnJndhLcpVgWUtu0vyA7QY3T4Ox6RxSiBg8m1BqHTcUDtSaU1j3-fAfKrNXg7A0dIPqScNUfFD24wBnACulMeVpwUz55cwBO8QddMsVUcIc25NDkAqTzhMAoRgIJRUMw4CAo_1EGkBitb1hRhRqxR7impAIwtoVAPaQ0GLYvRjYiMTs_8cefzvkSdo07asVIzyU9QtXkt1ZrhDEZ9Xi-McbQzuJuPZJ7LYxH0 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD6ymcRInhK0qVIU-hNRW6hY5Z1sKlKQiKRILvx07DwESYmBMYivRl_N9d9Z3PoQuqcOAcsUIE0oQFwKfaNIDnapIKngE0uKmGnk09voz92HO5g3UrWthjKyy8v2lTy-8dXWnXaHZXsZxe6KDA22vmrBYEVizNbTuMts3GdjVx5fOw7aLTT4zmpjhdf1cIfJ6TtLs3ZzabTPT3YSansW_8dM3zuntoK0qWMSd8nt2UUMme2i7bsSAq3W5jx4Ho9tJZ3yDOzhJ3-QCl32hsQ5IcfEaItIXHieYJwKvkmy1NB4ikwJH2tA1eWHFV4sci1J3F2cHaNa7m3b7pGqVQEATbk6osOxAWUIqRSPPY-B6VOnF7IOlhBdQR-hIxQvMZQRg-XAtHSYdxV2dwAQBOIeomaSJPEKYMdPlAIR0uOUKgAA0hIIqlwEH33FbiNQAhcvyRIywloo9hSWgoQE0LAFtIb9GMfzxZ0PttP-cefzvmRdooz8dDcPh_XhwgjbNE6Mbo-wUNfPXlTzTgUQenReG8gl7pcYS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KMDSAN%3A+A+novel+method+for+cross-domain+and+unsupervised+bearing+fault+diagnosis&rft.jtitle=Knowledge-based+systems&rft.au=Wu%2C+Shuping&rft.au=Shi%2C+Peiming&rft.au=Xu%2C+Xuefang&rft.au=Yang%2C+Xu&rft.date=2025-03-15&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.volume=312&rft_id=info:doi/10.1016%2Fj.knosys.2025.113170&rft.externalDocID=S0950705125002175 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |