Efficient Greedy Algorithms with Accuracy Guarantees for Combinatorial Restrictions

The effective construction of covering arrays for interaction testing relies on fast, practical algorithms. Such algorithms are needed to directly construct covering arrays and variants such as covering perfect hash families. However, they are also needed for a broader class of combinatorial arrays...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 5; no. 2; p. 247
Main Author Colbourn, Charles J.
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2661-8907
2662-995X
2661-8907
DOI10.1007/s42979-023-02548-9

Cover

Abstract The effective construction of covering arrays for interaction testing relies on fast, practical algorithms. Such algorithms are needed to directly construct covering arrays and variants such as covering perfect hash families. However, they are also needed for a broader class of combinatorial arrays defined by combinatorial restrictions, such as perfect, separating, and distributing hash families. For moderate-to-large construction problems, greedy algorithms offer fast techniques that are general and flexible. Consequently they yield the best-known explicit construction for a wide variety of array parameters. Among the greedy algorithms, one-column-at-a-time methods (such as IPO) appear to provide the most efficient techniques. For some restrictions, however, one-row-at-a-time methods guarantee the construction of an array whose size matches that of a strong probabilistic bound. Despite the practical merits of the IPO-like algorithms, this accuracy guarantee has been lacking. In this paper, a framework for greedy algorithms for a broad class of combinatorial restrictions is developed. A one-selection-at-a-time algorithm chooses the entries of the array in arbitrary order while guaranteeing to meet the probabilistic bound. It is time-efficient and uses minimal storage, but entails substantial recomputation. By storing intermediate results, the method is specialized to obtain a general one-row-at-a-time method that is faster. Finally, it is specialized to a general one-column-at-a-time and to an IPO method that consume both less time and less storage than the one-row-at-a-time approach. Crucially, each method guarantees to meet the probabilistic bound for each of the combinatorial restrictions studied.
AbstractList The effective construction of covering arrays for interaction testing relies on fast, practical algorithms. Such algorithms are needed to directly construct covering arrays and variants such as covering perfect hash families. However, they are also needed for a broader class of combinatorial arrays defined by combinatorial restrictions, such as perfect, separating, and distributing hash families. For moderate-to-large construction problems, greedy algorithms offer fast techniques that are general and flexible. Consequently they yield the best-known explicit construction for a wide variety of array parameters. Among the greedy algorithms, one-column-at-a-time methods (such as IPO) appear to provide the most efficient techniques. For some restrictions, however, one-row-at-a-time methods guarantee the construction of an array whose size matches that of a strong probabilistic bound. Despite the practical merits of the IPO-like algorithms, this accuracy guarantee has been lacking. In this paper, a framework for greedy algorithms for a broad class of combinatorial restrictions is developed. A one-selection-at-a-time algorithm chooses the entries of the array in arbitrary order while guaranteeing to meet the probabilistic bound. It is time-efficient and uses minimal storage, but entails substantial recomputation. By storing intermediate results, the method is specialized to obtain a general one-row-at-a-time method that is faster. Finally, it is specialized to a general one-column-at-a-time and to an IPO method that consume both less time and less storage than the one-row-at-a-time approach. Crucially, each method guarantees to meet the probabilistic bound for each of the combinatorial restrictions studied.
ArticleNumber 247
Author Colbourn, Charles J.
Author_xml – sequence: 1
  givenname: Charles J.
  orcidid: 0000-0002-3104-9515
  surname: Colbourn
  fullname: Colbourn, Charles J.
  email: colbourn@asu.edu
  organization: School of Computing and Augmented Intelligence, Arizona State University
BookMark eNp9kEtLAzEUhYMoWGv_gKuA69Gbx2Qmy1JqFQqCj3XIZJI6pU1qMoP03xsdQVcuLucuvnPv4VygUx-8ReiKwA0BqG4Tp7KSBVCWp-R1IU_QhApBilpCdfpnP0ezlLYAGQPORTlBz0vnOtNZ3-NVtLY94vluE2LXv-0T_siC58YMUZsjXg06at9bm7ALES_Cvum87jOsd_jJpj52pu-CT5fozOldsrMfnaLXu-XL4r5YP64eFvN1YUhdyqKSRjRMuCoHkdJSRoiuCYi2bQwXxpq2dBp4WYKTnDPuGrAMJAgObV21wKboerx7iOF9yAHUNgzR55eKSkqIZKKimaIjZWJIKVqnDrHb63hUBNRXf2rsT-X-1Hd_SmYTG00pw35j4-_pf1yfdo50Wg
Cites_doi 10.1137/16M1067767
10.1016/j.ejc.2012.07.017
10.1002/stvr.393
10.1073/pnas.1216318110
10.1016/S0378-3758(99)00131-7
10.1016/j.jss.2020.110771
10.1007/s10623-006-0020-8
10.1016/j.disc.2007.11.021
10.1007/BF02018457
10.1016/j.tcs.2019.10.022
10.1016/j.ins.2011.09.020
10.1007/978-3-031-48679-1_11
10.1109/ICSE43902.2021.00030
10.1002/jcd.21671
10.1023/A:1022490600755
10.1007/s10623-015-0052-z
10.1002/jcd.21609
10.1016/j.infsof.2015.02.008
10.1007/s10623-013-9835-2
10.1109/ICSTW.2009.7
10.1134/S0361768811030029
10.1142/S1793830916500336
10.1109/ICSTW.2017.37
10.1007/s10623-015-0152-9
10.1109/TC.1983.1676175
10.1142/9789812832245_0008
10.1007/s11786-017-0326-0
10.1002/9781119357056.ch5
10.1016/0012-365X(73)90098-8
10.1007/978-3-662-43429-1
10.6028/jres.113.022
10.1002/jcd.21553
10.1109/32.605761
10.1137/120894099
10.1002/jcd.21657
10.1002/jcd.20149
10.1002/(SICI)1520-6610(2000)8:3<189::AID-JCD4>3.0.CO;2-A
10.1109/TSE.2008.50
10.1145/253228.253271
10.1016/0012-365X(75)90058-8
10.1109/18.556707
10.1109/18.6031
10.1515/9783110621730-013
10.1016/j.jctb.2005.03.005
10.1007/s10878-007-9082-4
10.1109/52.536462
10.1147/rd.282.0212
10.1016/S0022-0000(74)80044-9
10.1109/CMPSAC.2003.1245373
10.1007/978-3-642-69672-5
10.1007/978-3-030-79987-8_40
10.1002/jcd.20067
10.1145/1276958.1277173
10.1016/0097-3165(89)90081-2
10.1016/j.ipl.2023.106365
10.1016/0012-365X(90)90009-7
10.1007/BF01195325
10.1016/j.tcs.2009.07.057
10.1002/9780470277331
10.1016/j.tcs.2019.10.019
10.1016/j.ins.2018.05.047
10.1007/978-1-4612-1478-6
10.1023/B:DESI.0000029217.97956.26
10.37236/571
10.1007/s11786-018-0385-x
10.1016/0166-218X(83)90072-0
10.1002/jcd.10059
10.1002/stvr.381
10.1023/A:1016567022721
10.1023/B:DESI.0000029232.40302.6d
10.1109/ACCESS.2019.2907057
10.1017/S0963548300001905
10.1109/18.335882
10.26493/2590-9770.1220.3a1
10.1002/jcd.10002
10.1007/978-3-030-55857-4_7
10.1007/s11590-016-1012-x
10.1145/1883612.1883618
10.1002/jcd.20065
10.1109/32.979992
10.1016/j.tcs.2019.03.034
10.1007/s10601-006-7094-9
10.1007/s11590-019-01459-0
10.1137/080730706
10.1007/s10474-021-01164-4
10.1109/ECBS.2007.47
10.1002/jcd.3180010106
10.1109/ICSTW.2013.36
10.1007/978-1-4612-0751-1_8
10.1007/978-3-642-36899-8_30
10.1016/0097-3165(74)90062-4
10.1109/TIT.1964.1053689
10.1080/15598608.2012.647489
10.1145/1150334.1150336
10.1007/s10623-017-0369-x
10.1016/0004-3702(77)90007-8
10.1002/stvr.365
10.1007/s10878-022-00947-x
10.1109/ICSTW.2014.16
10.1016/j.infsof.2022.107045
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s42979-023-02548-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (New)
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_023_02548_9
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1813729
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
BSONS
CCPQU
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c1859-79c6b36f746599e2311a8106ddbc46cecd5fa04550f94434fb0e3090640d87d03
IEDL.DBID BENPR
ISSN 2661-8907
2662-995X
IngestDate Fri Jul 25 22:20:44 EDT 2025
Wed Oct 01 00:37:48 EDT 2025
Fri Feb 21 02:40:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Greedy algorithm
Conditional expectation
Hash family
Covering array
Probabilistic method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1859-79c6b36f746599e2311a8106ddbc46cecd5fa04550f94434fb0e3090640d87d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3104-9515
PQID 2921193672
PQPubID 6623307
ParticipantIDs proquest_journals_2921193672
crossref_primary_10_1007_s42979_023_02548_9
springer_journals_10_1007_s42979_023_02548_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240201
2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 2
  year: 2024
  text: 20240201
  day: 1
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References MouraLRaaphorstSStevensBUpper bounds on the sizes of variable strength covering arrays using the Lovász local lemmaTheoret Comput Sci2019800146154403033710.1016/j.tcs.2019.10.022
MouraLStardomJStevensBWilliamsACovering arrays with mixed alphabet sizesJ Combin Des200311413432201242710.1002/jcd.10059
ColbournCJConditional expectation algorithms for covering arraysJ Combin Math Combin Comput201490971153241154
HedayatASSloaneNJAStufkenJOrthogonal arrays1999New YorkSpringer10.1007/978-1-4612-1478-6
SteinSKTwo combinatorial covering theoremsJ Combin Theory (A)19741639139734006210.1016/0097-3165(74)90062-4
LovászLOn the ratio of optimal integral and fractional coversDiscrete Math197513438339038457810.1016/0012-365X(75)90058-8
StinsonDRWeiRZhuLNew constructions for perfect hash families and related structures using combinatorial designs and codesJ Combin Des20008189200175273410.1002/(SICI)1520-6610(2000)8:3<189::AID-JCD4>3.0.CO;2-A
KautzWHSingletonRRNonrandom binary superimposed codesIEEE Trans Inform Theory19641036337710.1109/TIT.1964.1053689
JohnsonDSApproximation algorithms for combinatorial problemsJ Comput Syst Sci1974925627844901210.1016/S0022-0000(74)80044-9
CheeYMColbournCJHorsleyDZhouJSequence covering arraysSIAM J Discrete Math201327418441861312076010.1137/120894099
Li X, Dong Z, Wu H, Nie C, Cai K-Y. Refining a randomized post-optimization method for covering arrays. In: 2014 IEEE seventh international conference on software testing, verification and validation workshops; 2014. p. 143–52.
DondersMSGodboleAPt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-covering arrays generated by a tiling probability modelCongr Numer20132181111163157041
AlonNMoshkovitzDSafraSAlgorithmic construction of sets for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-restrictionsACM Trans Algorithms20062153177225380410.1145/1150334.1150336
FrancetićNStevensBAsymptotic size of covering arrays: an application of entropy compressionJ Combin Des201725243257364600410.1002/jcd.21553
Balding DJ, Bruno WJ, Knill E, Torney DC. A comparative survey of non-adaptive pooling designs. In: Genetic mapping and DNA sequencing (Minneapolis, MN, 1994). IMA Vol. Math. Appl., vol. 81. New York: Springer; 1996. p. 133–54.
NieCLeungHA survey of combinatorial testingACM Comput Surv20114321110.1145/1883612.1883618
CohenDMDalalSRFredmanMLPattonGCThe AETG system: an approach to testing based on combinatorial designIEEE Trans Softw Eng1997234374410.1109/32.605761
WagnerMColbournCJSimosDEIn-parameter-order strategies for covering perfect hash familiesAppl Math Comput2022421126952214371105
BryceRCColbournCJA density-based greedy algorithm for higher strength covering arraysSoftw Test Verific Reliab200919375310.1002/stvr.393
MartirosyanSSColbournCJRecursive constructions for covering arraysBayreuther Math Schriften2005742662752220252
SeroussiGBshoutyNHVector sets for exhaustive testing of logic circuitsIEEE Trans Inform Theory19883451352295963310.1109/18.6031
Morgan J. Combinatorial testing: an approach to systems and software testing based on covering arrays. In: Analytic methods in systems and software testing. Hoboken: Wiley; 2018. p. 131–78.
ColbournCJCombinatorial aspects of covering arraysLe Mat (Catania)200458121167
Calvagna A, Gargantini A. IPO-s: incremental generation of combinatorial interaction test data based on symmetries of covering arrays. In: Proc. fifth workshop on advances in model based testing; 2009. p. 10–18.
CohenMBDwyerMBShiJConstructing interaction test suites for highly-configurable systems in the presence of constraints: a greedy approachIEEE Trans Softw Eng20083463365010.1109/TSE.2008.50
ColbournCJMartirosyanSSMullenGLShashaDESherwoodGBYucasJLProducts of mixed covering arrays of strength twoJ Combin Des200614124138220213310.1002/jcd.20065
ZhangJZhangZMaFAutomatic generation of combinatorial test data2014HeidelbergSpringer10.1007/978-3-662-43429-1
Luo C, Lin J, Cai S, Chen X, He B, Qiao B, Zhao P, Lin Q, Zhang H, Wu W, Rajmohan S, Zhang D. AutoCCAG: An automated approach to constrained covering array generation. In: 2021 IEEE/ACM 43rd international conference on software engineering (ICSE); 2021. p. 201–12.
De BonisAVaccaroUA new kind of selectors and their applications to conflict resolution in wireless multichannels networksTheoret Comput Sci2020806219235404993810.1016/j.tcs.2019.03.034
Torres-JimenezJIzquierdo-MarquezIImproved covering arrays using covering perfect hash families with groups of restricted entriesAppl Math Comput20203691248264026513
KuhnDRKackerRLeiYIntroduction to combinatorial testing2013Boca RatonCRC Press
HonkalaIA Graham–Sloane type construction for s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}-surjective matricesJ Algebraic Combin19921347351120368110.1023/A:1022490600755
CohenDMDalalSRPareliusJPattonGCThe combinatorial design approach to automatic test generationIEEE Softw199613828810.1109/52.536462
DoughertyREKleineKWagnerMColbournCJSimosDEAlgorithmic methods for covering arrays of higher indexJ Combin Optim20234512128451965810.1007/s10878-022-00947-x
Torres-JimenezJRodriguez-TelloENew upper bounds for binary covering arrays using simulated annealingInf Sci2012185113715210.1016/j.ins.2011.09.020
StinsonDRVan TrungTWeiRSecure frameproof codes, key distribution patterns, group testing algorithms and related structuresJ Stat Plann Infer200086595617176829210.1016/S0378-3758(99)00131-7
SarkarKColbournCJTwo-stage algorithms for covering array constructionJ Combin Des2019278475505396251310.1002/jcd.21657
DasSMészárosTSmall arrays of maximum coverageJ Combin Des20182610487504386329610.1002/jcd.21609
La ChanceEHalléSAn investigation of distributed computing for combinatorial testingSoftw Test Verific Reliab184220232023
ColbournCJLiYZhangSLingSWangHXingCNiederreiterHConstructing perfect hash families using a greedy algorithmCoding and cryptology2008SingaporeWorld Scientific10911810.1142/9789812832245_0008
van den BergECandèsEChinnGLevinCOlcottPDSing-LongCSingle-photon sampling architecture for solid-state imaging sensorsProc Natl Acad Sci USA20131103027522761
ColbournCJLanusESarkarKAsymptotic and constructive methods for covering perfect hash families and covering arraysDes Codes Cryptogr201886907937377027610.1007/s10623-017-0369-x
MeagherKMouraLZekaouiLMixed covering arrays on graphsJ Combin Des200715393404234387010.1002/jcd.20149
Erdős P, Lovász L. Problems and results on 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}-chromatic hypergraphs and some related questions. In: Infinite and finite sets. Amsterdam: North-Holland; 1975. p. 609–27.
KampelLLeithnerMSimosDESliced AETG: a memory-efficient variant of the AETG covering array generation algorithmOptim Lett202014615431556413057210.1007/s11590-019-01459-0
JinHTsuchiyaTConstrained locating arrays for combinatorial interaction testingJ Syst Softw202017011077110.1016/j.jss.2020.110771
RaaphorstSMouraLStevensBA construction for strength-3 covering arrays from linear feedback shift register sequencesDes Codes Cryptogr2014733949968324852410.1007/s10623-013-9835-2
RescignoAAVaccaroUBounds and algorithms for generalized superimposed codesInform Process Lett20231821063655454407310.1016/j.ipl.2023.106365
MartirosyanSSTran Van TrungOn t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-covering arraysDes Codes Cryptogr200432323339207233610.1023/B:DESI.0000029232.40302.6d
MouraLMullenGLPanarioDFinite field constructions of combinatorial arraysDes Codes Cryptogr2016781197219344022910.1007/s10623-015-0152-9
PoljakSPultrARödlVOn qualitatively independent partitions and related problemsDiscrete Appl Math1983619320570702610.1016/0166-218X(83)90072-0
ColbournCJZhouJImproving two recursive constructions for covering arraysJ Stat Theory Pract201263047319652710.1080/15598608.2012.647489
Cohen MB, Colbourn CJ, Collofello JS, Gibbons PB, Mugridge WB. Variable strength interaction testing of components. In: Proc. Intl. computer software and applications conference (COMPSAC 2003), Dallas TX; 2003. p. 413–8.
Torres-JimenezJIzquierdo-MarquezIConstruction of non-isomorphic covering arraysDiscrete Math Algorithms Appl2016821650033-24350548010.1142/S1793830916500336
KörnerJLucertiniMCompressing inconsistent dataIEEE Trans Inform Theory19944070671510.1109/18.335882
NayeriPColbournCJKonjevodGRandomized postoptimization of covering arraysEur J Combin2013349110310.1016/j.ejc.2012.07.017
Colbourn CJ, Nayeri P. Randomized post-optimization for t-restrictions. In: Information theory, combinatorics, and search theory. Lecture notes in comput. sci., vol. 7777. Heidelberg: Springer; 2013. p. 597–608.
PoljakSTuzaZOn the maximum number of qualitatively independent partitionsJ Combin Theory (A)19895111111699365310.1016/0097-3165(89)90081-2
KuliaminVVPetukhovAA survey of methods for constructing covering arraysProgram Comput Softw2011373121146322709710.1134/S0361768811030029
DoughertyREColbournCJRaigorodskiiAMRassiasMTPerfect hash families: the generalization to higher indicesDiscrete mathematics and applications2020ChamSpringer17719710.1007/978-3-030-55857-4_7
CohenGDApplications of c
K Meagher (2548_CR59) 2007; 15
B Hnich (2548_CR20) 2006; 11
DT Tang (2548_CR11) 1983; 32
K Sarkar (2548_CR96) 2017; 31
2548_CR60
E La Chance (2548_CR108) 1842; 2023
M Forbes (2548_CR38) 2008; 113
J Torres-Jimenez (2548_CR27) 2012; 185
J Torres-Jimenez (2548_CR22) 2016; 8
YM Chee (2548_CR90) 2013; 27
L Moura (2548_CR65) 2003; 11
SK Stein (2548_CR49) 1974; 16
DR Kuhn (2548_CR1) 2013
CJ Colbourn (2548_CR14) 2006; 14
DS Johnson (2548_CR51) 1974; 9
J Körner (2548_CR101) 1994; 40
S Poljak (2548_CR69) 1989; 51
B Stevens (2548_CR63) 2002; 27
M Arató (2548_CR70) 2021; 165
L Lovász (2548_CR50) 1975; 13
RE Dougherty (2548_CR55) 2020
RC Bryce (2548_CR48) 2009; 19
J Torres-Jimenez (2548_CR111) 2016; 11
M Wagner (2548_CR107) 2021
CJ Colbourn (2548_CR23) 2014; 90
K-C Tai (2548_CR34) 2002; 28
L Moura (2548_CR61) 2019; 800
L Moura (2548_CR13) 2016; 78
CJ Colbourn (2548_CR84) 2008; 15
2548_CR82
AA Rescigno (2548_CR83) 2023; 182
2548_CR87
CJ Colbourn (2548_CR40) 2004; 58
S Poljak (2548_CR68) 1983; 6
J Torres-Jimenez (2548_CR28) 2019; 7
2548_CR91
CJ Colbourn (2548_CR53) 2008
D Deng (2548_CR94) 2004; 32
MA Chateauneuf (2548_CR45) 2002; 10
SS Martirosyan (2548_CR64) 2005; 74
M Wagner (2548_CR76) 2022; 421
AS Hedayat (2548_CR8) 1999
2548_CR105
2548_CR104
G Seroussi (2548_CR41) 1988; 34
SS Martirosyan (2548_CR16) 2005; 74
N Alon (2548_CR92) 2008
C Martínez (2548_CR86) 2009; 23
DR Stinson (2548_CR73) 2000; 8
RC Bryce (2548_CR47) 2007; 17
R Fuji-Hara (2548_CR115) 2015; 77
RC Bryce (2548_CR44) 2013; 86
WH Kautz (2548_CR79) 1964; 10
K Kleine (2548_CR39) 2018; 12
2548_CR106
2548_CR116
GOH Katona (2548_CR6) 1973; 3
DT Tang (2548_CR10) 1984; 28
L Kampel (2548_CR103) 2020; 14
2548_CR113
2548_CR112
K Sarkar (2548_CR110) 2019; 27
2548_CR29
MB Cohen (2548_CR25) 2008; 34
RE Dougherty (2548_CR54) 2023; 45
P Nayeri (2548_CR114) 2013; 34
SS Martirosyan (2548_CR17) 2004; 32
JI Kokkala (2548_CR21) 2020; 28
A De Bonis (2548_CR81) 2020; 806
H Jin (2548_CR88) 2020; 170
DR Stinson (2548_CR72) 2000; 86
E van den Berg (2548_CR97) 2013; 110
G Cohen (2548_CR98) 1996; 42
CJ Colbourn (2548_CR77) 2018; 1
J Lawrence (2548_CR43) 2011; 18
L Gargano (2548_CR102) 1993; 9
C Nie (2548_CR4) 2011; 43
Y Lei (2548_CR36) 2008; 18
S Raaphorst (2548_CR12) 2014; 73
2548_CR18
2548_CR93
CJ Colbourn (2548_CR15) 2006; 41
D Kleitman (2548_CR7) 1973; 6
DM Cohen (2548_CR31) 1996; 13
N Alon (2548_CR56) 2006; 2
CJ Colbourn (2548_CR85) 2018; 12
VV Kuliamin (2548_CR2) 2011; 37
2548_CR46
AK Mackworth (2548_CR117) 1977; 8
I Izquierdo-Marquez (2548_CR109) 2018; 460–461
K Mehlhorn (2548_CR71) 1984
CJ Colbourn (2548_CR52) 2018; 86
2548_CR3
I Honkala (2548_CR9) 1992; 1
NJA Sloane (2548_CR57) 1993; 1
AP Godbole (2548_CR95) 1996; 5
A Calvagna (2548_CR118) 2009
GB Sherwood (2548_CR66) 2008; 308
2548_CR35
2548_CR37
GD Cohen (2548_CR67) 1990; 83
DM Cohen (2548_CR32) 1997; 23
J Zhang (2548_CR5) 2014
H Jin (2548_CR89) 2023; 153
L Kampel (2548_CR42) 2019; 800
2548_CR30
2548_CR33
J Torres-Jimenez (2548_CR78) 2020; 369
D-Z Du (2548_CR80) 2000
N Francetić (2548_CR100) 2017; 25
CJ Colbourn (2548_CR19) 2012; 6
GB Sherwood (2548_CR24) 2006; 14
C Nie (2548_CR26) 2015; 62
S Das (2548_CR75) 2018; 26
K Meagher (2548_CR58) 2005; 95
P Danziger (2548_CR62) 2009; 410
CJ Colbourn (2548_CR74) 2009; 34
MS Donders (2548_CR99) 2013; 218
References_xml – reference: MartirosyanSSColbournCJRecursive constructions for covering arraysBayreuther Math Schriften2005742662752220252
– reference: WagnerMKampelLSimosDEFlocchiniPMouraLHeuristically enhanced IPO algorithms for covering array generationCombinatorial algorithms. Lecture notes in computer science2021ChamSpringer57158610.1007/978-3-030-79987-8_40
– reference: CohenDMDalalSRFredmanMLPattonGCThe AETG system: an approach to testing based on combinatorial designIEEE Trans Softw Eng1997234374410.1109/32.605761
– reference: Nie C, Jiang J, Wu H, Leung H, Colbourn CJ. Empirically identifying the best greedy algorithm for covering array generation. In: Sixth IEEE international conference on software testing. Verification and validation, ICST 2013 workshops proceedings, Luxembourg, Luxembourg, March 18–22, 2013. Los Alamitos, CA: IEEE Computer Society; 2013. p. 239–48.
– reference: MouraLMullenGLPanarioDFinite field constructions of combinatorial arraysDes Codes Cryptogr2016781197219344022910.1007/s10623-015-0152-9
– reference: LeiYKackerRKuhnDROkunVLawrenceJIPOG/IPOD: efficient test generation for multi-way software testingSoftw Test Verific Reliab20081812514810.1002/stvr.381
– reference: ColbournCJLanusESubspace restrictions and affine composition for covering perfect hash familiesArt Discrete Appl Math201810203399708910.26493/2590-9770.1220.3a1
– reference: Calvagna A, Gargantini A. IPO-s: incremental generation of combinatorial interaction test data based on symmetries of covering arrays. In: Proc. fifth workshop on advances in model based testing; 2009. p. 10–18.
– reference: DanzigerPMendelsohnEMouraLStevensBCovering arrays avoiding forbidden edgesTheoret Comput Sci20094105254035414256764110.1016/j.tcs.2009.07.057
– reference: HedayatASSloaneNJAStufkenJOrthogonal arrays1999New YorkSpringer10.1007/978-1-4612-1478-6
– reference: BryceRCColbournCJThe density algorithm for pairwise interaction testingSoftw Test Verific Reliab20071715918210.1002/stvr.365
– reference: RescignoAAVaccaroUBounds and algorithms for generalized superimposed codesInform Process Lett20231821063655454407310.1016/j.ipl.2023.106365
– reference: ColbournCJZhouJImproving two recursive constructions for covering arraysJ Stat Theory Pract201263047319652710.1080/15598608.2012.647489
– reference: ColbournCJMcClaryDWLocating and detecting arrays for interaction faultsJ Combin Optim2008151748237521310.1007/s10878-007-9082-4
– reference: GodboleAPSkipperDESunleyRAt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-covering arrays: upper bounds and Poisson approximationsCombin Probab Comput19965105118140095710.1017/S0963548300001905
– reference: TaiK-CLeiYA test generation strategy for pairwise testingIEEE Trans Software Eng2002281109111239203110.1109/32.979992
– reference: KampelLLeithnerMSimosDESliced AETG: a memory-efficient variant of the AETG covering array generation algorithmOptim Lett202014615431556413057210.1007/s11590-019-01459-0
– reference: Erdős P, Lovász L. Problems and results on 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}-chromatic hypergraphs and some related questions. In: Infinite and finite sets. Amsterdam: North-Holland; 1975. p. 609–27.
– reference: MartirosyanSSColbournCJRecursive constructions of covering arraysBayreuth Math Schr2005742662752220252
– reference: SherwoodGBMartirosyanSSColbournCJCovering arrays of higher strength from permutation vectorsJ Combin Des200614202213221449510.1002/jcd.20067
– reference: MeagherKStevensBCovering arrays on graphsJ Combin Theory (B)200595134151215634410.1016/j.jctb.2005.03.005
– reference: TangDTChenCLIterative exhaustive pattern generation for logic testingIBM J Res Develop19842821221910.1147/rd.282.0212
– reference: ColbournCJCombinatorial aspects of covering arraysLe Mat (Catania)200458121167
– reference: JinHTsuchiyaTConstrained locating arrays for combinatorial interaction testingJ Syst Softw202017011077110.1016/j.jss.2020.110771
– reference: CohenDMDalalSRPareliusJPattonGCThe combinatorial design approach to automatic test generationIEEE Softw199613828810.1109/52.536462
– reference: DoughertyREColbournCJRaigorodskiiAMRassiasMTPerfect hash families: the generalization to higher indicesDiscrete mathematics and applications2020ChamSpringer17719710.1007/978-3-030-55857-4_7
– reference: NieCWuHNiuXKuoFLeungHKNColbournCJCombinatorial testing, random testing, and adaptive random testing for detecting interaction triggered failuresInf Softw Technol20156219821310.1016/j.infsof.2015.02.008
– reference: Tung YW, Aldiwan WS. Automating test case generation for the new generation mission software system. In: Proc. 30th IEEE aerospace conference. Los Alamitos: IEEE; 2000. p. 431–7.
– reference: CohenGDApplications of coding theory to communication combinatorial problemsDiscrete Math199083237248106570210.1016/0012-365X(90)90009-7
– reference: CheeYMColbournCJHorsleyDZhouJSequence covering arraysSIAM J Discrete Math201327418441861312076010.1137/120894099
– reference: La ChanceEHalléSAn investigation of distributed computing for combinatorial testingSoftw Test Verific Reliab184220232023
– reference: Colbourn CJ, Nayeri P. Randomized post-optimization for t-restrictions. In: Information theory, combinatorics, and search theory. Lecture notes in comput. sci., vol. 7777. Heidelberg: Springer; 2013. p. 597–608.
– reference: JohnsonDSApproximation algorithms for combinatorial problemsJ Comput Syst Sci1974925627844901210.1016/S0022-0000(74)80044-9
– reference: Cohen MB, Colbourn CJ, Collofello JS, Gibbons PB, Mugridge WB. Variable strength interaction testing of components. In: Proc. Intl. computer software and applications conference (COMPSAC 2003), Dallas TX; 2003. p. 413–8.
– reference: DuD-ZHwangFKCombinatorial group testing and its applications20002River EdgeWorld Scientific Publishing Co., Inc.323
– reference: Li X, Dong Z, Wu H, Nie C, Cai K-Y. Refining a randomized post-optimization method for covering arrays. In: 2014 IEEE seventh international conference on software testing, verification and validation workshops; 2014. p. 143–52.
– reference: KleineKSimosDEAn efficient design and implementation of the in-parameter-order algorithmMath Comput Sci20181215167376789410.1007/s11786-017-0326-0
– reference: Duan F, Lei Y, Yu L, Kacker RN, Kuhn DR. Optimizing IPOG’s vertical growth with constraints based on hypergraph coloring. In: 2017 IEEE international conference on software testing. verification and validation workshops, ICST workshops 2017, Tokyo, Japan, March 13–17, 2017. Los Alamitos, CA: IEEE Computer Society; 2017. p. 181–8.
– reference: DengDStinsonDRWeiRThe Lovász local lemma and its applications to some combinatorial arraysDes Codes Cryptogr2004321–3121134207232110.1023/B:DESI.0000029217.97956.26
– reference: ColbournCJConditional expectation algorithms for covering arraysJ Combin Math Combin Comput201490971153241154
– reference: ChateauneufMAKreherDLOn the state of strength-three covering arraysJ Combin Des200210217238190554010.1002/jcd.10002
– reference: KuliaminVVPetukhovAA survey of methods for constructing covering arraysProgram Comput Softw2011373121146322709710.1134/S0361768811030029
– reference: Colbourn CJ. Covering arrays and hash families. In: Information security and related combinatorics. NATO peace and information security. Amsterdam: IOS Press; 2011. p. 99–136.
– reference: StevensBMendelsohnEPacking arrays and packing designsDes Codes Cryptogr200227165176192340210.1023/A:1016567022721
– reference: MartirosyanSSTran Van TrungOn t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-covering arraysDes Codes Cryptogr200432323339207233610.1023/B:DESI.0000029232.40302.6d
– reference: Colbourn CJ. Covering array tables: 2≤v≤25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \le v \le 25$$\end{document}, 2≤t≤6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \le t \le 6$$\end{document}, t≤k≤10000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \le k \le 10000$$\end{document}. https://www.public.asu.edu/~ccolbou/src/tabby2005-23.
– reference: Izquierdo-MarquezITorres-JimenezJAcevedo-JuárezBAvila-GeorgeHA greedy-metaheuristic 3-stage approach to construct covering arraysInf Sci2018460–461172189383059410.1016/j.ins.2018.05.047
– reference: Dunietz S, Ehrlich WK, Szablak BD, Mallows CL, Iannino A. Applying design of experiments to software testing. In: Proc. intl. conf. on software engineering (ICSE’97). Los Alamitos: IEEE; 1997. p. 205–15.
– reference: Colbourn CJ, Syrotiuk VR. Covering strong separating hash families. In: Finite fields and their applications. De Gruyter Proc. Math. Berlin: De Gruyter; 2020. p. 189–98.
– reference: BryceRCColbournCJA density-based greedy algorithm for higher strength covering arraysSoftw Test Verific Reliab200919375310.1002/stvr.393
– reference: RaaphorstSMouraLStevensBA construction for strength-3 covering arrays from linear feedback shift register sequencesDes Codes Cryptogr2014733949968324852410.1007/s10623-013-9835-2
– reference: AlonNSpencerJHThe probabilistic method2008HobokenWiley35210.1002/9780470277331
– reference: SeroussiGBshoutyNHVector sets for exhaustive testing of logic circuitsIEEE Trans Inform Theory19883451352295963310.1109/18.6031
– reference: DasSMészárosTSmall arrays of maximum coverageJ Combin Des20182610487504386329610.1002/jcd.21609
– reference: ForbesMLawrenceJLeiYKackerRNKuhnDRRefining the in-parameter-order strategy for constructing covering arraysJ Res Nat Inst Stand Tech200811328729710.6028/jres.113.022
– reference: SherwoodGBOptimal and near-optimal mixed covering arrays by column expansionDiscrete Math200830860226035246489410.1016/j.disc.2007.11.021
– reference: StinsonDRWeiRZhuLNew constructions for perfect hash families and related structures using combinatorial designs and codesJ Combin Des20008189200175273410.1002/(SICI)1520-6610(2000)8:3<189::AID-JCD4>3.0.CO;2-A
– reference: KuhnDRKackerRLeiYIntroduction to combinatorial testing2013Boca RatonCRC Press
– reference: Torres-JimenezJIzquierdo-MarquezIConstruction of non-isomorphic covering arraysDiscrete Math Algorithms Appl2016821650033-24350548010.1142/S1793830916500336
– reference: DondersMSGodboleAPt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-covering arrays generated by a tiling probability modelCongr Numer20132181111163157041
– reference: Balding DJ, Bruno WJ, Knill E, Torney DC. A comparative survey of non-adaptive pooling designs. In: Genetic mapping and DNA sequencing (Minneapolis, MN, 1994). IMA Vol. Math. Appl., vol. 81. New York: Springer; 1996. p. 133–54.
– reference: Torres-JimenezJRodriguez-TelloENew upper bounds for binary covering arrays using simulated annealingInf Sci2012185113715210.1016/j.ins.2011.09.020
– reference: PoljakSPultrARödlVOn qualitatively independent partitions and related problemsDiscrete Appl Math1983619320570702610.1016/0166-218X(83)90072-0
– reference: SarkarKColbournCJTwo-stage algorithms for covering array constructionJ Combin Des2019278475505396251310.1002/jcd.21657
– reference: WagnerMColbournCJSimosDEIn-parameter-order strategies for covering perfect hash familiesAppl Math Comput2022421126952214371105
– reference: BryceRCColbournCJExpected time to detection of interaction faultsJ Combin Math Combin Comput201386871103114252
– reference: Lei Y, Kacker R, Kuhn DR, Okun V, Lawrence J. IPOG: A general strategy for t-way software testing. In: Fourteenth int. conf. engineering computer-based systems; 2007. p. 549–56.
– reference: MouraLStardomJStevensBWilliamsACovering arrays with mixed alphabet sizesJ Combin Des200311413432201242710.1002/jcd.10059
– reference: Torres-JimenezJIzquierdo-MarquezIImproved covering arrays using covering perfect hash families with groups of restricted entriesAppl Math Comput20203691248264026513
– reference: MeagherKMouraLZekaouiLMixed covering arrays on graphsJ Combin Des200715393404234387010.1002/jcd.20149
– reference: JinHShiCTsuchiyaTConstrained detecting arrays: mathematical structures for fault identification in combinatorial interaction testingInf Softw Technol202315310704510.1016/j.infsof.2022.107045
– reference: SloaneNJACovering arrays and intersecting codesJ Combin Des199315163130352310.1002/jcd.3180010106
– reference: Luo C, Lin J, Cai S, Chen X, He B, Qiao B, Zhao P, Lin Q, Zhang H, Wu W, Rajmohan S, Zhang D. AutoCCAG: An automated approach to constrained covering array generation. In: 2021 IEEE/ACM 43rd international conference on software engineering (ICSE); 2021. p. 201–12.
– reference: MouraLRaaphorstSStevensBUpper bounds on the sizes of variable strength covering arrays using the Lovász local lemmaTheoret Comput Sci2019800146154403033710.1016/j.tcs.2019.10.022
– reference: KörnerJLucertiniMCompressing inconsistent dataIEEE Trans Inform Theory19944070671510.1109/18.335882
– reference: StinsonDRVan TrungTWeiRSecure frameproof codes, key distribution patterns, group testing algorithms and related structuresJ Stat Plann Infer200086595617176829210.1016/S0378-3758(99)00131-7
– reference: van den BergECandèsEChinnGLevinCOlcottPDSing-LongCSingle-photon sampling architecture for solid-state imaging sensorsProc Natl Acad Sci USA20131103027522761
– reference: Sherwood G. Effective testing of factor combinations. In: Proc. 3rd int’l conf. software testing, analysis and review, software quality eng.; 1994.
– reference: KautzWHSingletonRRNonrandom binary superimposed codesIEEE Trans Inform Theory19641036337710.1109/TIT.1964.1053689
– reference: FrancetićNStevensBAsymptotic size of covering arrays: an application of entropy compressionJ Combin Des201725243257364600410.1002/jcd.21553
– reference: Idalino TB, Moura L. A survey of cover-free families: constructions, applications, and generalizations. In: Stinson66-new advances in designs, codes and cryptography. Cham: Springer; 2023 (to appear).
– reference: ColbournCJDistributing hash families and covering arraysJ Combin Inf Syst Sci200934113126
– reference: MehlhornKData structures and Algorithms 1: sorting and searching1984BerlinSpringer10.1007/978-3-642-69672-5
– reference: KokkalaJIMeagherKNaserasrRNurmelaKJÖstergårdPRJStevensBOn the structure of small strength-2 covering arraysJ Combin Des2020281524403374310.1002/jcd.21671
– reference: MartínezCMouraLPanarioDStevensBLocating errors using ELAs, covering arrays, and adaptive testing algorithmsSIAM J Discrete Math20092317761799257020310.1137/080730706
– reference: CalvagnaAGargantiniADuboisCCombining satisfiability solving and heuristics to constrained combinatorial interaction testingTests and proofs-3rd international conference. Lecture notes in computer science2009HeidelbergSpringer2742
– reference: Morgan J. Combinatorial testing: an approach to systems and software testing based on covering arrays. In: Analytic methods in systems and software testing. Hoboken: Wiley; 2018. p. 131–78.
– reference: KampelLSimosDEA survey on the state of the art of complexity problems for covering arraysTheoret Comput Sci2019800107124403033410.1016/j.tcs.2019.10.019
– reference: NayeriPColbournCJKonjevodGRandomized postoptimization of covering arraysEur J Combin2013349110310.1016/j.ejc.2012.07.017
– reference: HnichBPrestwichSSelenskyESmithBMConstraint models for the covering test problemConstraints200611199219222485110.1007/s10601-006-7094-9
– reference: AratóMKatonaGOHMichaletzkyGMóriTFPintzJRudasTSzékelyGJTusnády G. Rényi 100, quantitative and qualitative (in)dependenceActa Math Hungar2021165121873432359610.1007/s10474-021-01164-4
– reference: Torres-JimenezJAvila-GeorgeHIzquierdo-MarquezIA two-stage algorithm for combinatorial testingOptim Lett201611457469361023610.1007/s11590-016-1012-x
– reference: PoljakSTuzaZOn the maximum number of qualitatively independent partitionsJ Combin Theory (A)19895111111699365310.1016/0097-3165(89)90081-2
– reference: ColbournCJLanusESarkarKAsymptotic and constructive methods for covering perfect hash families and covering arraysDes Codes Cryptogr201886907937377027610.1007/s10623-017-0369-x
– reference: GarganoLKörnerJVaccaroUSperner capacitiesGraph Combin199393146121558310.1007/BF01195325
– reference: SteinSKTwo combinatorial covering theoremsJ Combin Theory (A)19741639139734006210.1016/0097-3165(74)90062-4
– reference: ColbournCJLiYZhangSLingSWangHXingCNiederreiterHConstructing perfect hash families using a greedy algorithmCoding and cryptology2008SingaporeWorld Scientific10911810.1142/9789812832245_0008
– reference: Fuji-HaraRPerfect hash families of strength three with three rows from varieties on finite projective geometriesDes Codes Cryptogr2015772–3351356340315210.1007/s10623-015-0052-z
– reference: SarkarKColbournCJUpper bounds on the size of covering arraysSIAM J Discrete Math20173112771293366519010.1137/16M1067767
– reference: CohenGLitsynSZémorGOn greedy algorithms in coding theoryIEEE Trans Inform Theory19964220532057146575910.1109/18.556707
– reference: De BonisAVaccaroUA new kind of selectors and their applications to conflict resolution in wireless multichannels networksTheoret Comput Sci2020806219235404993810.1016/j.tcs.2019.03.034
– reference: CohenMBDwyerMBShiJConstructing interaction test suites for highly-configurable systems in the presence of constraints: a greedy approachIEEE Trans Softw Eng20083463365010.1109/TSE.2008.50
– reference: ColbournCJMartirosyanSSTran Van Trung WalkerRAIIRoux-type constructions for covering arrays of strengths three and fourDes Codes Cryptogr2006413357225325410.1007/s10623-006-0020-8
– reference: Torres-JimenezJIzquierdo-MarquezIAvila-GeorgeHMethods to construct uniform covering arraysIEEE Access20197427744279710.1109/ACCESS.2019.2907057
– reference: NieCLeungHA survey of combinatorial testingACM Comput Surv20114321110.1145/1883612.1883618
– reference: KleitmanDSpencerJFamilies of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-independent setsDiscrete Math1973625526232357810.1016/0012-365X(73)90098-8
– reference: MackworthAKConsistency in networks of relationsArtif Intell19778199118119239410.1016/0004-3702(77)90007-8
– reference: AlonNMoshkovitzDSafraSAlgorithmic construction of sets for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-restrictionsACM Trans Algorithms20062153177225380410.1145/1150334.1150336
– reference: TangDTWooLSExhaustive test pattern generation with constant weight vectorsIEEE Trans Comput1983321145115010.1109/TC.1983.1676175
– reference: ColbournCJMartirosyanSSMullenGLShashaDESherwoodGBYucasJLProducts of mixed covering arrays of strength twoJ Combin Des200614124138220213310.1002/jcd.20065
– reference: DoughertyREKleineKWagnerMColbournCJSimosDEAlgorithmic methods for covering arrays of higher indexJ Combin Optim20234512128451965810.1007/s10878-022-00947-x
– reference: HonkalaIA Graham–Sloane type construction for s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}-surjective matricesJ Algebraic Combin19921347351120368110.1023/A:1022490600755
– reference: LawrenceJKackerRNLeiYKuhnDRForbesMA survey of binary covering arraysElectron J Combin20111813084278870110.37236/571
– reference: LovászLOn the ratio of optimal integral and fractional coversDiscrete Math197513438339038457810.1016/0012-365X(75)90058-8
– reference: Bryce RC, Colbourn CJ. One-test-at-a-time heuristic search for interaction test suites. In: Genetic and evolutionary computation conference (GECCO), search-based software engineering track (SBSE); 2007. p. 1082–9.
– reference: ZhangJZhangZMaFAutomatic generation of combinatorial test data2014HeidelbergSpringer10.1007/978-3-662-43429-1
– reference: KatonaGOHTwo applications (for search theory and truth functions) of Sperner type theoremsPeriod Math19733192633527110.1007/BF02018457
– reference: ColbournCJSyrotiukVROn a combinatorial framework for fault characterizationMath Comput Sci2018124429451387015710.1007/s11786-018-0385-x
– volume: 31
  start-page: 1277
  year: 2017
  ident: 2548_CR96
  publication-title: SIAM J Discrete Math
  doi: 10.1137/16M1067767
– volume: 421
  start-page: 126952
  year: 2022
  ident: 2548_CR76
  publication-title: Appl Math Comput
– volume: 218
  start-page: 111
  year: 2013
  ident: 2548_CR99
  publication-title: Congr Numer
– volume: 34
  start-page: 91
  year: 2013
  ident: 2548_CR114
  publication-title: Eur J Combin
  doi: 10.1016/j.ejc.2012.07.017
– volume: 19
  start-page: 37
  year: 2009
  ident: 2548_CR48
  publication-title: Softw Test Verific Reliab
  doi: 10.1002/stvr.393
– volume: 110
  start-page: 2752
  issue: 30
  year: 2013
  ident: 2548_CR97
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1216318110
– volume: 86
  start-page: 595
  year: 2000
  ident: 2548_CR72
  publication-title: J Stat Plann Infer
  doi: 10.1016/S0378-3758(99)00131-7
– volume: 170
  start-page: 110771
  year: 2020
  ident: 2548_CR88
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2020.110771
– volume: 41
  start-page: 33
  year: 2006
  ident: 2548_CR15
  publication-title: Des Codes Cryptogr
  doi: 10.1007/s10623-006-0020-8
– volume: 308
  start-page: 6022
  year: 2008
  ident: 2548_CR66
  publication-title: Discrete Math
  doi: 10.1016/j.disc.2007.11.021
– volume: 3
  start-page: 19
  year: 1973
  ident: 2548_CR6
  publication-title: Period Math
  doi: 10.1007/BF02018457
– volume: 800
  start-page: 146
  year: 2019
  ident: 2548_CR61
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2019.10.022
– volume: 185
  start-page: 137
  issue: 1
  year: 2012
  ident: 2548_CR27
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2011.09.020
– ident: 2548_CR82
  doi: 10.1007/978-3-031-48679-1_11
– ident: 2548_CR116
  doi: 10.1109/ICSE43902.2021.00030
– volume: 28
  start-page: 5
  issue: 1
  year: 2020
  ident: 2548_CR21
  publication-title: J Combin Des
  doi: 10.1002/jcd.21671
– start-page: 323
  volume-title: Combinatorial group testing and its applications
  year: 2000
  ident: 2548_CR80
– volume: 1
  start-page: 347
  year: 1992
  ident: 2548_CR9
  publication-title: J Algebraic Combin
  doi: 10.1023/A:1022490600755
– volume: 77
  start-page: 351
  issue: 2–3
  year: 2015
  ident: 2548_CR115
  publication-title: Des Codes Cryptogr
  doi: 10.1007/s10623-015-0052-z
– volume: 26
  start-page: 487
  issue: 10
  year: 2018
  ident: 2548_CR75
  publication-title: J Combin Des
  doi: 10.1002/jcd.21609
– volume: 62
  start-page: 198
  year: 2015
  ident: 2548_CR26
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2015.02.008
– volume: 73
  start-page: 949
  issue: 3
  year: 2014
  ident: 2548_CR12
  publication-title: Des Codes Cryptogr
  doi: 10.1007/s10623-013-9835-2
– ident: 2548_CR37
  doi: 10.1109/ICSTW.2009.7
– volume: 37
  start-page: 121
  issue: 3
  year: 2011
  ident: 2548_CR2
  publication-title: Program Comput Softw
  doi: 10.1134/S0361768811030029
– volume: 8
  start-page: 1650033-24
  issue: 2
  year: 2016
  ident: 2548_CR22
  publication-title: Discrete Math Algorithms Appl
  doi: 10.1142/S1793830916500336
– volume: 74
  start-page: 266
  year: 2005
  ident: 2548_CR16
  publication-title: Bayreuth Math Schr
– ident: 2548_CR106
  doi: 10.1109/ICSTW.2017.37
– volume: 78
  start-page: 197
  issue: 1
  year: 2016
  ident: 2548_CR13
  publication-title: Des Codes Cryptogr
  doi: 10.1007/s10623-015-0152-9
– volume: 32
  start-page: 1145
  year: 1983
  ident: 2548_CR11
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.1983.1676175
– start-page: 109
  volume-title: Coding and cryptology
  year: 2008
  ident: 2548_CR53
  doi: 10.1142/9789812832245_0008
– volume: 12
  start-page: 51
  issue: 1
  year: 2018
  ident: 2548_CR39
  publication-title: Math Comput Sci
  doi: 10.1007/s11786-017-0326-0
– ident: 2548_CR46
– volume: 2023
  start-page: 2023
  year: 1842
  ident: 2548_CR108
  publication-title: Softw Test Verific Reliab
– ident: 2548_CR3
  doi: 10.1002/9781119357056.ch5
– volume: 6
  start-page: 255
  year: 1973
  ident: 2548_CR7
  publication-title: Discrete Math
  doi: 10.1016/0012-365X(73)90098-8
– volume-title: Automatic generation of combinatorial test data
  year: 2014
  ident: 2548_CR5
  doi: 10.1007/978-3-662-43429-1
– volume: 113
  start-page: 287
  year: 2008
  ident: 2548_CR38
  publication-title: J Res Nat Inst Stand Tech
  doi: 10.6028/jres.113.022
– volume: 25
  start-page: 243
  year: 2017
  ident: 2548_CR100
  publication-title: J Combin Des
  doi: 10.1002/jcd.21553
– volume: 23
  start-page: 437
  year: 1997
  ident: 2548_CR32
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/32.605761
– volume-title: Introduction to combinatorial testing
  year: 2013
  ident: 2548_CR1
– volume: 27
  start-page: 1844
  issue: 4
  year: 2013
  ident: 2548_CR90
  publication-title: SIAM J Discrete Math
  doi: 10.1137/120894099
– volume: 27
  start-page: 475
  issue: 8
  year: 2019
  ident: 2548_CR110
  publication-title: J Combin Des
  doi: 10.1002/jcd.21657
– ident: 2548_CR18
– volume: 15
  start-page: 393
  year: 2007
  ident: 2548_CR59
  publication-title: J Combin Des
  doi: 10.1002/jcd.20149
– volume: 8
  start-page: 189
  year: 2000
  ident: 2548_CR73
  publication-title: J Combin Des
  doi: 10.1002/(SICI)1520-6610(2000)8:3<189::AID-JCD4>3.0.CO;2-A
– volume: 34
  start-page: 633
  year: 2008
  ident: 2548_CR25
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2008.50
– ident: 2548_CR30
  doi: 10.1145/253228.253271
– volume: 74
  start-page: 266
  year: 2005
  ident: 2548_CR64
  publication-title: Bayreuther Math Schriften
– start-page: 27
  volume-title: Tests and proofs-3rd international conference. Lecture notes in computer science
  year: 2009
  ident: 2548_CR118
– volume: 13
  start-page: 383
  issue: 4
  year: 1975
  ident: 2548_CR50
  publication-title: Discrete Math
  doi: 10.1016/0012-365X(75)90058-8
– volume: 42
  start-page: 2053
  year: 1996
  ident: 2548_CR98
  publication-title: IEEE Trans Inform Theory
  doi: 10.1109/18.556707
– volume: 34
  start-page: 513
  year: 1988
  ident: 2548_CR41
  publication-title: IEEE Trans Inform Theory
  doi: 10.1109/18.6031
– ident: 2548_CR87
  doi: 10.1515/9783110621730-013
– volume: 95
  start-page: 134
  year: 2005
  ident: 2548_CR58
  publication-title: J Combin Theory (B)
  doi: 10.1016/j.jctb.2005.03.005
– volume: 15
  start-page: 17
  year: 2008
  ident: 2548_CR84
  publication-title: J Combin Optim
  doi: 10.1007/s10878-007-9082-4
– volume: 13
  start-page: 82
  year: 1996
  ident: 2548_CR31
  publication-title: IEEE Softw
  doi: 10.1109/52.536462
– volume: 28
  start-page: 212
  year: 1984
  ident: 2548_CR10
  publication-title: IBM J Res Develop
  doi: 10.1147/rd.282.0212
– volume: 9
  start-page: 256
  year: 1974
  ident: 2548_CR51
  publication-title: J Comput Syst Sci
  doi: 10.1016/S0022-0000(74)80044-9
– ident: 2548_CR60
  doi: 10.1109/CMPSAC.2003.1245373
– volume: 34
  start-page: 113
  year: 2009
  ident: 2548_CR74
  publication-title: J Combin Inf Syst Sci
– volume-title: Data structures and Algorithms 1: sorting and searching
  year: 1984
  ident: 2548_CR71
  doi: 10.1007/978-3-642-69672-5
– start-page: 571
  volume-title: Combinatorial algorithms. Lecture notes in computer science
  year: 2021
  ident: 2548_CR107
  doi: 10.1007/978-3-030-79987-8_40
– volume: 14
  start-page: 202
  year: 2006
  ident: 2548_CR24
  publication-title: J Combin Des
  doi: 10.1002/jcd.20067
– ident: 2548_CR105
  doi: 10.1145/1276958.1277173
– volume: 51
  start-page: 111
  year: 1989
  ident: 2548_CR69
  publication-title: J Combin Theory (A)
  doi: 10.1016/0097-3165(89)90081-2
– volume: 182
  start-page: 106365
  year: 2023
  ident: 2548_CR83
  publication-title: Inform Process Lett
  doi: 10.1016/j.ipl.2023.106365
– volume: 83
  start-page: 237
  year: 1990
  ident: 2548_CR67
  publication-title: Discrete Math
  doi: 10.1016/0012-365X(90)90009-7
– volume: 58
  start-page: 121
  year: 2004
  ident: 2548_CR40
  publication-title: Le Mat (Catania)
– volume: 9
  start-page: 31
  year: 1993
  ident: 2548_CR102
  publication-title: Graph Combin
  doi: 10.1007/BF01195325
– ident: 2548_CR29
– volume: 410
  start-page: 5403
  issue: 52
  year: 2009
  ident: 2548_CR62
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2009.07.057
– start-page: 352
  volume-title: The probabilistic method
  year: 2008
  ident: 2548_CR92
  doi: 10.1002/9780470277331
– volume: 800
  start-page: 107
  year: 2019
  ident: 2548_CR42
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2019.10.019
– volume: 460–461
  start-page: 172
  year: 2018
  ident: 2548_CR109
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.05.047
– volume-title: Orthogonal arrays
  year: 1999
  ident: 2548_CR8
  doi: 10.1007/978-1-4612-1478-6
– volume: 369
  start-page: 124826
  year: 2020
  ident: 2548_CR78
  publication-title: Appl Math Comput
– volume: 32
  start-page: 121
  issue: 1–3
  year: 2004
  ident: 2548_CR94
  publication-title: Des Codes Cryptogr
  doi: 10.1023/B:DESI.0000029217.97956.26
– volume: 18
  start-page: 30
  issue: 1
  year: 2011
  ident: 2548_CR43
  publication-title: Electron J Combin
  doi: 10.37236/571
– volume: 12
  start-page: 429
  issue: 4
  year: 2018
  ident: 2548_CR85
  publication-title: Math Comput Sci
  doi: 10.1007/s11786-018-0385-x
– volume: 6
  start-page: 193
  year: 1983
  ident: 2548_CR68
  publication-title: Discrete Appl Math
  doi: 10.1016/0166-218X(83)90072-0
– volume: 11
  start-page: 413
  year: 2003
  ident: 2548_CR65
  publication-title: J Combin Des
  doi: 10.1002/jcd.10059
– volume: 18
  start-page: 125
  year: 2008
  ident: 2548_CR36
  publication-title: Softw Test Verific Reliab
  doi: 10.1002/stvr.381
– volume: 86
  start-page: 87
  year: 2013
  ident: 2548_CR44
  publication-title: J Combin Math Combin Comput
– volume: 27
  start-page: 165
  year: 2002
  ident: 2548_CR63
  publication-title: Des Codes Cryptogr
  doi: 10.1023/A:1016567022721
– volume: 32
  start-page: 323
  year: 2004
  ident: 2548_CR17
  publication-title: Des Codes Cryptogr
  doi: 10.1023/B:DESI.0000029232.40302.6d
– volume: 7
  start-page: 42774
  year: 2019
  ident: 2548_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907057
– volume: 5
  start-page: 105
  year: 1996
  ident: 2548_CR95
  publication-title: Combin Probab Comput
  doi: 10.1017/S0963548300001905
– volume: 40
  start-page: 706
  year: 1994
  ident: 2548_CR101
  publication-title: IEEE Trans Inform Theory
  doi: 10.1109/18.335882
– volume: 1
  start-page: 02
  year: 2018
  ident: 2548_CR77
  publication-title: Art Discrete Appl Math
  doi: 10.26493/2590-9770.1220.3a1
– volume: 10
  start-page: 217
  year: 2002
  ident: 2548_CR45
  publication-title: J Combin Des
  doi: 10.1002/jcd.10002
– start-page: 177
  volume-title: Discrete mathematics and applications
  year: 2020
  ident: 2548_CR55
  doi: 10.1007/978-3-030-55857-4_7
– volume: 11
  start-page: 457
  year: 2016
  ident: 2548_CR111
  publication-title: Optim Lett
  doi: 10.1007/s11590-016-1012-x
– volume: 43
  start-page: 11
  issue: 2
  year: 2011
  ident: 2548_CR4
  publication-title: ACM Comput Surv
  doi: 10.1145/1883612.1883618
– volume: 14
  start-page: 124
  year: 2006
  ident: 2548_CR14
  publication-title: J Combin Des
  doi: 10.1002/jcd.20065
– volume: 28
  start-page: 109
  issue: 1
  year: 2002
  ident: 2548_CR34
  publication-title: IEEE Trans Software Eng
  doi: 10.1109/32.979992
– ident: 2548_CR93
– volume: 806
  start-page: 219
  year: 2020
  ident: 2548_CR81
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2019.03.034
– volume: 11
  start-page: 199
  year: 2006
  ident: 2548_CR20
  publication-title: Constraints
  doi: 10.1007/s10601-006-7094-9
– volume: 14
  start-page: 1543
  issue: 6
  year: 2020
  ident: 2548_CR103
  publication-title: Optim Lett
  doi: 10.1007/s11590-019-01459-0
– volume: 23
  start-page: 1776
  year: 2009
  ident: 2548_CR86
  publication-title: SIAM J Discrete Math
  doi: 10.1137/080730706
– volume: 165
  start-page: 218
  issue: 1
  year: 2021
  ident: 2548_CR70
  publication-title: Acta Math Hungar
  doi: 10.1007/s10474-021-01164-4
– ident: 2548_CR35
  doi: 10.1109/ECBS.2007.47
– volume: 1
  start-page: 51
  year: 1993
  ident: 2548_CR57
  publication-title: J Combin Des
  doi: 10.1002/jcd.3180010106
– ident: 2548_CR104
  doi: 10.1109/ICSTW.2013.36
– ident: 2548_CR91
  doi: 10.1007/978-1-4612-0751-1_8
– ident: 2548_CR112
  doi: 10.1007/978-3-642-36899-8_30
– volume: 16
  start-page: 391
  year: 1974
  ident: 2548_CR49
  publication-title: J Combin Theory (A)
  doi: 10.1016/0097-3165(74)90062-4
– ident: 2548_CR33
– volume: 10
  start-page: 363
  year: 1964
  ident: 2548_CR79
  publication-title: IEEE Trans Inform Theory
  doi: 10.1109/TIT.1964.1053689
– volume: 6
  start-page: 30
  year: 2012
  ident: 2548_CR19
  publication-title: J Stat Theory Pract
  doi: 10.1080/15598608.2012.647489
– volume: 90
  start-page: 97
  year: 2014
  ident: 2548_CR23
  publication-title: J Combin Math Combin Comput
– volume: 2
  start-page: 153
  year: 2006
  ident: 2548_CR56
  publication-title: ACM Trans Algorithms
  doi: 10.1145/1150334.1150336
– volume: 86
  start-page: 907
  year: 2018
  ident: 2548_CR52
  publication-title: Des Codes Cryptogr
  doi: 10.1007/s10623-017-0369-x
– volume: 8
  start-page: 99
  issue: 1
  year: 1977
  ident: 2548_CR117
  publication-title: Artif Intell
  doi: 10.1016/0004-3702(77)90007-8
– volume: 17
  start-page: 159
  year: 2007
  ident: 2548_CR47
  publication-title: Softw Test Verific Reliab
  doi: 10.1002/stvr.365
– volume: 45
  start-page: 21
  issue: 1
  year: 2023
  ident: 2548_CR54
  publication-title: J Combin Optim
  doi: 10.1007/s10878-022-00947-x
– ident: 2548_CR113
  doi: 10.1109/ICSTW.2014.16
– volume: 153
  start-page: 107045
  year: 2023
  ident: 2548_CR89
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2022.107045
SSID ssj0002504465
Score 2.2480772
Snippet The effective construction of covering arrays for interaction testing relies on fast, practical algorithms. Such algorithms are needed to directly construct...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 247
SubjectTerms Accuracy
Algorithms
Arrays
Combinatorial analysis
Combinatorial Testing and its Applications
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Constrictions
Construction
Data Structures and Information Theory
Efficiency
Greedy algorithms
Guarantees
Information Systems and Communication Service
Methods
Original Research
Pattern Recognition and Graphics
Software Engineering/Programming and Operating Systems
Storage
Vision
Title Efficient Greedy Algorithms with Accuracy Guarantees for Combinatorial Restrictions
URI https://link.springer.com/article/10.1007/s42979-023-02548-9
https://www.proquest.com/docview/2921193672
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: AFBBN
  dateStart: 20190625
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2661-8907
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB76uHgRRcVqLTl40-B2N7tpDiKttBbBItVCb8tuktWDtrWPQ_-9M-lui4KeA4F8k8wjyfcNwGUqTBjKpuC6ZYiSIwyRlSVPwyyRQtjIOvnip0HUH4nHcTguwaDgwtC3ysInOkdtppruyG98RVpkQST9u9kXp65R9LpatNBI8tYK5tZJjJWh6pMyVgWqne7gebi9dSHBLuH6S2Jg8rlS4Thn0jg-HTpnqTiGMU4kcfQEP6PVLgX99WrqglHvAPbzLJK1N2Y_hJKdHMFL18lBYBRh9JvGrFn74w2XsHz_XDC6b2VtrVfzRK8ZbQyC1C4YJq0MnQIWyFR-425kQ0u9PBzfYXEMo1739b7P854JXGPkVVwqHaVBlElcpVIWs7dm0sKyz5hUi0hbbdAIHlGZMyXQNFnq2cBT9J5nWtJ4wQlUJtOJPQWWoDfQXmJ0glVgGgR4VH2DRWcYySzz_KwGVwU28WwjjRFvRZAdkjEiGTskY1WDegFfnB-TRbwzag2uC0h3w3_Pdvb_bOew52PysfldXYfKcr6yF5g8LNMGlFu9hwZU271OZ9DI98c3PeDBuA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4BHWBBIECUpweYwCIkTlwPCBVoVR6tUAGpW0hsBwYojxSh_jl-G3duQgUSbMyWrOTz-e4-298dwFYqTBjKfcF1zZAkRxgSK0uehlkihbCRdeWL252odSPOemFvAj5KLQw9qyx9onPU5knTGfmer6gWWRBJ__D5hVPXKLpdLVtoJEVrBXPgSowVwo5zO3xHCpcfnJ7gem_7frNxfdziRZcBrjFWKS6VjtIgyqSIQqUs5jv7SQ2JkjGpFpG22uBneyT-zZTAn8lSzwaeohswU5PGC3DeSajgiELyVzlqdC67X6c8VCBMuH6WGAh9rlTYK5Q7Tr-HwUAqjmGTkygdPc_36DhOeX_c0rrg15yD2SJrZfWRmc3DhO0vwFXDlZ_AqMXo9Y4ZsvrDHUI2uH_MGZ3vsrrWb6-JHjIyRFpCmzNMkhk6ISTkRPfR-lnXUu8Qp6_IF-HmX9Bbgqn-U98uA0vQ-2gvMTpB1pkGAboG3yDJDSOZZZ6fVWGnxCZ-HpXiiL-KLjskY0QydkjGqgprJXxxsS3zeGxEVdgtIR0P_z7byt-zbcJ067p9EV-cds5XYcbHxGf0snsNpgavb3YdE5dBulFYB4Pb_zbIT950-oQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Greedy+Algorithms+with+Accuracy+Guarantees+for+Combinatorial+Restrictions&rft.jtitle=SN+computer+science&rft.au=Colbourn%2C+Charles+J.&rft.date=2024-02-01&rft.pub=Springer+Nature+Singapore&rft.eissn=2661-8907&rft.volume=5&rft.issue=2&rft_id=info:doi/10.1007%2Fs42979-023-02548-9&rft.externalDocID=10_1007_s42979_023_02548_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon