Efficient Greedy Algorithms with Accuracy Guarantees for Combinatorial Restrictions
The effective construction of covering arrays for interaction testing relies on fast, practical algorithms. Such algorithms are needed to directly construct covering arrays and variants such as covering perfect hash families. However, they are also needed for a broader class of combinatorial arrays...
Saved in:
| Published in | SN computer science Vol. 5; no. 2; p. 247 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Nature Singapore
01.02.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2661-8907 2662-995X 2661-8907 |
| DOI | 10.1007/s42979-023-02548-9 |
Cover
| Abstract | The effective construction of covering arrays for interaction testing relies on fast, practical algorithms. Such algorithms are needed to directly construct covering arrays and variants such as covering perfect hash families. However, they are also needed for a broader class of combinatorial arrays defined by combinatorial restrictions, such as perfect, separating, and distributing hash families. For moderate-to-large construction problems, greedy algorithms offer fast techniques that are general and flexible. Consequently they yield the best-known explicit construction for a wide variety of array parameters. Among the greedy algorithms, one-column-at-a-time methods (such as IPO) appear to provide the most efficient techniques. For some restrictions, however, one-row-at-a-time methods guarantee the construction of an array whose size matches that of a strong probabilistic bound. Despite the practical merits of the IPO-like algorithms, this accuracy guarantee has been lacking. In this paper, a framework for greedy algorithms for a broad class of combinatorial restrictions is developed. A one-selection-at-a-time algorithm chooses the entries of the array in arbitrary order while guaranteeing to meet the probabilistic bound. It is time-efficient and uses minimal storage, but entails substantial recomputation. By storing intermediate results, the method is specialized to obtain a general one-row-at-a-time method that is faster. Finally, it is specialized to a general one-column-at-a-time and to an IPO method that consume both less time and less storage than the one-row-at-a-time approach. Crucially, each method guarantees to meet the probabilistic bound for each of the combinatorial restrictions studied. |
|---|---|
| AbstractList | The effective construction of covering arrays for interaction testing relies on fast, practical algorithms. Such algorithms are needed to directly construct covering arrays and variants such as covering perfect hash families. However, they are also needed for a broader class of combinatorial arrays defined by combinatorial restrictions, such as perfect, separating, and distributing hash families. For moderate-to-large construction problems, greedy algorithms offer fast techniques that are general and flexible. Consequently they yield the best-known explicit construction for a wide variety of array parameters. Among the greedy algorithms, one-column-at-a-time methods (such as IPO) appear to provide the most efficient techniques. For some restrictions, however, one-row-at-a-time methods guarantee the construction of an array whose size matches that of a strong probabilistic bound. Despite the practical merits of the IPO-like algorithms, this accuracy guarantee has been lacking. In this paper, a framework for greedy algorithms for a broad class of combinatorial restrictions is developed. A one-selection-at-a-time algorithm chooses the entries of the array in arbitrary order while guaranteeing to meet the probabilistic bound. It is time-efficient and uses minimal storage, but entails substantial recomputation. By storing intermediate results, the method is specialized to obtain a general one-row-at-a-time method that is faster. Finally, it is specialized to a general one-column-at-a-time and to an IPO method that consume both less time and less storage than the one-row-at-a-time approach. Crucially, each method guarantees to meet the probabilistic bound for each of the combinatorial restrictions studied. |
| ArticleNumber | 247 |
| Author | Colbourn, Charles J. |
| Author_xml | – sequence: 1 givenname: Charles J. orcidid: 0000-0002-3104-9515 surname: Colbourn fullname: Colbourn, Charles J. email: colbourn@asu.edu organization: School of Computing and Augmented Intelligence, Arizona State University |
| BookMark | eNp9kEtLAzEUhYMoWGv_gKuA69Gbx2Qmy1JqFQqCj3XIZJI6pU1qMoP03xsdQVcuLucuvnPv4VygUx-8ReiKwA0BqG4Tp7KSBVCWp-R1IU_QhApBilpCdfpnP0ezlLYAGQPORTlBz0vnOtNZ3-NVtLY94vluE2LXv-0T_siC58YMUZsjXg06at9bm7ALES_Cvum87jOsd_jJpj52pu-CT5fozOldsrMfnaLXu-XL4r5YP64eFvN1YUhdyqKSRjRMuCoHkdJSRoiuCYi2bQwXxpq2dBp4WYKTnDPuGrAMJAgObV21wKboerx7iOF9yAHUNgzR55eKSkqIZKKimaIjZWJIKVqnDrHb63hUBNRXf2rsT-X-1Hd_SmYTG00pw35j4-_pf1yfdo50Wg |
| Cites_doi | 10.1137/16M1067767 10.1016/j.ejc.2012.07.017 10.1002/stvr.393 10.1073/pnas.1216318110 10.1016/S0378-3758(99)00131-7 10.1016/j.jss.2020.110771 10.1007/s10623-006-0020-8 10.1016/j.disc.2007.11.021 10.1007/BF02018457 10.1016/j.tcs.2019.10.022 10.1016/j.ins.2011.09.020 10.1007/978-3-031-48679-1_11 10.1109/ICSE43902.2021.00030 10.1002/jcd.21671 10.1023/A:1022490600755 10.1007/s10623-015-0052-z 10.1002/jcd.21609 10.1016/j.infsof.2015.02.008 10.1007/s10623-013-9835-2 10.1109/ICSTW.2009.7 10.1134/S0361768811030029 10.1142/S1793830916500336 10.1109/ICSTW.2017.37 10.1007/s10623-015-0152-9 10.1109/TC.1983.1676175 10.1142/9789812832245_0008 10.1007/s11786-017-0326-0 10.1002/9781119357056.ch5 10.1016/0012-365X(73)90098-8 10.1007/978-3-662-43429-1 10.6028/jres.113.022 10.1002/jcd.21553 10.1109/32.605761 10.1137/120894099 10.1002/jcd.21657 10.1002/jcd.20149 10.1002/(SICI)1520-6610(2000)8:3<189::AID-JCD4>3.0.CO;2-A 10.1109/TSE.2008.50 10.1145/253228.253271 10.1016/0012-365X(75)90058-8 10.1109/18.556707 10.1109/18.6031 10.1515/9783110621730-013 10.1016/j.jctb.2005.03.005 10.1007/s10878-007-9082-4 10.1109/52.536462 10.1147/rd.282.0212 10.1016/S0022-0000(74)80044-9 10.1109/CMPSAC.2003.1245373 10.1007/978-3-642-69672-5 10.1007/978-3-030-79987-8_40 10.1002/jcd.20067 10.1145/1276958.1277173 10.1016/0097-3165(89)90081-2 10.1016/j.ipl.2023.106365 10.1016/0012-365X(90)90009-7 10.1007/BF01195325 10.1016/j.tcs.2009.07.057 10.1002/9780470277331 10.1016/j.tcs.2019.10.019 10.1016/j.ins.2018.05.047 10.1007/978-1-4612-1478-6 10.1023/B:DESI.0000029217.97956.26 10.37236/571 10.1007/s11786-018-0385-x 10.1016/0166-218X(83)90072-0 10.1002/jcd.10059 10.1002/stvr.381 10.1023/A:1016567022721 10.1023/B:DESI.0000029232.40302.6d 10.1109/ACCESS.2019.2907057 10.1017/S0963548300001905 10.1109/18.335882 10.26493/2590-9770.1220.3a1 10.1002/jcd.10002 10.1007/978-3-030-55857-4_7 10.1007/s11590-016-1012-x 10.1145/1883612.1883618 10.1002/jcd.20065 10.1109/32.979992 10.1016/j.tcs.2019.03.034 10.1007/s10601-006-7094-9 10.1007/s11590-019-01459-0 10.1137/080730706 10.1007/s10474-021-01164-4 10.1109/ECBS.2007.47 10.1002/jcd.3180010106 10.1109/ICSTW.2013.36 10.1007/978-1-4612-0751-1_8 10.1007/978-3-642-36899-8_30 10.1016/0097-3165(74)90062-4 10.1109/TIT.1964.1053689 10.1080/15598608.2012.647489 10.1145/1150334.1150336 10.1007/s10623-017-0369-x 10.1016/0004-3702(77)90007-8 10.1002/stvr.365 10.1007/s10878-022-00947-x 10.1109/ICSTW.2014.16 10.1016/j.infsof.2022.107045 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s42979-023-02548-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central (New) Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | 10_1007_s42979_023_02548_9 |
| GrantInformation_xml | – fundername: National Science Foundation grantid: 1813729 funderid: http://dx.doi.org/10.13039/100000001 |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ BSONS CCPQU DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c1859-79c6b36f746599e2311a8106ddbc46cecd5fa04550f94434fb0e3090640d87d03 |
| IEDL.DBID | BENPR |
| ISSN | 2661-8907 2662-995X |
| IngestDate | Fri Jul 25 22:20:44 EDT 2025 Wed Oct 01 00:37:48 EDT 2025 Fri Feb 21 02:40:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Greedy algorithm Conditional expectation Hash family Covering array Probabilistic method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1859-79c6b36f746599e2311a8106ddbc46cecd5fa04550f94434fb0e3090640d87d03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3104-9515 |
| PQID | 2921193672 |
| PQPubID | 6623307 |
| ParticipantIDs | proquest_journals_2921193672 crossref_primary_10_1007_s42979_023_02548_9 springer_journals_10_1007_s42979_023_02548_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240201 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 2 year: 2024 text: 20240201 day: 1 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationYear | 2024 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | MouraLRaaphorstSStevensBUpper bounds on the sizes of variable strength covering arrays using the Lovász local lemmaTheoret Comput Sci2019800146154403033710.1016/j.tcs.2019.10.022 MouraLStardomJStevensBWilliamsACovering arrays with mixed alphabet sizesJ Combin Des200311413432201242710.1002/jcd.10059 ColbournCJConditional expectation algorithms for covering arraysJ Combin Math Combin Comput201490971153241154 HedayatASSloaneNJAStufkenJOrthogonal arrays1999New YorkSpringer10.1007/978-1-4612-1478-6 SteinSKTwo combinatorial covering theoremsJ Combin Theory (A)19741639139734006210.1016/0097-3165(74)90062-4 LovászLOn the ratio of optimal integral and fractional coversDiscrete Math197513438339038457810.1016/0012-365X(75)90058-8 StinsonDRWeiRZhuLNew constructions for perfect hash families and related structures using combinatorial designs and codesJ Combin Des20008189200175273410.1002/(SICI)1520-6610(2000)8:3<189::AID-JCD4>3.0.CO;2-A KautzWHSingletonRRNonrandom binary superimposed codesIEEE Trans Inform Theory19641036337710.1109/TIT.1964.1053689 JohnsonDSApproximation algorithms for combinatorial problemsJ Comput Syst Sci1974925627844901210.1016/S0022-0000(74)80044-9 CheeYMColbournCJHorsleyDZhouJSequence covering arraysSIAM J Discrete Math201327418441861312076010.1137/120894099 Li X, Dong Z, Wu H, Nie C, Cai K-Y. Refining a randomized post-optimization method for covering arrays. In: 2014 IEEE seventh international conference on software testing, verification and validation workshops; 2014. p. 143–52. DondersMSGodboleAPt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-covering arrays generated by a tiling probability modelCongr Numer20132181111163157041 AlonNMoshkovitzDSafraSAlgorithmic construction of sets for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-restrictionsACM Trans Algorithms20062153177225380410.1145/1150334.1150336 FrancetićNStevensBAsymptotic size of covering arrays: an application of entropy compressionJ Combin Des201725243257364600410.1002/jcd.21553 Balding DJ, Bruno WJ, Knill E, Torney DC. A comparative survey of non-adaptive pooling designs. In: Genetic mapping and DNA sequencing (Minneapolis, MN, 1994). IMA Vol. Math. Appl., vol. 81. New York: Springer; 1996. p. 133–54. NieCLeungHA survey of combinatorial testingACM Comput Surv20114321110.1145/1883612.1883618 CohenDMDalalSRFredmanMLPattonGCThe AETG system: an approach to testing based on combinatorial designIEEE Trans Softw Eng1997234374410.1109/32.605761 WagnerMColbournCJSimosDEIn-parameter-order strategies for covering perfect hash familiesAppl Math Comput2022421126952214371105 BryceRCColbournCJA density-based greedy algorithm for higher strength covering arraysSoftw Test Verific Reliab200919375310.1002/stvr.393 MartirosyanSSColbournCJRecursive constructions for covering arraysBayreuther Math Schriften2005742662752220252 SeroussiGBshoutyNHVector sets for exhaustive testing of logic circuitsIEEE Trans Inform Theory19883451352295963310.1109/18.6031 Morgan J. Combinatorial testing: an approach to systems and software testing based on covering arrays. In: Analytic methods in systems and software testing. Hoboken: Wiley; 2018. p. 131–78. ColbournCJCombinatorial aspects of covering arraysLe Mat (Catania)200458121167 Calvagna A, Gargantini A. IPO-s: incremental generation of combinatorial interaction test data based on symmetries of covering arrays. In: Proc. fifth workshop on advances in model based testing; 2009. p. 10–18. CohenMBDwyerMBShiJConstructing interaction test suites for highly-configurable systems in the presence of constraints: a greedy approachIEEE Trans Softw Eng20083463365010.1109/TSE.2008.50 ColbournCJMartirosyanSSMullenGLShashaDESherwoodGBYucasJLProducts of mixed covering arrays of strength twoJ Combin Des200614124138220213310.1002/jcd.20065 ZhangJZhangZMaFAutomatic generation of combinatorial test data2014HeidelbergSpringer10.1007/978-3-662-43429-1 Luo C, Lin J, Cai S, Chen X, He B, Qiao B, Zhao P, Lin Q, Zhang H, Wu W, Rajmohan S, Zhang D. AutoCCAG: An automated approach to constrained covering array generation. In: 2021 IEEE/ACM 43rd international conference on software engineering (ICSE); 2021. p. 201–12. De BonisAVaccaroUA new kind of selectors and their applications to conflict resolution in wireless multichannels networksTheoret Comput Sci2020806219235404993810.1016/j.tcs.2019.03.034 Torres-JimenezJIzquierdo-MarquezIImproved covering arrays using covering perfect hash families with groups of restricted entriesAppl Math Comput20203691248264026513 KuhnDRKackerRLeiYIntroduction to combinatorial testing2013Boca RatonCRC Press HonkalaIA Graham–Sloane type construction for s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}-surjective matricesJ Algebraic Combin19921347351120368110.1023/A:1022490600755 CohenDMDalalSRPareliusJPattonGCThe combinatorial design approach to automatic test generationIEEE Softw199613828810.1109/52.536462 DoughertyREKleineKWagnerMColbournCJSimosDEAlgorithmic methods for covering arrays of higher indexJ Combin Optim20234512128451965810.1007/s10878-022-00947-x Torres-JimenezJRodriguez-TelloENew upper bounds for binary covering arrays using simulated annealingInf Sci2012185113715210.1016/j.ins.2011.09.020 StinsonDRVan TrungTWeiRSecure frameproof codes, key distribution patterns, group testing algorithms and related structuresJ Stat Plann Infer200086595617176829210.1016/S0378-3758(99)00131-7 SarkarKColbournCJTwo-stage algorithms for covering array constructionJ Combin Des2019278475505396251310.1002/jcd.21657 DasSMészárosTSmall arrays of maximum coverageJ Combin Des20182610487504386329610.1002/jcd.21609 La ChanceEHalléSAn investigation of distributed computing for combinatorial testingSoftw Test Verific Reliab184220232023 ColbournCJLiYZhangSLingSWangHXingCNiederreiterHConstructing perfect hash families using a greedy algorithmCoding and cryptology2008SingaporeWorld Scientific10911810.1142/9789812832245_0008 van den BergECandèsEChinnGLevinCOlcottPDSing-LongCSingle-photon sampling architecture for solid-state imaging sensorsProc Natl Acad Sci USA20131103027522761 ColbournCJLanusESarkarKAsymptotic and constructive methods for covering perfect hash families and covering arraysDes Codes Cryptogr201886907937377027610.1007/s10623-017-0369-x MeagherKMouraLZekaouiLMixed covering arrays on graphsJ Combin Des200715393404234387010.1002/jcd.20149 Erdős P, Lovász L. Problems and results on 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}-chromatic hypergraphs and some related questions. In: Infinite and finite sets. Amsterdam: North-Holland; 1975. p. 609–27. KampelLLeithnerMSimosDESliced AETG: a memory-efficient variant of the AETG covering array generation algorithmOptim Lett202014615431556413057210.1007/s11590-019-01459-0 JinHTsuchiyaTConstrained locating arrays for combinatorial interaction testingJ Syst Softw202017011077110.1016/j.jss.2020.110771 RaaphorstSMouraLStevensBA construction for strength-3 covering arrays from linear feedback shift register sequencesDes Codes Cryptogr2014733949968324852410.1007/s10623-013-9835-2 RescignoAAVaccaroUBounds and algorithms for generalized superimposed codesInform Process Lett20231821063655454407310.1016/j.ipl.2023.106365 MartirosyanSSTran Van TrungOn t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-covering arraysDes Codes Cryptogr200432323339207233610.1023/B:DESI.0000029232.40302.6d MouraLMullenGLPanarioDFinite field constructions of combinatorial arraysDes Codes Cryptogr2016781197219344022910.1007/s10623-015-0152-9 PoljakSPultrARödlVOn qualitatively independent partitions and related problemsDiscrete Appl Math1983619320570702610.1016/0166-218X(83)90072-0 ColbournCJZhouJImproving two recursive constructions for covering arraysJ Stat Theory Pract201263047319652710.1080/15598608.2012.647489 Cohen MB, Colbourn CJ, Collofello JS, Gibbons PB, Mugridge WB. Variable strength interaction testing of components. In: Proc. Intl. computer software and applications conference (COMPSAC 2003), Dallas TX; 2003. p. 413–8. Torres-JimenezJIzquierdo-MarquezIConstruction of non-isomorphic covering arraysDiscrete Math Algorithms Appl2016821650033-24350548010.1142/S1793830916500336 KörnerJLucertiniMCompressing inconsistent dataIEEE Trans Inform Theory19944070671510.1109/18.335882 NayeriPColbournCJKonjevodGRandomized postoptimization of covering arraysEur J Combin2013349110310.1016/j.ejc.2012.07.017 Colbourn CJ, Nayeri P. Randomized post-optimization for t-restrictions. In: Information theory, combinatorics, and search theory. Lecture notes in comput. sci., vol. 7777. Heidelberg: Springer; 2013. p. 597–608. PoljakSTuzaZOn the maximum number of qualitatively independent partitionsJ Combin Theory (A)19895111111699365310.1016/0097-3165(89)90081-2 KuliaminVVPetukhovAA survey of methods for constructing covering arraysProgram Comput Softw2011373121146322709710.1134/S0361768811030029 DoughertyREColbournCJRaigorodskiiAMRassiasMTPerfect hash families: the generalization to higher indicesDiscrete mathematics and applications2020ChamSpringer17719710.1007/978-3-030-55857-4_7 CohenGDApplications of c K Meagher (2548_CR59) 2007; 15 B Hnich (2548_CR20) 2006; 11 DT Tang (2548_CR11) 1983; 32 K Sarkar (2548_CR96) 2017; 31 2548_CR60 E La Chance (2548_CR108) 1842; 2023 M Forbes (2548_CR38) 2008; 113 J Torres-Jimenez (2548_CR27) 2012; 185 J Torres-Jimenez (2548_CR22) 2016; 8 YM Chee (2548_CR90) 2013; 27 L Moura (2548_CR65) 2003; 11 SK Stein (2548_CR49) 1974; 16 DR Kuhn (2548_CR1) 2013 CJ Colbourn (2548_CR14) 2006; 14 DS Johnson (2548_CR51) 1974; 9 J Körner (2548_CR101) 1994; 40 S Poljak (2548_CR69) 1989; 51 B Stevens (2548_CR63) 2002; 27 M Arató (2548_CR70) 2021; 165 L Lovász (2548_CR50) 1975; 13 RE Dougherty (2548_CR55) 2020 RC Bryce (2548_CR48) 2009; 19 J Torres-Jimenez (2548_CR111) 2016; 11 M Wagner (2548_CR107) 2021 CJ Colbourn (2548_CR23) 2014; 90 K-C Tai (2548_CR34) 2002; 28 L Moura (2548_CR61) 2019; 800 L Moura (2548_CR13) 2016; 78 CJ Colbourn (2548_CR84) 2008; 15 2548_CR82 AA Rescigno (2548_CR83) 2023; 182 2548_CR87 CJ Colbourn (2548_CR40) 2004; 58 S Poljak (2548_CR68) 1983; 6 J Torres-Jimenez (2548_CR28) 2019; 7 2548_CR91 CJ Colbourn (2548_CR53) 2008 D Deng (2548_CR94) 2004; 32 MA Chateauneuf (2548_CR45) 2002; 10 SS Martirosyan (2548_CR64) 2005; 74 M Wagner (2548_CR76) 2022; 421 AS Hedayat (2548_CR8) 1999 2548_CR105 2548_CR104 G Seroussi (2548_CR41) 1988; 34 SS Martirosyan (2548_CR16) 2005; 74 N Alon (2548_CR92) 2008 C Martínez (2548_CR86) 2009; 23 DR Stinson (2548_CR73) 2000; 8 RC Bryce (2548_CR47) 2007; 17 R Fuji-Hara (2548_CR115) 2015; 77 RC Bryce (2548_CR44) 2013; 86 WH Kautz (2548_CR79) 1964; 10 K Kleine (2548_CR39) 2018; 12 2548_CR106 2548_CR116 GOH Katona (2548_CR6) 1973; 3 DT Tang (2548_CR10) 1984; 28 L Kampel (2548_CR103) 2020; 14 2548_CR113 2548_CR112 K Sarkar (2548_CR110) 2019; 27 2548_CR29 MB Cohen (2548_CR25) 2008; 34 RE Dougherty (2548_CR54) 2023; 45 P Nayeri (2548_CR114) 2013; 34 SS Martirosyan (2548_CR17) 2004; 32 JI Kokkala (2548_CR21) 2020; 28 A De Bonis (2548_CR81) 2020; 806 H Jin (2548_CR88) 2020; 170 DR Stinson (2548_CR72) 2000; 86 E van den Berg (2548_CR97) 2013; 110 G Cohen (2548_CR98) 1996; 42 CJ Colbourn (2548_CR77) 2018; 1 J Lawrence (2548_CR43) 2011; 18 L Gargano (2548_CR102) 1993; 9 C Nie (2548_CR4) 2011; 43 Y Lei (2548_CR36) 2008; 18 S Raaphorst (2548_CR12) 2014; 73 2548_CR18 2548_CR93 CJ Colbourn (2548_CR15) 2006; 41 D Kleitman (2548_CR7) 1973; 6 DM Cohen (2548_CR31) 1996; 13 N Alon (2548_CR56) 2006; 2 CJ Colbourn (2548_CR85) 2018; 12 VV Kuliamin (2548_CR2) 2011; 37 2548_CR46 AK Mackworth (2548_CR117) 1977; 8 I Izquierdo-Marquez (2548_CR109) 2018; 460–461 K Mehlhorn (2548_CR71) 1984 CJ Colbourn (2548_CR52) 2018; 86 2548_CR3 I Honkala (2548_CR9) 1992; 1 NJA Sloane (2548_CR57) 1993; 1 AP Godbole (2548_CR95) 1996; 5 A Calvagna (2548_CR118) 2009 GB Sherwood (2548_CR66) 2008; 308 2548_CR35 2548_CR37 GD Cohen (2548_CR67) 1990; 83 DM Cohen (2548_CR32) 1997; 23 J Zhang (2548_CR5) 2014 H Jin (2548_CR89) 2023; 153 L Kampel (2548_CR42) 2019; 800 2548_CR30 2548_CR33 J Torres-Jimenez (2548_CR78) 2020; 369 D-Z Du (2548_CR80) 2000 N Francetić (2548_CR100) 2017; 25 CJ Colbourn (2548_CR19) 2012; 6 GB Sherwood (2548_CR24) 2006; 14 C Nie (2548_CR26) 2015; 62 S Das (2548_CR75) 2018; 26 K Meagher (2548_CR58) 2005; 95 P Danziger (2548_CR62) 2009; 410 CJ Colbourn (2548_CR74) 2009; 34 MS Donders (2548_CR99) 2013; 218 |
| References_xml | – reference: MartirosyanSSColbournCJRecursive constructions for covering arraysBayreuther Math Schriften2005742662752220252 – reference: WagnerMKampelLSimosDEFlocchiniPMouraLHeuristically enhanced IPO algorithms for covering array generationCombinatorial algorithms. Lecture notes in computer science2021ChamSpringer57158610.1007/978-3-030-79987-8_40 – reference: CohenDMDalalSRFredmanMLPattonGCThe AETG system: an approach to testing based on combinatorial designIEEE Trans Softw Eng1997234374410.1109/32.605761 – reference: Nie C, Jiang J, Wu H, Leung H, Colbourn CJ. Empirically identifying the best greedy algorithm for covering array generation. In: Sixth IEEE international conference on software testing. Verification and validation, ICST 2013 workshops proceedings, Luxembourg, Luxembourg, March 18–22, 2013. Los Alamitos, CA: IEEE Computer Society; 2013. p. 239–48. – reference: MouraLMullenGLPanarioDFinite field constructions of combinatorial arraysDes Codes Cryptogr2016781197219344022910.1007/s10623-015-0152-9 – reference: LeiYKackerRKuhnDROkunVLawrenceJIPOG/IPOD: efficient test generation for multi-way software testingSoftw Test Verific Reliab20081812514810.1002/stvr.381 – reference: ColbournCJLanusESubspace restrictions and affine composition for covering perfect hash familiesArt Discrete Appl Math201810203399708910.26493/2590-9770.1220.3a1 – reference: Calvagna A, Gargantini A. IPO-s: incremental generation of combinatorial interaction test data based on symmetries of covering arrays. In: Proc. fifth workshop on advances in model based testing; 2009. p. 10–18. – reference: DanzigerPMendelsohnEMouraLStevensBCovering arrays avoiding forbidden edgesTheoret Comput Sci20094105254035414256764110.1016/j.tcs.2009.07.057 – reference: HedayatASSloaneNJAStufkenJOrthogonal arrays1999New YorkSpringer10.1007/978-1-4612-1478-6 – reference: BryceRCColbournCJThe density algorithm for pairwise interaction testingSoftw Test Verific Reliab20071715918210.1002/stvr.365 – reference: RescignoAAVaccaroUBounds and algorithms for generalized superimposed codesInform Process Lett20231821063655454407310.1016/j.ipl.2023.106365 – reference: ColbournCJZhouJImproving two recursive constructions for covering arraysJ Stat Theory Pract201263047319652710.1080/15598608.2012.647489 – reference: ColbournCJMcClaryDWLocating and detecting arrays for interaction faultsJ Combin Optim2008151748237521310.1007/s10878-007-9082-4 – reference: GodboleAPSkipperDESunleyRAt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-covering arrays: upper bounds and Poisson approximationsCombin Probab Comput19965105118140095710.1017/S0963548300001905 – reference: TaiK-CLeiYA test generation strategy for pairwise testingIEEE Trans Software Eng2002281109111239203110.1109/32.979992 – reference: KampelLLeithnerMSimosDESliced AETG: a memory-efficient variant of the AETG covering array generation algorithmOptim Lett202014615431556413057210.1007/s11590-019-01459-0 – reference: Erdős P, Lovász L. Problems and results on 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}-chromatic hypergraphs and some related questions. In: Infinite and finite sets. Amsterdam: North-Holland; 1975. p. 609–27. – reference: MartirosyanSSColbournCJRecursive constructions of covering arraysBayreuth Math Schr2005742662752220252 – reference: SherwoodGBMartirosyanSSColbournCJCovering arrays of higher strength from permutation vectorsJ Combin Des200614202213221449510.1002/jcd.20067 – reference: MeagherKStevensBCovering arrays on graphsJ Combin Theory (B)200595134151215634410.1016/j.jctb.2005.03.005 – reference: TangDTChenCLIterative exhaustive pattern generation for logic testingIBM J Res Develop19842821221910.1147/rd.282.0212 – reference: ColbournCJCombinatorial aspects of covering arraysLe Mat (Catania)200458121167 – reference: JinHTsuchiyaTConstrained locating arrays for combinatorial interaction testingJ Syst Softw202017011077110.1016/j.jss.2020.110771 – reference: CohenDMDalalSRPareliusJPattonGCThe combinatorial design approach to automatic test generationIEEE Softw199613828810.1109/52.536462 – reference: DoughertyREColbournCJRaigorodskiiAMRassiasMTPerfect hash families: the generalization to higher indicesDiscrete mathematics and applications2020ChamSpringer17719710.1007/978-3-030-55857-4_7 – reference: NieCWuHNiuXKuoFLeungHKNColbournCJCombinatorial testing, random testing, and adaptive random testing for detecting interaction triggered failuresInf Softw Technol20156219821310.1016/j.infsof.2015.02.008 – reference: Tung YW, Aldiwan WS. Automating test case generation for the new generation mission software system. In: Proc. 30th IEEE aerospace conference. Los Alamitos: IEEE; 2000. p. 431–7. – reference: CohenGDApplications of coding theory to communication combinatorial problemsDiscrete Math199083237248106570210.1016/0012-365X(90)90009-7 – reference: CheeYMColbournCJHorsleyDZhouJSequence covering arraysSIAM J Discrete Math201327418441861312076010.1137/120894099 – reference: La ChanceEHalléSAn investigation of distributed computing for combinatorial testingSoftw Test Verific Reliab184220232023 – reference: Colbourn CJ, Nayeri P. Randomized post-optimization for t-restrictions. In: Information theory, combinatorics, and search theory. Lecture notes in comput. sci., vol. 7777. Heidelberg: Springer; 2013. p. 597–608. – reference: JohnsonDSApproximation algorithms for combinatorial problemsJ Comput Syst Sci1974925627844901210.1016/S0022-0000(74)80044-9 – reference: Cohen MB, Colbourn CJ, Collofello JS, Gibbons PB, Mugridge WB. Variable strength interaction testing of components. In: Proc. Intl. computer software and applications conference (COMPSAC 2003), Dallas TX; 2003. p. 413–8. – reference: DuD-ZHwangFKCombinatorial group testing and its applications20002River EdgeWorld Scientific Publishing Co., Inc.323 – reference: Li X, Dong Z, Wu H, Nie C, Cai K-Y. Refining a randomized post-optimization method for covering arrays. In: 2014 IEEE seventh international conference on software testing, verification and validation workshops; 2014. p. 143–52. – reference: KleineKSimosDEAn efficient design and implementation of the in-parameter-order algorithmMath Comput Sci20181215167376789410.1007/s11786-017-0326-0 – reference: Duan F, Lei Y, Yu L, Kacker RN, Kuhn DR. Optimizing IPOG’s vertical growth with constraints based on hypergraph coloring. In: 2017 IEEE international conference on software testing. verification and validation workshops, ICST workshops 2017, Tokyo, Japan, March 13–17, 2017. Los Alamitos, CA: IEEE Computer Society; 2017. p. 181–8. – reference: DengDStinsonDRWeiRThe Lovász local lemma and its applications to some combinatorial arraysDes Codes Cryptogr2004321–3121134207232110.1023/B:DESI.0000029217.97956.26 – reference: ColbournCJConditional expectation algorithms for covering arraysJ Combin Math Combin Comput201490971153241154 – reference: ChateauneufMAKreherDLOn the state of strength-three covering arraysJ Combin Des200210217238190554010.1002/jcd.10002 – reference: KuliaminVVPetukhovAA survey of methods for constructing covering arraysProgram Comput Softw2011373121146322709710.1134/S0361768811030029 – reference: Colbourn CJ. Covering arrays and hash families. In: Information security and related combinatorics. NATO peace and information security. Amsterdam: IOS Press; 2011. p. 99–136. – reference: StevensBMendelsohnEPacking arrays and packing designsDes Codes Cryptogr200227165176192340210.1023/A:1016567022721 – reference: MartirosyanSSTran Van TrungOn t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-covering arraysDes Codes Cryptogr200432323339207233610.1023/B:DESI.0000029232.40302.6d – reference: Colbourn CJ. Covering array tables: 2≤v≤25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \le v \le 25$$\end{document}, 2≤t≤6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \le t \le 6$$\end{document}, t≤k≤10000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \le k \le 10000$$\end{document}. https://www.public.asu.edu/~ccolbou/src/tabby2005-23. – reference: Izquierdo-MarquezITorres-JimenezJAcevedo-JuárezBAvila-GeorgeHA greedy-metaheuristic 3-stage approach to construct covering arraysInf Sci2018460–461172189383059410.1016/j.ins.2018.05.047 – reference: Dunietz S, Ehrlich WK, Szablak BD, Mallows CL, Iannino A. Applying design of experiments to software testing. In: Proc. intl. conf. on software engineering (ICSE’97). Los Alamitos: IEEE; 1997. p. 205–15. – reference: Colbourn CJ, Syrotiuk VR. Covering strong separating hash families. In: Finite fields and their applications. De Gruyter Proc. Math. Berlin: De Gruyter; 2020. p. 189–98. – reference: BryceRCColbournCJA density-based greedy algorithm for higher strength covering arraysSoftw Test Verific Reliab200919375310.1002/stvr.393 – reference: RaaphorstSMouraLStevensBA construction for strength-3 covering arrays from linear feedback shift register sequencesDes Codes Cryptogr2014733949968324852410.1007/s10623-013-9835-2 – reference: AlonNSpencerJHThe probabilistic method2008HobokenWiley35210.1002/9780470277331 – reference: SeroussiGBshoutyNHVector sets for exhaustive testing of logic circuitsIEEE Trans Inform Theory19883451352295963310.1109/18.6031 – reference: DasSMészárosTSmall arrays of maximum coverageJ Combin Des20182610487504386329610.1002/jcd.21609 – reference: ForbesMLawrenceJLeiYKackerRNKuhnDRRefining the in-parameter-order strategy for constructing covering arraysJ Res Nat Inst Stand Tech200811328729710.6028/jres.113.022 – reference: SherwoodGBOptimal and near-optimal mixed covering arrays by column expansionDiscrete Math200830860226035246489410.1016/j.disc.2007.11.021 – reference: StinsonDRWeiRZhuLNew constructions for perfect hash families and related structures using combinatorial designs and codesJ Combin Des20008189200175273410.1002/(SICI)1520-6610(2000)8:3<189::AID-JCD4>3.0.CO;2-A – reference: KuhnDRKackerRLeiYIntroduction to combinatorial testing2013Boca RatonCRC Press – reference: Torres-JimenezJIzquierdo-MarquezIConstruction of non-isomorphic covering arraysDiscrete Math Algorithms Appl2016821650033-24350548010.1142/S1793830916500336 – reference: DondersMSGodboleAPt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-covering arrays generated by a tiling probability modelCongr Numer20132181111163157041 – reference: Balding DJ, Bruno WJ, Knill E, Torney DC. A comparative survey of non-adaptive pooling designs. In: Genetic mapping and DNA sequencing (Minneapolis, MN, 1994). IMA Vol. Math. Appl., vol. 81. New York: Springer; 1996. p. 133–54. – reference: Torres-JimenezJRodriguez-TelloENew upper bounds for binary covering arrays using simulated annealingInf Sci2012185113715210.1016/j.ins.2011.09.020 – reference: PoljakSPultrARödlVOn qualitatively independent partitions and related problemsDiscrete Appl Math1983619320570702610.1016/0166-218X(83)90072-0 – reference: SarkarKColbournCJTwo-stage algorithms for covering array constructionJ Combin Des2019278475505396251310.1002/jcd.21657 – reference: WagnerMColbournCJSimosDEIn-parameter-order strategies for covering perfect hash familiesAppl Math Comput2022421126952214371105 – reference: BryceRCColbournCJExpected time to detection of interaction faultsJ Combin Math Combin Comput201386871103114252 – reference: Lei Y, Kacker R, Kuhn DR, Okun V, Lawrence J. IPOG: A general strategy for t-way software testing. In: Fourteenth int. conf. engineering computer-based systems; 2007. p. 549–56. – reference: MouraLStardomJStevensBWilliamsACovering arrays with mixed alphabet sizesJ Combin Des200311413432201242710.1002/jcd.10059 – reference: Torres-JimenezJIzquierdo-MarquezIImproved covering arrays using covering perfect hash families with groups of restricted entriesAppl Math Comput20203691248264026513 – reference: MeagherKMouraLZekaouiLMixed covering arrays on graphsJ Combin Des200715393404234387010.1002/jcd.20149 – reference: JinHShiCTsuchiyaTConstrained detecting arrays: mathematical structures for fault identification in combinatorial interaction testingInf Softw Technol202315310704510.1016/j.infsof.2022.107045 – reference: SloaneNJACovering arrays and intersecting codesJ Combin Des199315163130352310.1002/jcd.3180010106 – reference: Luo C, Lin J, Cai S, Chen X, He B, Qiao B, Zhao P, Lin Q, Zhang H, Wu W, Rajmohan S, Zhang D. AutoCCAG: An automated approach to constrained covering array generation. In: 2021 IEEE/ACM 43rd international conference on software engineering (ICSE); 2021. p. 201–12. – reference: MouraLRaaphorstSStevensBUpper bounds on the sizes of variable strength covering arrays using the Lovász local lemmaTheoret Comput Sci2019800146154403033710.1016/j.tcs.2019.10.022 – reference: KörnerJLucertiniMCompressing inconsistent dataIEEE Trans Inform Theory19944070671510.1109/18.335882 – reference: StinsonDRVan TrungTWeiRSecure frameproof codes, key distribution patterns, group testing algorithms and related structuresJ Stat Plann Infer200086595617176829210.1016/S0378-3758(99)00131-7 – reference: van den BergECandèsEChinnGLevinCOlcottPDSing-LongCSingle-photon sampling architecture for solid-state imaging sensorsProc Natl Acad Sci USA20131103027522761 – reference: Sherwood G. Effective testing of factor combinations. In: Proc. 3rd int’l conf. software testing, analysis and review, software quality eng.; 1994. – reference: KautzWHSingletonRRNonrandom binary superimposed codesIEEE Trans Inform Theory19641036337710.1109/TIT.1964.1053689 – reference: FrancetićNStevensBAsymptotic size of covering arrays: an application of entropy compressionJ Combin Des201725243257364600410.1002/jcd.21553 – reference: Idalino TB, Moura L. A survey of cover-free families: constructions, applications, and generalizations. In: Stinson66-new advances in designs, codes and cryptography. Cham: Springer; 2023 (to appear). – reference: ColbournCJDistributing hash families and covering arraysJ Combin Inf Syst Sci200934113126 – reference: MehlhornKData structures and Algorithms 1: sorting and searching1984BerlinSpringer10.1007/978-3-642-69672-5 – reference: KokkalaJIMeagherKNaserasrRNurmelaKJÖstergårdPRJStevensBOn the structure of small strength-2 covering arraysJ Combin Des2020281524403374310.1002/jcd.21671 – reference: MartínezCMouraLPanarioDStevensBLocating errors using ELAs, covering arrays, and adaptive testing algorithmsSIAM J Discrete Math20092317761799257020310.1137/080730706 – reference: CalvagnaAGargantiniADuboisCCombining satisfiability solving and heuristics to constrained combinatorial interaction testingTests and proofs-3rd international conference. Lecture notes in computer science2009HeidelbergSpringer2742 – reference: Morgan J. Combinatorial testing: an approach to systems and software testing based on covering arrays. In: Analytic methods in systems and software testing. Hoboken: Wiley; 2018. p. 131–78. – reference: KampelLSimosDEA survey on the state of the art of complexity problems for covering arraysTheoret Comput Sci2019800107124403033410.1016/j.tcs.2019.10.019 – reference: NayeriPColbournCJKonjevodGRandomized postoptimization of covering arraysEur J Combin2013349110310.1016/j.ejc.2012.07.017 – reference: HnichBPrestwichSSelenskyESmithBMConstraint models for the covering test problemConstraints200611199219222485110.1007/s10601-006-7094-9 – reference: AratóMKatonaGOHMichaletzkyGMóriTFPintzJRudasTSzékelyGJTusnády G. Rényi 100, quantitative and qualitative (in)dependenceActa Math Hungar2021165121873432359610.1007/s10474-021-01164-4 – reference: Torres-JimenezJAvila-GeorgeHIzquierdo-MarquezIA two-stage algorithm for combinatorial testingOptim Lett201611457469361023610.1007/s11590-016-1012-x – reference: PoljakSTuzaZOn the maximum number of qualitatively independent partitionsJ Combin Theory (A)19895111111699365310.1016/0097-3165(89)90081-2 – reference: ColbournCJLanusESarkarKAsymptotic and constructive methods for covering perfect hash families and covering arraysDes Codes Cryptogr201886907937377027610.1007/s10623-017-0369-x – reference: GarganoLKörnerJVaccaroUSperner capacitiesGraph Combin199393146121558310.1007/BF01195325 – reference: SteinSKTwo combinatorial covering theoremsJ Combin Theory (A)19741639139734006210.1016/0097-3165(74)90062-4 – reference: ColbournCJLiYZhangSLingSWangHXingCNiederreiterHConstructing perfect hash families using a greedy algorithmCoding and cryptology2008SingaporeWorld Scientific10911810.1142/9789812832245_0008 – reference: Fuji-HaraRPerfect hash families of strength three with three rows from varieties on finite projective geometriesDes Codes Cryptogr2015772–3351356340315210.1007/s10623-015-0052-z – reference: SarkarKColbournCJUpper bounds on the size of covering arraysSIAM J Discrete Math20173112771293366519010.1137/16M1067767 – reference: CohenGLitsynSZémorGOn greedy algorithms in coding theoryIEEE Trans Inform Theory19964220532057146575910.1109/18.556707 – reference: De BonisAVaccaroUA new kind of selectors and their applications to conflict resolution in wireless multichannels networksTheoret Comput Sci2020806219235404993810.1016/j.tcs.2019.03.034 – reference: CohenMBDwyerMBShiJConstructing interaction test suites for highly-configurable systems in the presence of constraints: a greedy approachIEEE Trans Softw Eng20083463365010.1109/TSE.2008.50 – reference: ColbournCJMartirosyanSSTran Van Trung WalkerRAIIRoux-type constructions for covering arrays of strengths three and fourDes Codes Cryptogr2006413357225325410.1007/s10623-006-0020-8 – reference: Torres-JimenezJIzquierdo-MarquezIAvila-GeorgeHMethods to construct uniform covering arraysIEEE Access20197427744279710.1109/ACCESS.2019.2907057 – reference: NieCLeungHA survey of combinatorial testingACM Comput Surv20114321110.1145/1883612.1883618 – reference: KleitmanDSpencerJFamilies of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-independent setsDiscrete Math1973625526232357810.1016/0012-365X(73)90098-8 – reference: MackworthAKConsistency in networks of relationsArtif Intell19778199118119239410.1016/0004-3702(77)90007-8 – reference: AlonNMoshkovitzDSafraSAlgorithmic construction of sets for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-restrictionsACM Trans Algorithms20062153177225380410.1145/1150334.1150336 – reference: TangDTWooLSExhaustive test pattern generation with constant weight vectorsIEEE Trans Comput1983321145115010.1109/TC.1983.1676175 – reference: ColbournCJMartirosyanSSMullenGLShashaDESherwoodGBYucasJLProducts of mixed covering arrays of strength twoJ Combin Des200614124138220213310.1002/jcd.20065 – reference: DoughertyREKleineKWagnerMColbournCJSimosDEAlgorithmic methods for covering arrays of higher indexJ Combin Optim20234512128451965810.1007/s10878-022-00947-x – reference: HonkalaIA Graham–Sloane type construction for s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}-surjective matricesJ Algebraic Combin19921347351120368110.1023/A:1022490600755 – reference: LawrenceJKackerRNLeiYKuhnDRForbesMA survey of binary covering arraysElectron J Combin20111813084278870110.37236/571 – reference: LovászLOn the ratio of optimal integral and fractional coversDiscrete Math197513438339038457810.1016/0012-365X(75)90058-8 – reference: Bryce RC, Colbourn CJ. One-test-at-a-time heuristic search for interaction test suites. In: Genetic and evolutionary computation conference (GECCO), search-based software engineering track (SBSE); 2007. p. 1082–9. – reference: ZhangJZhangZMaFAutomatic generation of combinatorial test data2014HeidelbergSpringer10.1007/978-3-662-43429-1 – reference: KatonaGOHTwo applications (for search theory and truth functions) of Sperner type theoremsPeriod Math19733192633527110.1007/BF02018457 – reference: ColbournCJSyrotiukVROn a combinatorial framework for fault characterizationMath Comput Sci2018124429451387015710.1007/s11786-018-0385-x – volume: 31 start-page: 1277 year: 2017 ident: 2548_CR96 publication-title: SIAM J Discrete Math doi: 10.1137/16M1067767 – volume: 421 start-page: 126952 year: 2022 ident: 2548_CR76 publication-title: Appl Math Comput – volume: 218 start-page: 111 year: 2013 ident: 2548_CR99 publication-title: Congr Numer – volume: 34 start-page: 91 year: 2013 ident: 2548_CR114 publication-title: Eur J Combin doi: 10.1016/j.ejc.2012.07.017 – volume: 19 start-page: 37 year: 2009 ident: 2548_CR48 publication-title: Softw Test Verific Reliab doi: 10.1002/stvr.393 – volume: 110 start-page: 2752 issue: 30 year: 2013 ident: 2548_CR97 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1216318110 – volume: 86 start-page: 595 year: 2000 ident: 2548_CR72 publication-title: J Stat Plann Infer doi: 10.1016/S0378-3758(99)00131-7 – volume: 170 start-page: 110771 year: 2020 ident: 2548_CR88 publication-title: J Syst Softw doi: 10.1016/j.jss.2020.110771 – volume: 41 start-page: 33 year: 2006 ident: 2548_CR15 publication-title: Des Codes Cryptogr doi: 10.1007/s10623-006-0020-8 – volume: 308 start-page: 6022 year: 2008 ident: 2548_CR66 publication-title: Discrete Math doi: 10.1016/j.disc.2007.11.021 – volume: 3 start-page: 19 year: 1973 ident: 2548_CR6 publication-title: Period Math doi: 10.1007/BF02018457 – volume: 800 start-page: 146 year: 2019 ident: 2548_CR61 publication-title: Theoret Comput Sci doi: 10.1016/j.tcs.2019.10.022 – volume: 185 start-page: 137 issue: 1 year: 2012 ident: 2548_CR27 publication-title: Inf Sci doi: 10.1016/j.ins.2011.09.020 – ident: 2548_CR82 doi: 10.1007/978-3-031-48679-1_11 – ident: 2548_CR116 doi: 10.1109/ICSE43902.2021.00030 – volume: 28 start-page: 5 issue: 1 year: 2020 ident: 2548_CR21 publication-title: J Combin Des doi: 10.1002/jcd.21671 – start-page: 323 volume-title: Combinatorial group testing and its applications year: 2000 ident: 2548_CR80 – volume: 1 start-page: 347 year: 1992 ident: 2548_CR9 publication-title: J Algebraic Combin doi: 10.1023/A:1022490600755 – volume: 77 start-page: 351 issue: 2–3 year: 2015 ident: 2548_CR115 publication-title: Des Codes Cryptogr doi: 10.1007/s10623-015-0052-z – volume: 26 start-page: 487 issue: 10 year: 2018 ident: 2548_CR75 publication-title: J Combin Des doi: 10.1002/jcd.21609 – volume: 62 start-page: 198 year: 2015 ident: 2548_CR26 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2015.02.008 – volume: 73 start-page: 949 issue: 3 year: 2014 ident: 2548_CR12 publication-title: Des Codes Cryptogr doi: 10.1007/s10623-013-9835-2 – ident: 2548_CR37 doi: 10.1109/ICSTW.2009.7 – volume: 37 start-page: 121 issue: 3 year: 2011 ident: 2548_CR2 publication-title: Program Comput Softw doi: 10.1134/S0361768811030029 – volume: 8 start-page: 1650033-24 issue: 2 year: 2016 ident: 2548_CR22 publication-title: Discrete Math Algorithms Appl doi: 10.1142/S1793830916500336 – volume: 74 start-page: 266 year: 2005 ident: 2548_CR16 publication-title: Bayreuth Math Schr – ident: 2548_CR106 doi: 10.1109/ICSTW.2017.37 – volume: 78 start-page: 197 issue: 1 year: 2016 ident: 2548_CR13 publication-title: Des Codes Cryptogr doi: 10.1007/s10623-015-0152-9 – volume: 32 start-page: 1145 year: 1983 ident: 2548_CR11 publication-title: IEEE Trans Comput doi: 10.1109/TC.1983.1676175 – start-page: 109 volume-title: Coding and cryptology year: 2008 ident: 2548_CR53 doi: 10.1142/9789812832245_0008 – volume: 12 start-page: 51 issue: 1 year: 2018 ident: 2548_CR39 publication-title: Math Comput Sci doi: 10.1007/s11786-017-0326-0 – ident: 2548_CR46 – volume: 2023 start-page: 2023 year: 1842 ident: 2548_CR108 publication-title: Softw Test Verific Reliab – ident: 2548_CR3 doi: 10.1002/9781119357056.ch5 – volume: 6 start-page: 255 year: 1973 ident: 2548_CR7 publication-title: Discrete Math doi: 10.1016/0012-365X(73)90098-8 – volume-title: Automatic generation of combinatorial test data year: 2014 ident: 2548_CR5 doi: 10.1007/978-3-662-43429-1 – volume: 113 start-page: 287 year: 2008 ident: 2548_CR38 publication-title: J Res Nat Inst Stand Tech doi: 10.6028/jres.113.022 – volume: 25 start-page: 243 year: 2017 ident: 2548_CR100 publication-title: J Combin Des doi: 10.1002/jcd.21553 – volume: 23 start-page: 437 year: 1997 ident: 2548_CR32 publication-title: IEEE Trans Softw Eng doi: 10.1109/32.605761 – volume-title: Introduction to combinatorial testing year: 2013 ident: 2548_CR1 – volume: 27 start-page: 1844 issue: 4 year: 2013 ident: 2548_CR90 publication-title: SIAM J Discrete Math doi: 10.1137/120894099 – volume: 27 start-page: 475 issue: 8 year: 2019 ident: 2548_CR110 publication-title: J Combin Des doi: 10.1002/jcd.21657 – ident: 2548_CR18 – volume: 15 start-page: 393 year: 2007 ident: 2548_CR59 publication-title: J Combin Des doi: 10.1002/jcd.20149 – volume: 8 start-page: 189 year: 2000 ident: 2548_CR73 publication-title: J Combin Des doi: 10.1002/(SICI)1520-6610(2000)8:3<189::AID-JCD4>3.0.CO;2-A – volume: 34 start-page: 633 year: 2008 ident: 2548_CR25 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2008.50 – ident: 2548_CR30 doi: 10.1145/253228.253271 – volume: 74 start-page: 266 year: 2005 ident: 2548_CR64 publication-title: Bayreuther Math Schriften – start-page: 27 volume-title: Tests and proofs-3rd international conference. Lecture notes in computer science year: 2009 ident: 2548_CR118 – volume: 13 start-page: 383 issue: 4 year: 1975 ident: 2548_CR50 publication-title: Discrete Math doi: 10.1016/0012-365X(75)90058-8 – volume: 42 start-page: 2053 year: 1996 ident: 2548_CR98 publication-title: IEEE Trans Inform Theory doi: 10.1109/18.556707 – volume: 34 start-page: 513 year: 1988 ident: 2548_CR41 publication-title: IEEE Trans Inform Theory doi: 10.1109/18.6031 – ident: 2548_CR87 doi: 10.1515/9783110621730-013 – volume: 95 start-page: 134 year: 2005 ident: 2548_CR58 publication-title: J Combin Theory (B) doi: 10.1016/j.jctb.2005.03.005 – volume: 15 start-page: 17 year: 2008 ident: 2548_CR84 publication-title: J Combin Optim doi: 10.1007/s10878-007-9082-4 – volume: 13 start-page: 82 year: 1996 ident: 2548_CR31 publication-title: IEEE Softw doi: 10.1109/52.536462 – volume: 28 start-page: 212 year: 1984 ident: 2548_CR10 publication-title: IBM J Res Develop doi: 10.1147/rd.282.0212 – volume: 9 start-page: 256 year: 1974 ident: 2548_CR51 publication-title: J Comput Syst Sci doi: 10.1016/S0022-0000(74)80044-9 – ident: 2548_CR60 doi: 10.1109/CMPSAC.2003.1245373 – volume: 34 start-page: 113 year: 2009 ident: 2548_CR74 publication-title: J Combin Inf Syst Sci – volume-title: Data structures and Algorithms 1: sorting and searching year: 1984 ident: 2548_CR71 doi: 10.1007/978-3-642-69672-5 – start-page: 571 volume-title: Combinatorial algorithms. Lecture notes in computer science year: 2021 ident: 2548_CR107 doi: 10.1007/978-3-030-79987-8_40 – volume: 14 start-page: 202 year: 2006 ident: 2548_CR24 publication-title: J Combin Des doi: 10.1002/jcd.20067 – ident: 2548_CR105 doi: 10.1145/1276958.1277173 – volume: 51 start-page: 111 year: 1989 ident: 2548_CR69 publication-title: J Combin Theory (A) doi: 10.1016/0097-3165(89)90081-2 – volume: 182 start-page: 106365 year: 2023 ident: 2548_CR83 publication-title: Inform Process Lett doi: 10.1016/j.ipl.2023.106365 – volume: 83 start-page: 237 year: 1990 ident: 2548_CR67 publication-title: Discrete Math doi: 10.1016/0012-365X(90)90009-7 – volume: 58 start-page: 121 year: 2004 ident: 2548_CR40 publication-title: Le Mat (Catania) – volume: 9 start-page: 31 year: 1993 ident: 2548_CR102 publication-title: Graph Combin doi: 10.1007/BF01195325 – ident: 2548_CR29 – volume: 410 start-page: 5403 issue: 52 year: 2009 ident: 2548_CR62 publication-title: Theoret Comput Sci doi: 10.1016/j.tcs.2009.07.057 – start-page: 352 volume-title: The probabilistic method year: 2008 ident: 2548_CR92 doi: 10.1002/9780470277331 – volume: 800 start-page: 107 year: 2019 ident: 2548_CR42 publication-title: Theoret Comput Sci doi: 10.1016/j.tcs.2019.10.019 – volume: 460–461 start-page: 172 year: 2018 ident: 2548_CR109 publication-title: Inf Sci doi: 10.1016/j.ins.2018.05.047 – volume-title: Orthogonal arrays year: 1999 ident: 2548_CR8 doi: 10.1007/978-1-4612-1478-6 – volume: 369 start-page: 124826 year: 2020 ident: 2548_CR78 publication-title: Appl Math Comput – volume: 32 start-page: 121 issue: 1–3 year: 2004 ident: 2548_CR94 publication-title: Des Codes Cryptogr doi: 10.1023/B:DESI.0000029217.97956.26 – volume: 18 start-page: 30 issue: 1 year: 2011 ident: 2548_CR43 publication-title: Electron J Combin doi: 10.37236/571 – volume: 12 start-page: 429 issue: 4 year: 2018 ident: 2548_CR85 publication-title: Math Comput Sci doi: 10.1007/s11786-018-0385-x – volume: 6 start-page: 193 year: 1983 ident: 2548_CR68 publication-title: Discrete Appl Math doi: 10.1016/0166-218X(83)90072-0 – volume: 11 start-page: 413 year: 2003 ident: 2548_CR65 publication-title: J Combin Des doi: 10.1002/jcd.10059 – volume: 18 start-page: 125 year: 2008 ident: 2548_CR36 publication-title: Softw Test Verific Reliab doi: 10.1002/stvr.381 – volume: 86 start-page: 87 year: 2013 ident: 2548_CR44 publication-title: J Combin Math Combin Comput – volume: 27 start-page: 165 year: 2002 ident: 2548_CR63 publication-title: Des Codes Cryptogr doi: 10.1023/A:1016567022721 – volume: 32 start-page: 323 year: 2004 ident: 2548_CR17 publication-title: Des Codes Cryptogr doi: 10.1023/B:DESI.0000029232.40302.6d – volume: 7 start-page: 42774 year: 2019 ident: 2548_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2907057 – volume: 5 start-page: 105 year: 1996 ident: 2548_CR95 publication-title: Combin Probab Comput doi: 10.1017/S0963548300001905 – volume: 40 start-page: 706 year: 1994 ident: 2548_CR101 publication-title: IEEE Trans Inform Theory doi: 10.1109/18.335882 – volume: 1 start-page: 02 year: 2018 ident: 2548_CR77 publication-title: Art Discrete Appl Math doi: 10.26493/2590-9770.1220.3a1 – volume: 10 start-page: 217 year: 2002 ident: 2548_CR45 publication-title: J Combin Des doi: 10.1002/jcd.10002 – start-page: 177 volume-title: Discrete mathematics and applications year: 2020 ident: 2548_CR55 doi: 10.1007/978-3-030-55857-4_7 – volume: 11 start-page: 457 year: 2016 ident: 2548_CR111 publication-title: Optim Lett doi: 10.1007/s11590-016-1012-x – volume: 43 start-page: 11 issue: 2 year: 2011 ident: 2548_CR4 publication-title: ACM Comput Surv doi: 10.1145/1883612.1883618 – volume: 14 start-page: 124 year: 2006 ident: 2548_CR14 publication-title: J Combin Des doi: 10.1002/jcd.20065 – volume: 28 start-page: 109 issue: 1 year: 2002 ident: 2548_CR34 publication-title: IEEE Trans Software Eng doi: 10.1109/32.979992 – ident: 2548_CR93 – volume: 806 start-page: 219 year: 2020 ident: 2548_CR81 publication-title: Theoret Comput Sci doi: 10.1016/j.tcs.2019.03.034 – volume: 11 start-page: 199 year: 2006 ident: 2548_CR20 publication-title: Constraints doi: 10.1007/s10601-006-7094-9 – volume: 14 start-page: 1543 issue: 6 year: 2020 ident: 2548_CR103 publication-title: Optim Lett doi: 10.1007/s11590-019-01459-0 – volume: 23 start-page: 1776 year: 2009 ident: 2548_CR86 publication-title: SIAM J Discrete Math doi: 10.1137/080730706 – volume: 165 start-page: 218 issue: 1 year: 2021 ident: 2548_CR70 publication-title: Acta Math Hungar doi: 10.1007/s10474-021-01164-4 – ident: 2548_CR35 doi: 10.1109/ECBS.2007.47 – volume: 1 start-page: 51 year: 1993 ident: 2548_CR57 publication-title: J Combin Des doi: 10.1002/jcd.3180010106 – ident: 2548_CR104 doi: 10.1109/ICSTW.2013.36 – ident: 2548_CR91 doi: 10.1007/978-1-4612-0751-1_8 – ident: 2548_CR112 doi: 10.1007/978-3-642-36899-8_30 – volume: 16 start-page: 391 year: 1974 ident: 2548_CR49 publication-title: J Combin Theory (A) doi: 10.1016/0097-3165(74)90062-4 – ident: 2548_CR33 – volume: 10 start-page: 363 year: 1964 ident: 2548_CR79 publication-title: IEEE Trans Inform Theory doi: 10.1109/TIT.1964.1053689 – volume: 6 start-page: 30 year: 2012 ident: 2548_CR19 publication-title: J Stat Theory Pract doi: 10.1080/15598608.2012.647489 – volume: 90 start-page: 97 year: 2014 ident: 2548_CR23 publication-title: J Combin Math Combin Comput – volume: 2 start-page: 153 year: 2006 ident: 2548_CR56 publication-title: ACM Trans Algorithms doi: 10.1145/1150334.1150336 – volume: 86 start-page: 907 year: 2018 ident: 2548_CR52 publication-title: Des Codes Cryptogr doi: 10.1007/s10623-017-0369-x – volume: 8 start-page: 99 issue: 1 year: 1977 ident: 2548_CR117 publication-title: Artif Intell doi: 10.1016/0004-3702(77)90007-8 – volume: 17 start-page: 159 year: 2007 ident: 2548_CR47 publication-title: Softw Test Verific Reliab doi: 10.1002/stvr.365 – volume: 45 start-page: 21 issue: 1 year: 2023 ident: 2548_CR54 publication-title: J Combin Optim doi: 10.1007/s10878-022-00947-x – ident: 2548_CR113 doi: 10.1109/ICSTW.2014.16 – volume: 153 start-page: 107045 year: 2023 ident: 2548_CR89 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2022.107045 |
| SSID | ssj0002504465 |
| Score | 2.2480772 |
| Snippet | The effective construction of covering arrays for interaction testing relies on fast, practical algorithms. Such algorithms are needed to directly construct... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 247 |
| SubjectTerms | Accuracy Algorithms Arrays Combinatorial analysis Combinatorial Testing and its Applications Computer Imaging Computer Science Computer Systems Organization and Communication Networks Constrictions Construction Data Structures and Information Theory Efficiency Greedy algorithms Guarantees Information Systems and Communication Service Methods Original Research Pattern Recognition and Graphics Software Engineering/Programming and Operating Systems Storage Vision |
| Title | Efficient Greedy Algorithms with Accuracy Guarantees for Combinatorial Restrictions |
| URI | https://link.springer.com/article/10.1007/s42979-023-02548-9 https://www.proquest.com/docview/2921193672 |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: AFBBN dateStart: 20190625 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2661-8907 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB76uHgRRcVqLTl40-B2N7tpDiKttBbBItVCb8tuktWDtrWPQ_-9M-lui4KeA4F8k8wjyfcNwGUqTBjKpuC6ZYiSIwyRlSVPwyyRQtjIOvnip0HUH4nHcTguwaDgwtC3ysInOkdtppruyG98RVpkQST9u9kXp65R9LpatNBI8tYK5tZJjJWh6pMyVgWqne7gebi9dSHBLuH6S2Jg8rlS4Thn0jg-HTpnqTiGMU4kcfQEP6PVLgX99WrqglHvAPbzLJK1N2Y_hJKdHMFL18lBYBRh9JvGrFn74w2XsHz_XDC6b2VtrVfzRK8ZbQyC1C4YJq0MnQIWyFR-425kQ0u9PBzfYXEMo1739b7P854JXGPkVVwqHaVBlElcpVIWs7dm0sKyz5hUi0hbbdAIHlGZMyXQNFnq2cBT9J5nWtJ4wQlUJtOJPQWWoDfQXmJ0glVgGgR4VH2DRWcYySzz_KwGVwU28WwjjRFvRZAdkjEiGTskY1WDegFfnB-TRbwzag2uC0h3w3_Pdvb_bOew52PysfldXYfKcr6yF5g8LNMGlFu9hwZU271OZ9DI98c3PeDBuA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4BHWBBIECUpweYwCIkTlwPCBVoVR6tUAGpW0hsBwYojxSh_jl-G3duQgUSbMyWrOTz-e4-298dwFYqTBjKfcF1zZAkRxgSK0uehlkihbCRdeWL252odSPOemFvAj5KLQw9qyx9onPU5knTGfmer6gWWRBJ__D5hVPXKLpdLVtoJEVrBXPgSowVwo5zO3xHCpcfnJ7gem_7frNxfdziRZcBrjFWKS6VjtIgyqSIQqUs5jv7SQ2JkjGpFpG22uBneyT-zZTAn8lSzwaeohswU5PGC3DeSajgiELyVzlqdC67X6c8VCBMuH6WGAh9rlTYK5Q7Tr-HwUAqjmGTkygdPc_36DhOeX_c0rrg15yD2SJrZfWRmc3DhO0vwFXDlZ_AqMXo9Y4ZsvrDHUI2uH_MGZ3vsrrWb6-JHjIyRFpCmzNMkhk6ISTkRPfR-lnXUu8Qp6_IF-HmX9Bbgqn-U98uA0vQ-2gvMTpB1pkGAboG3yDJDSOZZZ6fVWGnxCZ-HpXiiL-KLjskY0QydkjGqgprJXxxsS3zeGxEVdgtIR0P_z7byt-zbcJ067p9EV-cds5XYcbHxGf0snsNpgavb3YdE5dBulFYB4Pb_zbIT950-oQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Greedy+Algorithms+with+Accuracy+Guarantees+for+Combinatorial+Restrictions&rft.jtitle=SN+computer+science&rft.au=Colbourn%2C+Charles+J.&rft.date=2024-02-01&rft.pub=Springer+Nature+Singapore&rft.eissn=2661-8907&rft.volume=5&rft.issue=2&rft_id=info:doi/10.1007%2Fs42979-023-02548-9&rft.externalDocID=10_1007_s42979_023_02548_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |