Adaptive cuckoo search algorithm based fuzzy C means clustering with random walker algorithm for liver segmentation using CT images
Liver segmentation from computed tomography (CT) images is a significant process for computer-aided diagnosis. Clustering is one of the efficient techniques for medical image segmentation. Although many clustering algorithms have been presented by the researchers, the Fuzzy C-Means (FCM) algorithm s...
Saved in:
| Published in | Multimedia tools and applications Vol. 84; no. 8; pp. 5051 - 5068 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.03.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1573-7721 1380-7501 1573-7721 |
| DOI | 10.1007/s11042-024-18708-9 |
Cover
| Abstract | Liver segmentation from computed tomography (CT) images is a significant process for computer-aided diagnosis. Clustering is one of the efficient techniques for medical image segmentation. Although many clustering algorithms have been presented by the researchers, the Fuzzy C-Means (FCM) algorithm still provides better segmentation results. However, the performance of FCM clustering is further improved to avoid the resemblance of surrounding tissues'gray values in liver segmentation. Thus, an optimized FCM clustering with a Random Walker (RW) algorithm is proposed in this paper. Initially, the input liver CT images from the 3DIRCADB dataset are pre-processed. Then, the pre-processed images are given as input to the proposed clustering approach. In the proposed FCM clustering, cluster centers are chosen optimally using an adaptive cuckoo search algorithm (ACSA), in which the oppositional-based learning (OBL) technique is used to enhance the searchability of CSA. Besides, to manage the pixels or feature assignment in each cluster depending on the minima rule of segmentation, the RW algorithm is combined with the FCM. Simulation results depict that the proposed segmentation model attains a dice similarity coefficient (DSC) of 96.38% than the existing segmentation algorithms. |
|---|---|
| AbstractList | Liver segmentation from computed tomography (CT) images is a significant process for computer-aided diagnosis. Clustering is one of the efficient techniques for medical image segmentation. Although many clustering algorithms have been presented by the researchers, the Fuzzy C-Means (FCM) algorithm still provides better segmentation results. However, the performance of FCM clustering is further improved to avoid the resemblance of surrounding tissues'gray values in liver segmentation. Thus, an optimized FCM clustering with a Random Walker (RW) algorithm is proposed in this paper. Initially, the input liver CT images from the 3DIRCADB dataset are pre-processed. Then, the pre-processed images are given as input to the proposed clustering approach. In the proposed FCM clustering, cluster centers are chosen optimally using an adaptive cuckoo search algorithm (ACSA), in which the oppositional-based learning (OBL) technique is used to enhance the searchability of CSA. Besides, to manage the pixels or feature assignment in each cluster depending on the minima rule of segmentation, the RW algorithm is combined with the FCM. Simulation results depict that the proposed segmentation model attains a dice similarity coefficient (DSC) of 96.38% than the existing segmentation algorithms. |
| Author | Kumaran Subha, S. |
| Author_xml | – sequence: 1 givenname: S. surname: Subha fullname: Subha, S. email: subhasundar93@gmail.com organization: Noorul Islam Centre for Higher Education – sequence: 2 surname: Kumaran fullname: Kumaran organization: Noorul Islam Centre for Higher Education |
| BookMark | eNp9kL1OwzAURi1UJNrCCzBZYg7YsdM4Y1XxJ1ViKbPl2E6aNrGDnVC1Ky-OQ5DoxHTv8J3vXp0ZmBhrNAC3GN1jhNIHjzGicYRiGmGWIhZlF2CKk5REaRrjydl-BWbe7xDCiySmU_C1VKLtqk8NZS_31kKvhZNbKOrSuqrbNjAXXitY9KfTEa5go4XxUNa977SrTAkPIQSdMMo28CDqvXZnbGEdrEO5C7Vlo00nusoa2PuBXG1g1YhS-2twWYja65vfOQfvT4-b1Uu0fnt-XS3XkcQsyaIFFUpLIhYF0kpqxZjCJJFEopwUGZJ5RiijgmUkJpjJjBBKUKpYTpKc0lySObgbe1tnP3rtO76zvTPhJA_AoAQnJKTiMSWd9d7pgrcu_OmOHCM-yOajbB5k8x_ZPAsQGSHfDla0-6v-h_oGnC2GCw |
| Cites_doi | 10.1109/TMI.2020.3035253 10.1109/RTEICT.2017.8256854 10.1109/ACCESS.2019.2914856 10.1109/MLBDBI54094.2021.00115 10.1109/CCAA.2018.8777561 10.1109/ICRAECT.2017.18 10.1109/CICN.2016.67 10.1109/ICCE-TW.2015.7216933 10.1109/ACCESS.2019.2923218 10.1016/j.artmed.2021.102023 10.1016/j.compeleceng.2021.107024 10.1109/TMI.2018.2791721 10.1109/ACCESS.2019.2899608 10.1007/s11766-021-4376-3 10.1007/s00530-020-00709-x |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Mar 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Mar 2025 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s11042-024-18708-9 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 5068 |
| ExternalDocumentID | 10_1007_s11042_024_18708_9 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABBRH ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION PUEGO 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c1859-64adec3a6f0edced88d135c3c0b3f90cb93484a8932318c9334307d8b35b44bc3 |
| IEDL.DBID | U2A |
| ISSN | 1573-7721 1380-7501 |
| IngestDate | Fri Jul 25 21:23:20 EDT 2025 Wed Oct 01 06:41:09 EDT 2025 Sat Mar 22 01:17:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | OBL Liversegmentation Random Walker (RW) Fuzzy C-Means (FCM) Adaptive cuckoo search algorithm (ACSA) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1859-64adec3a6f0edced88d135c3c0b3f90cb93484a8932318c9334307d8b35b44bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3180016153 |
| PQPubID | 54626 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_3180016153 crossref_primary_10_1007_s11042_024_18708_9 springer_journals_10_1007_s11042_024_18708_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250300 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 3 year: 2025 text: 20250300 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | R Gu (18708_CR1) 2021; 40 G Wang (18708_CR3) 2018; 37 18708_CR5 18708_CR4 18708_CR2 M Chung (18708_CR15) 2021; 113 Y Hong (18708_CR12) 2021; 36 Z Bai (18708_CR11) 2019; 7 X Song (18708_CR10) 2019; 7 H Jiang (18708_CR9) 2019; 7 X Xie (18708_CR14) 2021; 91 18708_CR8 18708_CR7 18708_CR6 Z Liu (18708_CR13) 2020; 27 |
| References_xml | – volume: 40 start-page: 699 issue: 2 year: 2021 ident: 18708_CR1 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3035253 – ident: 18708_CR8 doi: 10.1109/RTEICT.2017.8256854 – volume: 7 start-page: 58429 year: 2019 ident: 18708_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914856 – ident: 18708_CR4 doi: 10.1109/MLBDBI54094.2021.00115 – ident: 18708_CR2 doi: 10.1109/CCAA.2018.8777561 – ident: 18708_CR7 doi: 10.1109/ICRAECT.2017.18 – ident: 18708_CR6 doi: 10.1109/CICN.2016.67 – ident: 18708_CR5 doi: 10.1109/ICCE-TW.2015.7216933 – volume: 7 start-page: 82122 year: 2019 ident: 18708_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923218 – volume: 113 start-page: 102023 year: 2021 ident: 18708_CR15 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2021.102023 – volume: 91 start-page: 107024 year: 2021 ident: 18708_CR14 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2021.107024 – volume: 37 start-page: 1562 issue: 7 year: 2018 ident: 18708_CR3 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2791721 – volume: 7 start-page: 24898 year: 2019 ident: 18708_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2899608 – volume: 36 start-page: 304 issue: 2 year: 2021 ident: 18708_CR12 publication-title: Appl Math-A J Chin Univ doi: 10.1007/s11766-021-4376-3 – volume: 27 start-page: 111 issue: 1 year: 2020 ident: 18708_CR13 publication-title: Multimed Syst doi: 10.1007/s00530-020-00709-x |
| SSID | ssj0016524 |
| Score | 2.3775482 |
| Snippet | Liver segmentation from computed tomography (CT) images is a significant process for computer-aided diagnosis. Clustering is one of the efficient techniques... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 5051 |
| SubjectTerms | Adaptive algorithms Algorithms Clustering Computed tomography Computer Communication Networks Computer Science Data Structures and Information Theory Image segmentation Liver Medical imaging Multimedia Information Systems Search algorithms Special Purpose and Application-Based Systems |
| Title | Adaptive cuckoo search algorithm based fuzzy C means clustering with random walker algorithm for liver segmentation using CT images |
| URI | https://link.springer.com/article/10.1007/s11042-024-18708-9 https://www.proquest.com/docview/3180016153 |
| Volume | 84 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH4CusDAjSiX3sAGkdrYieyxrSgIBFMrwRT5akE0DaJUiK78cZ7ThACCgSlDYifKO77P9jsAjn2upGtYFjinwoDHkQ1kZGzAtdSxEuQ185L51zfxRZ9f3ka3RVLYpIx2L48kc09dJbs1fSoJYUrQJCUjM12EWuTLeZEW98PW59lBHIW8SI_5fdx3CKp45Y-j0BxhuuuwWlBDbM1luQELbrwJa2XbBSyscBNWvtQQ3IL3llVP3mehmZrHLMO57qIaDTNa-N-n6IHK4mA6m71hB1NH4IRmNPUVEmgG9DuxSIhlsxRf1eiRXlWNJUqLIx-6QdMO0yJPaYw-Wn6InR4-pOSPJtvQ7571OhdB0VkhMITPMoi5ss4wFQ8aPgrUCmGbLDLMNDQbyIbRknHBFXEZon_CSMY4-QIrNIs059qwHVgaZ2O3C8hpyWaJxTnl0V4J1XTC2oF0iulQalGHk_JnJ0_zAhpJVSrZiyahgUkumkTW4aCUR1IY0yShTyiYaR1OSxlVt_-ebe9_j-_Dcui7--YRZgew9PI8dYdEOV70EdRa3Xb7xl_P767OjnKN-wAbv9Pl |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6V9AAc6AMqAqWdAzdwlXjX1u4xitqGvk6JVE7WvpJGieOqiYXIlT_OrLPGtIJDz_auRzs7833rnQfAZ58r6TqWRc6pOOJpYiOZGBtxLXWqBHnNqmT-9U06GPGL2-Q2JIUt62j3-kqy8tRNslvXp5IQpkRd2mRkpi9gm9MBJW7Bdu_8--Xpn9uDNIl5SJD598jHINQwyyeXoRXGnO3AqJZuE1oyOylX-sSsnxRufK74u_AmkE7sbXbJHmy5xT7s1A0dMNj3Prz-qzrhW_jVs-ree0M0pZkVBW6sAtV8UjxMV3c5egi0OC7X65_Yx9wR7KGZl772As2A_h8vEhbaIscfaj6jTzVjiSzj3AeF0LSTPGRALdDH4U-wP8RpTp5u-Q5GZ6fD_iAKPRsiQ8gvo5Qr6wxT6bjj40utELbLEsNMR7Ox7BgtGRdcEUsiYimMZIyTl7FCs0Rzrg07gNaiWLj3gJwOg5b4oVOeRyihuk5YO5ZOMR1LLdrwpVZidr8pzZE1RZj9amc0MKtWO5NtOKz1nAUzXWYkQuC8bfhaq615_P_ZPjzv9WN4ORheX2VX324uP8Kr2PcQruLYDqG1eijdJyI2K30U9vFvpg3wuA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB2xIKHlACy7iPI5B25sRBs7kX2sChXf2gOVuEX-SkE0SQWtEFz544zThADaPew5sRNlxvNe63nPAPteK-nalgXOqTDgcWQDGRkbcC11rARVzdIy__IqPhnws5vo5oOKv-x2r7ckZ5oG79KUTw7HNj1shG8dLyshfAk6lHC0ZL_BAvdGCZTRg7D7vo8QRyGvpDJ_H_cZjhqO-WVbtESb_iosVzQRu7O4_oA5l6_BSn0EA1Yrcg2WPvgJ_oTXrlVjX7_QTM19UeAsj1GNhsXD3eQ2Qw9aFtPpy8sz9jBzBFRoRlPvlkAzoP9XFgm9bJHhkxrd06OasURvceTbOGjaYVZplnL0nfND7F3jXUa16fEXDPrH172ToDplITCE1TKIubLOMBWnbd8RaoWwHRYZZtqapbJttGRccEW8hqigMJIxTnXBCs0izbk2bB3m8yJ3G4Ccfr5ZYnROeeRXQnWcsDaVTjEdSi1acFB_7GQ8M9NIGttkH5qEBiZlaBLZgu06Hkm1sB4TeoWKpbbgdx2j5vK_Z9v8v9v3YPHPUT-5OL0634LvoT_0t2w824b5ycPU7RATmejdMtneABUg1_0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+cuckoo+search+algorithm+based+fuzzy+C+means+clustering+with+random+walker+algorithm+for+liver+segmentation+using+CT+images&rft.jtitle=Multimedia+tools+and+applications&rft.au=Subha%2C+S.&rft.au=Kumaran&rft.date=2025-03-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=84&rft.issue=8&rft.spage=5051&rft.epage=5068&rft_id=info:doi/10.1007%2Fs11042-024-18708-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_024_18708_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |