Adaptive cuckoo search algorithm based fuzzy C means clustering with random walker algorithm for liver segmentation using CT images

Liver segmentation from computed tomography (CT) images is a significant process for computer-aided diagnosis. Clustering is one of the efficient techniques for medical image segmentation. Although many clustering algorithms have been presented by the researchers, the Fuzzy C-Means (FCM) algorithm s...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 84; no. 8; pp. 5051 - 5068
Main Authors Subha, S., Kumaran
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-7721
1380-7501
1573-7721
DOI10.1007/s11042-024-18708-9

Cover

Abstract Liver segmentation from computed tomography (CT) images is a significant process for computer-aided diagnosis. Clustering is one of the efficient techniques for medical image segmentation. Although many clustering algorithms have been presented by the researchers, the Fuzzy C-Means (FCM) algorithm still provides better segmentation results. However, the performance of FCM clustering is further improved to avoid the resemblance of surrounding tissues'gray values in liver segmentation. Thus, an optimized FCM clustering with a Random Walker (RW) algorithm is proposed in this paper. Initially, the input liver CT images from the 3DIRCADB dataset are pre-processed. Then, the pre-processed images are given as input to the proposed clustering approach. In the proposed FCM clustering, cluster centers are chosen optimally using an adaptive cuckoo search algorithm (ACSA), in which the oppositional-based learning (OBL) technique is used to enhance the searchability of CSA. Besides, to manage the pixels or feature assignment in each cluster depending on the minima rule of segmentation, the RW algorithm is combined with the FCM. Simulation results depict that the proposed segmentation model attains a dice similarity coefficient (DSC) of 96.38% than the existing segmentation algorithms.
AbstractList Liver segmentation from computed tomography (CT) images is a significant process for computer-aided diagnosis. Clustering is one of the efficient techniques for medical image segmentation. Although many clustering algorithms have been presented by the researchers, the Fuzzy C-Means (FCM) algorithm still provides better segmentation results. However, the performance of FCM clustering is further improved to avoid the resemblance of surrounding tissues'gray values in liver segmentation. Thus, an optimized FCM clustering with a Random Walker (RW) algorithm is proposed in this paper. Initially, the input liver CT images from the 3DIRCADB dataset are pre-processed. Then, the pre-processed images are given as input to the proposed clustering approach. In the proposed FCM clustering, cluster centers are chosen optimally using an adaptive cuckoo search algorithm (ACSA), in which the oppositional-based learning (OBL) technique is used to enhance the searchability of CSA. Besides, to manage the pixels or feature assignment in each cluster depending on the minima rule of segmentation, the RW algorithm is combined with the FCM. Simulation results depict that the proposed segmentation model attains a dice similarity coefficient (DSC) of 96.38% than the existing segmentation algorithms.
Author Kumaran
Subha, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Subha
  fullname: Subha, S.
  email: subhasundar93@gmail.com
  organization: Noorul Islam Centre for Higher Education
– sequence: 2
  surname: Kumaran
  fullname: Kumaran
  organization: Noorul Islam Centre for Higher Education
BookMark eNp9kL1OwzAURi1UJNrCCzBZYg7YsdM4Y1XxJ1ViKbPl2E6aNrGDnVC1Ky-OQ5DoxHTv8J3vXp0ZmBhrNAC3GN1jhNIHjzGicYRiGmGWIhZlF2CKk5REaRrjydl-BWbe7xDCiySmU_C1VKLtqk8NZS_31kKvhZNbKOrSuqrbNjAXXitY9KfTEa5go4XxUNa977SrTAkPIQSdMMo28CDqvXZnbGEdrEO5C7Vlo00nusoa2PuBXG1g1YhS-2twWYja65vfOQfvT4-b1Uu0fnt-XS3XkcQsyaIFFUpLIhYF0kpqxZjCJJFEopwUGZJ5RiijgmUkJpjJjBBKUKpYTpKc0lySObgbe1tnP3rtO76zvTPhJA_AoAQnJKTiMSWd9d7pgrcu_OmOHCM-yOajbB5k8x_ZPAsQGSHfDla0-6v-h_oGnC2GCw
Cites_doi 10.1109/TMI.2020.3035253
10.1109/RTEICT.2017.8256854
10.1109/ACCESS.2019.2914856
10.1109/MLBDBI54094.2021.00115
10.1109/CCAA.2018.8777561
10.1109/ICRAECT.2017.18
10.1109/CICN.2016.67
10.1109/ICCE-TW.2015.7216933
10.1109/ACCESS.2019.2923218
10.1016/j.artmed.2021.102023
10.1016/j.compeleceng.2021.107024
10.1109/TMI.2018.2791721
10.1109/ACCESS.2019.2899608
10.1007/s11766-021-4376-3
10.1007/s00530-020-00709-x
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Mar 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-024-18708-9
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 5068
ExternalDocumentID 10_1007_s11042_024_18708_9
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PUEGO
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c1859-64adec3a6f0edced88d135c3c0b3f90cb93484a8932318c9334307d8b35b44bc3
IEDL.DBID U2A
ISSN 1573-7721
1380-7501
IngestDate Fri Jul 25 21:23:20 EDT 2025
Wed Oct 01 06:41:09 EDT 2025
Sat Mar 22 01:17:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords OBL
Liversegmentation
Random Walker (RW)
Fuzzy C-Means (FCM)
Adaptive cuckoo search algorithm (ACSA)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1859-64adec3a6f0edced88d135c3c0b3f90cb93484a8932318c9334307d8b35b44bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3180016153
PQPubID 54626
PageCount 18
ParticipantIDs proquest_journals_3180016153
crossref_primary_10_1007_s11042_024_18708_9
springer_journals_10_1007_s11042_024_18708_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250300
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 3
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References R Gu (18708_CR1) 2021; 40
G Wang (18708_CR3) 2018; 37
18708_CR5
18708_CR4
18708_CR2
M Chung (18708_CR15) 2021; 113
Y Hong (18708_CR12) 2021; 36
Z Bai (18708_CR11) 2019; 7
X Song (18708_CR10) 2019; 7
H Jiang (18708_CR9) 2019; 7
X Xie (18708_CR14) 2021; 91
18708_CR8
18708_CR7
18708_CR6
Z Liu (18708_CR13) 2020; 27
References_xml – volume: 40
  start-page: 699
  issue: 2
  year: 2021
  ident: 18708_CR1
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3035253
– ident: 18708_CR8
  doi: 10.1109/RTEICT.2017.8256854
– volume: 7
  start-page: 58429
  year: 2019
  ident: 18708_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914856
– ident: 18708_CR4
  doi: 10.1109/MLBDBI54094.2021.00115
– ident: 18708_CR2
  doi: 10.1109/CCAA.2018.8777561
– ident: 18708_CR7
  doi: 10.1109/ICRAECT.2017.18
– ident: 18708_CR6
  doi: 10.1109/CICN.2016.67
– ident: 18708_CR5
  doi: 10.1109/ICCE-TW.2015.7216933
– volume: 7
  start-page: 82122
  year: 2019
  ident: 18708_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923218
– volume: 113
  start-page: 102023
  year: 2021
  ident: 18708_CR15
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2021.102023
– volume: 91
  start-page: 107024
  year: 2021
  ident: 18708_CR14
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2021.107024
– volume: 37
  start-page: 1562
  issue: 7
  year: 2018
  ident: 18708_CR3
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2791721
– volume: 7
  start-page: 24898
  year: 2019
  ident: 18708_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2899608
– volume: 36
  start-page: 304
  issue: 2
  year: 2021
  ident: 18708_CR12
  publication-title: Appl Math-A J Chin Univ
  doi: 10.1007/s11766-021-4376-3
– volume: 27
  start-page: 111
  issue: 1
  year: 2020
  ident: 18708_CR13
  publication-title: Multimed Syst
  doi: 10.1007/s00530-020-00709-x
SSID ssj0016524
Score 2.3775482
Snippet Liver segmentation from computed tomography (CT) images is a significant process for computer-aided diagnosis. Clustering is one of the efficient techniques...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 5051
SubjectTerms Adaptive algorithms
Algorithms
Clustering
Computed tomography
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Image segmentation
Liver
Medical imaging
Multimedia Information Systems
Search algorithms
Special Purpose and Application-Based Systems
Title Adaptive cuckoo search algorithm based fuzzy C means clustering with random walker algorithm for liver segmentation using CT images
URI https://link.springer.com/article/10.1007/s11042-024-18708-9
https://www.proquest.com/docview/3180016153
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH4CusDAjSiX3sAGkdrYieyxrSgIBFMrwRT5akE0DaJUiK78cZ7ThACCgSlDYifKO77P9jsAjn2upGtYFjinwoDHkQ1kZGzAtdSxEuQ185L51zfxRZ9f3ka3RVLYpIx2L48kc09dJbs1fSoJYUrQJCUjM12EWuTLeZEW98PW59lBHIW8SI_5fdx3CKp45Y-j0BxhuuuwWlBDbM1luQELbrwJa2XbBSyscBNWvtQQ3IL3llVP3mehmZrHLMO57qIaDTNa-N-n6IHK4mA6m71hB1NH4IRmNPUVEmgG9DuxSIhlsxRf1eiRXlWNJUqLIx-6QdMO0yJPaYw-Wn6InR4-pOSPJtvQ7571OhdB0VkhMITPMoi5ss4wFQ8aPgrUCmGbLDLMNDQbyIbRknHBFXEZon_CSMY4-QIrNIs059qwHVgaZ2O3C8hpyWaJxTnl0V4J1XTC2oF0iulQalGHk_JnJ0_zAhpJVSrZiyahgUkumkTW4aCUR1IY0yShTyiYaR1OSxlVt_-ebe9_j-_Dcui7--YRZgew9PI8dYdEOV70EdRa3Xb7xl_P767OjnKN-wAbv9Pl
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6V9AAc6AMqAqWdAzdwlXjX1u4xitqGvk6JVE7WvpJGieOqiYXIlT_OrLPGtIJDz_auRzs7833rnQfAZ58r6TqWRc6pOOJpYiOZGBtxLXWqBHnNqmT-9U06GPGL2-Q2JIUt62j3-kqy8tRNslvXp5IQpkRd2mRkpi9gm9MBJW7Bdu_8--Xpn9uDNIl5SJD598jHINQwyyeXoRXGnO3AqJZuE1oyOylX-sSsnxRufK74u_AmkE7sbXbJHmy5xT7s1A0dMNj3Prz-qzrhW_jVs-ree0M0pZkVBW6sAtV8UjxMV3c5egi0OC7X65_Yx9wR7KGZl772As2A_h8vEhbaIscfaj6jTzVjiSzj3AeF0LSTPGRALdDH4U-wP8RpTp5u-Q5GZ6fD_iAKPRsiQ8gvo5Qr6wxT6bjj40utELbLEsNMR7Ox7BgtGRdcEUsiYimMZIyTl7FCs0Rzrg07gNaiWLj3gJwOg5b4oVOeRyihuk5YO5ZOMR1LLdrwpVZidr8pzZE1RZj9amc0MKtWO5NtOKz1nAUzXWYkQuC8bfhaq615_P_ZPjzv9WN4ORheX2VX324uP8Kr2PcQruLYDqG1eijdJyI2K30U9vFvpg3wuA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB2xIKHlACy7iPI5B25sRBs7kX2sChXf2gOVuEX-SkE0SQWtEFz544zThADaPew5sRNlxvNe63nPAPteK-nalgXOqTDgcWQDGRkbcC11rARVzdIy__IqPhnws5vo5oOKv-x2r7ckZ5oG79KUTw7HNj1shG8dLyshfAk6lHC0ZL_BAvdGCZTRg7D7vo8QRyGvpDJ_H_cZjhqO-WVbtESb_iosVzQRu7O4_oA5l6_BSn0EA1Yrcg2WPvgJ_oTXrlVjX7_QTM19UeAsj1GNhsXD3eQ2Qw9aFtPpy8sz9jBzBFRoRlPvlkAzoP9XFgm9bJHhkxrd06OasURvceTbOGjaYVZplnL0nfND7F3jXUa16fEXDPrH172ToDplITCE1TKIubLOMBWnbd8RaoWwHRYZZtqapbJttGRccEW8hqigMJIxTnXBCs0izbk2bB3m8yJ3G4Ccfr5ZYnROeeRXQnWcsDaVTjEdSi1acFB_7GQ8M9NIGttkH5qEBiZlaBLZgu06Hkm1sB4TeoWKpbbgdx2j5vK_Z9v8v9v3YPHPUT-5OL0634LvoT_0t2w824b5ycPU7RATmejdMtneABUg1_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+cuckoo+search+algorithm+based+fuzzy+C+means+clustering+with+random+walker+algorithm+for+liver+segmentation+using+CT+images&rft.jtitle=Multimedia+tools+and+applications&rft.au=Subha%2C+S.&rft.au=Kumaran&rft.date=2025-03-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=84&rft.issue=8&rft.spage=5051&rft.epage=5068&rft_id=info:doi/10.1007%2Fs11042-024-18708-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_024_18708_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon