Bilinear Recurrent Neural Network for a Modified Benney-Luke Equation

Finding exact analytic solutions of nonlinear differential equations, one of the fields that are significantly important to mechanic engineering and dynamic systems, has been a focus in the past eras. The Benney-Luke equation representing the propagation of water wave surface is solved by many metho...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied and computational mathematics Vol. 11; no. 2; p. 35
Main Authors Tuan, Nguyen Minh, Meesad, Phayung
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2349-5103
2199-5796
DOI10.1007/s40819-025-01851-8

Cover

Abstract Finding exact analytic solutions of nonlinear differential equations, one of the fields that are significantly important to mechanic engineering and dynamic systems, has been a focus in the past eras. The Benney-Luke equation representing the propagation of water wave surface is solved by many methods yielding diverse solutions. This paper presents a new extended form of the Benney-Luke equation and the exact analytic solutions are obtained using the bilinear neural network technique regarding the definition of Hirota bilinear form. The various solutions are established and produced by constructing activation functions consistent with the processing procedure. The solutions are depicted and compared in two and three dimensions to investigate the behaviors.
AbstractList Finding exact analytic solutions of nonlinear differential equations, one of the fields that are significantly important to mechanic engineering and dynamic systems, has been a focus in the past eras. The Benney-Luke equation representing the propagation of water wave surface is solved by many methods yielding diverse solutions. This paper presents a new extended form of the Benney-Luke equation and the exact analytic solutions are obtained using the bilinear neural network technique regarding the definition of Hirota bilinear form. The various solutions are established and produced by constructing activation functions consistent with the processing procedure. The solutions are depicted and compared in two and three dimensions to investigate the behaviors.
ArticleNumber 35
Author Meesad, Phayung
Tuan, Nguyen Minh
Author_xml – sequence: 1
  givenname: Nguyen Minh
  surname: Tuan
  fullname: Tuan, Nguyen Minh
  email: minhtuan@ptit.edu.vn
  organization: Faculty of information Technology, Posts and Telecommunications Institute of Technology
– sequence: 2
  givenname: Phayung
  surname: Meesad
  fullname: Meesad, Phayung
  email: phayung.m@itd.kmutnb.ac.th
  organization: Department of Information Technology and Management, King Mongkut’s University of Technology North Bangkok
BookMark eNp9kEFLAzEUhINUsNb-AU8LnqNJNukmR1tqFaqC6Dlksy-ybU3aZBfpvze6gjdPM4eZeY_vHI188IDQJSXXlJDqJnEiqcKECUyoFBTLEzRmVCksKjUbZV_y7Ckpz9A0pQ0hhFFeESbHaDlvd60HE4sXsH2M4LviCfpodlm6zxC3hQuxMMVjaFrXQlPMwXs44nW_hWJ56E3XBn-BTp3ZJZj-6gS93S1fF_d4_bx6WNyusc1_SWxlaYSSpRXOAhjrHDBrlDU1l0w0leMVAHEN4Zw56-qKNdzZ2czWzlgh6nKCrobdfQyHHlKnN6GPPp_UJROcMiWZyik2pGwMKUVweh_bDxOPmhL9TUwPxHQmpn-IaZlL5VBKOezfIf5N_9P6AsyjcMk
Cites_doi 10.37256/ccds.3220221488
10.1007/s11071-023-08467-x
10.1007/s42979-024-03281-7
10.3390/math9131480
10.1007/s11071-021-06864-8
10.1007/s42979-023-02339-2
10.37394/23206.2024.23.29
10.3390/sym15010003
10.1016/j.wavemoti.2023.103243
10.37394/23203.2024.19.6
10.1016/j.jcp.2022.111053
10.37394/23203.2024.19.9
10.5269/bspm.41244
10.1016/j.rinp.2023.106341
10.37394/232021.2023.3.11
10.1007/978-3-642-00251-9
10.1007/s11082-017-1191-4
10.1017/CBO9780511543043
10.1002/mma.7683
10.22144/ctujoisd.2023.032
10.1007/978-3-642-81448-8_5
10.1142/S021798492150531X
10.1007/s11071-023-08628-y
10.1016/B978-0-12-816176-0.00026-0
10.1016/j.geomphys.2021.104338
10.1016/j.physleta.2019.126178
10.1007/978-3-031-58561-6_6
10.1016/j.padiff.2024.100682
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature India Private Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature India Private Limited 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2025.
DBID AAYXX
CITATION
DOI 10.1007/s40819-025-01851-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 2199-5796
ExternalDocumentID 10_1007_s40819_025_01851_8
GroupedDBID 0R~
203
4.4
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
ATHPR
AUKKA
AVWKF
AVXWI
AXYYD
AYFIA
AZFZN
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GGRSB
GJIRD
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
CITATION
ID FETCH-LOGICAL-c1858-c83a5983c5fceeacffe2ca9cab4825d7f47ee0fd0442fcfb72d4fc66cbfac55b3
ISSN 2349-5103
IngestDate Mon Sep 29 04:23:18 EDT 2025
Wed Oct 01 06:33:52 EDT 2025
Mon Jul 21 06:22:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Bilinear neural network method
BNNM
Exact analytic solution
Benney-Luke equation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1858-c83a5983c5fceeacffe2ca9cab4825d7f47ee0fd0442fcfb72d4fc66cbfac55b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3254129829
PQPubID 2044256
ParticipantIDs proquest_journals_3254129829
crossref_primary_10_1007_s40819_025_01851_8
springer_journals_10_1007_s40819_025_01851_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250400
2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Heidelberg
PublicationTitle International journal of applied and computational mathematics
PublicationTitleAbbrev Int. J. Appl. Comput. Math
PublicationYear 2025
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References NM Tuan (1851_CR22) 2024; 5
L Gai (1851_CR11) 2023; 111
NM Tuan (1851_CR6) 2024; 19
H Gundogdu (1851_CR15) 2021; 39
1851_CR28
SO Mbusi (1851_CR12) 2021; 9
1851_CR29
1851_CR24
S Lin (1851_CR17) 2022; 457
1851_CR23
J-G Liu (1851_CR18) 2023; 47
1851_CR20
L Gai (1851_CR8) 2021; 106
U Khan (1851_CR1) 2017; 49
B Hong (1851_CR2) 2022; 15
X Hong (1851_CR4) 2021; 170
NM Tuan (1851_CR13) 2024; 23
S Bai (1851_CR16) 2023; 111
NM Tuan (1851_CR14) 2024; 10
A-M Wazwaz (1851_CR27) 2009
NM Tuan (1851_CR10) 2023; 3
NM Tuan (1851_CR5) 2024; 19
L Gai (1851_CR9) 2024; 124
K Wang (1851_CR26) 2021; 44
NM Tuan (1851_CR25) 2024; 15
R Zhang (1851_CR3) 2021; 34
Z Miao (1851_CR19) 2022; 36
NM Tuan (1851_CR21) 2023; 5
L Gai (1851_CR7) 2020; 384
References_xml – ident: 1851_CR24
  doi: 10.37256/ccds.3220221488
– volume: 111
  start-page: 12479
  issue: 13
  year: 2023
  ident: 1851_CR16
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08467-x
– volume: 5
  start-page: 928
  issue: 7
  year: 2024
  ident: 1851_CR22
  publication-title: SN Computer Sci.
  doi: 10.1007/s42979-024-03281-7
– volume: 9
  start-page: 1480
  issue: 13
  year: 2021
  ident: 1851_CR12
  publication-title: Mathematics
  doi: 10.3390/math9131480
– volume: 106
  start-page: 867
  issue: 1
  year: 2021
  ident: 1851_CR8
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06864-8
– volume: 5
  start-page: 5
  issue: 1
  year: 2023
  ident: 1851_CR21
  publication-title: SN Computer Sci.
  doi: 10.1007/s42979-023-02339-2
– volume: 23
  start-page: 267
  year: 2024
  ident: 1851_CR13
  publication-title: Wseas Trans. Mathem.
  doi: 10.37394/23206.2024.23.29
– volume: 15
  start-page: 3
  issue: 1
  year: 2022
  ident: 1851_CR2
  publication-title: Symmetry
  doi: 10.3390/sym15010003
– volume: 124
  year: 2024
  ident: 1851_CR9
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2023.103243
– volume: 19
  start-page: 51
  year: 2024
  ident: 1851_CR6
  publication-title: Wseas Trans. Syst. Control
  doi: 10.37394/23203.2024.19.6
– volume: 457
  year: 2022
  ident: 1851_CR17
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111053
– volume: 19
  start-page: 85
  year: 2024
  ident: 1851_CR5
  publication-title: Wseas Trans. Syst. Control
  doi: 10.37394/23203.2024.19.9
– volume: 39
  start-page: 103
  issue: 5
  year: 2021
  ident: 1851_CR15
  publication-title: Boletim Da Sociedade Paranaense de Matemática
  doi: 10.5269/bspm.41244
– volume: 47
  year: 2023
  ident: 1851_CR18
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2023.106341
– volume: 3
  start-page: 93
  year: 2023
  ident: 1851_CR10
  publication-title: Equations
  doi: 10.37394/232021.2023.3.11
– volume-title: Partial differential equations and solitary waves theory
  year: 2009
  ident: 1851_CR27
  doi: 10.1007/978-3-642-00251-9
– volume: 49
  start-page: 362
  issue: 11
  year: 2017
  ident: 1851_CR1
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-017-1191-4
– ident: 1851_CR29
  doi: 10.1017/CBO9780511543043
– volume: 44
  start-page: 14173
  issue: 18
  year: 2021
  ident: 1851_CR26
  publication-title: Mathem. Methods Appl. Sci.
  doi: 10.1002/mma.7683
– volume: 15
  start-page: 30
  year: 2024
  ident: 1851_CR25
  publication-title: CTU J. Innov. Sustain. Develop.
  doi: 10.22144/ctujoisd.2023.032
– ident: 1851_CR28
  doi: 10.1007/978-3-642-81448-8_5
– volume: 34
  start-page: 122
  issue: 1
  year: 2021
  ident: 1851_CR3
  publication-title: J. Syst. Sci.
– volume: 36
  start-page: 2150531
  issue: 01
  year: 2022
  ident: 1851_CR19
  publication-title: Modern Phys. Lett. B
  doi: 10.1142/S021798492150531X
– volume: 111
  start-page: 15335
  issue: 16
  year: 2023
  ident: 1851_CR11
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08628-y
– ident: 1851_CR20
  doi: 10.1016/B978-0-12-816176-0.00026-0
– volume: 170
  year: 2021
  ident: 1851_CR4
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2021.104338
– volume: 384
  issue: 8
  year: 2020
  ident: 1851_CR7
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2019.126178
– ident: 1851_CR23
  doi: 10.1007/978-3-031-58561-6_6
– volume: 10
  year: 2024
  ident: 1851_CR14
  publication-title: Part. Diff. Equat. Appl. Mathem.
  doi: 10.1016/j.padiff.2024.100682
SSID ssj0002147028
Score 2.3288152
Snippet Finding exact analytic solutions of nonlinear differential equations, one of the fields that are significantly important to mechanic engineering and dynamic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 35
SubjectTerms Applications of Mathematics
Computational Science and Engineering
Exact solutions
Machine learning
Mathematical analysis
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Neural networks
Nonlinear differential equations
Nuclear Energy
Operations Research/Decision Theory
Original Paper
Partial differential equations
Recurrent neural networks
Theoretical
Water waves
Wave propagation
Title Bilinear Recurrent Neural Network for a Modified Benney-Luke Equation
URI https://link.springer.com/article/10.1007/s40819-025-01851-8
https://www.proquest.com/docview/3254129829
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2199-5796
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002147028
  issn: 2349-5103
  databaseCode: AFBBN
  dateStart: 20150301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLdYubDDBmwT3WDygRszSh07H0c6FaFprTgUiVvkOPbWSQRGmwP76_f8Ebt8SWOXKHKrl8Tvl-efX94HQoeUNVRLYSoAZIowphsiCsEJmAVaZnWeMpsePZ1lZxfs2yW_jGHNNrtkVR_LP0_mlfyPVmEM9GqyZF-g2SAUBuAc9AtH0DAc_0nH44UhieLWkD9fZ8kU24BZn7nobhcjaRqeLbThmmMb3UW-m5CMye8uauVXDGiP_sG1qhLCk1WfBXfTrfo_XYW6r4GdzzvnVZ396O5UezRdtMHnPFVq6UB1_lPcdX7Z9F4HyteCVaxxoikrianG59YRNzYqYSx3HWqDdR2toYg-abRdnMaSGXZC7LWARIxIEZeo_rP8g5UrxBOG2stWRgUyKiujKl6hTQr2PhmgzZPT8XgW_G-mP1NiW--GR_E5VTaz8tHN3OctcTPy4Pu5pSXzbfTG7yfwiQPHDtpQ7S566_cW2Fvu5S56PY16eocmPXJwQA52yMEeORiQgwXukYPXkIN75LxHF6eT-dcz4htqEAkPURBZpIKXRSq5Bm4kpNaKSlFKUbOC8ibXLFcq0U3CGLzAus5pw7TMMllrITmv0w9o0F63ag9hPRJNDltXlpSSKWrqNkqZZ6JJTYKjyoboqJ-u6sbVTame19IQ7fczWnlsL6uUcgYGo6DlEH3pZzn-_Ly0jy-69ie0FQG-jwar204dANFc1Z89Zv4ClP16Sw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bilinear+Recurrent+Neural+Network+for+a+Modified+Benney-Luke+Equation&rft.jtitle=International+journal+of+applied+and+computational+mathematics&rft.au=Tuan%2C+Nguyen+Minh&rft.au=Meesad%2C+Phayung&rft.date=2025-04-01&rft.issn=2349-5103&rft.eissn=2199-5796&rft.volume=11&rft.issue=2&rft_id=info:doi/10.1007%2Fs40819-025-01851-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40819_025_01851_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-5103&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-5103&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-5103&client=summon