Bilinear Recurrent Neural Network for a Modified Benney-Luke Equation
Finding exact analytic solutions of nonlinear differential equations, one of the fields that are significantly important to mechanic engineering and dynamic systems, has been a focus in the past eras. The Benney-Luke equation representing the propagation of water wave surface is solved by many metho...
Saved in:
| Published in | International journal of applied and computational mathematics Vol. 11; no. 2; p. 35 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New Delhi
Springer India
01.04.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2349-5103 2199-5796 |
| DOI | 10.1007/s40819-025-01851-8 |
Cover
| Abstract | Finding exact analytic solutions of nonlinear differential equations, one of the fields that are significantly important to mechanic engineering and dynamic systems, has been a focus in the past eras. The Benney-Luke equation representing the propagation of water wave surface is solved by many methods yielding diverse solutions. This paper presents a new extended form of the Benney-Luke equation and the exact analytic solutions are obtained using the bilinear neural network technique regarding the definition of Hirota bilinear form. The various solutions are established and produced by constructing activation functions consistent with the processing procedure. The solutions are depicted and compared in two and three dimensions to investigate the behaviors. |
|---|---|
| AbstractList | Finding exact analytic solutions of nonlinear differential equations, one of the fields that are significantly important to mechanic engineering and dynamic systems, has been a focus in the past eras. The Benney-Luke equation representing the propagation of water wave surface is solved by many methods yielding diverse solutions. This paper presents a new extended form of the Benney-Luke equation and the exact analytic solutions are obtained using the bilinear neural network technique regarding the definition of Hirota bilinear form. The various solutions are established and produced by constructing activation functions consistent with the processing procedure. The solutions are depicted and compared in two and three dimensions to investigate the behaviors. |
| ArticleNumber | 35 |
| Author | Meesad, Phayung Tuan, Nguyen Minh |
| Author_xml | – sequence: 1 givenname: Nguyen Minh surname: Tuan fullname: Tuan, Nguyen Minh email: minhtuan@ptit.edu.vn organization: Faculty of information Technology, Posts and Telecommunications Institute of Technology – sequence: 2 givenname: Phayung surname: Meesad fullname: Meesad, Phayung email: phayung.m@itd.kmutnb.ac.th organization: Department of Information Technology and Management, King Mongkut’s University of Technology North Bangkok |
| BookMark | eNp9kEFLAzEUhINUsNb-AU8LnqNJNukmR1tqFaqC6Dlksy-ybU3aZBfpvze6gjdPM4eZeY_vHI188IDQJSXXlJDqJnEiqcKECUyoFBTLEzRmVCksKjUbZV_y7Ckpz9A0pQ0hhFFeESbHaDlvd60HE4sXsH2M4LviCfpodlm6zxC3hQuxMMVjaFrXQlPMwXs44nW_hWJ56E3XBn-BTp3ZJZj-6gS93S1fF_d4_bx6WNyusc1_SWxlaYSSpRXOAhjrHDBrlDU1l0w0leMVAHEN4Zw56-qKNdzZ2czWzlgh6nKCrobdfQyHHlKnN6GPPp_UJROcMiWZyik2pGwMKUVweh_bDxOPmhL9TUwPxHQmpn-IaZlL5VBKOezfIf5N_9P6AsyjcMk |
| Cites_doi | 10.37256/ccds.3220221488 10.1007/s11071-023-08467-x 10.1007/s42979-024-03281-7 10.3390/math9131480 10.1007/s11071-021-06864-8 10.1007/s42979-023-02339-2 10.37394/23206.2024.23.29 10.3390/sym15010003 10.1016/j.wavemoti.2023.103243 10.37394/23203.2024.19.6 10.1016/j.jcp.2022.111053 10.37394/23203.2024.19.9 10.5269/bspm.41244 10.1016/j.rinp.2023.106341 10.37394/232021.2023.3.11 10.1007/978-3-642-00251-9 10.1007/s11082-017-1191-4 10.1017/CBO9780511543043 10.1002/mma.7683 10.22144/ctujoisd.2023.032 10.1007/978-3-642-81448-8_5 10.1142/S021798492150531X 10.1007/s11071-023-08628-y 10.1016/B978-0-12-816176-0.00026-0 10.1016/j.geomphys.2021.104338 10.1016/j.physleta.2019.126178 10.1007/978-3-031-58561-6_6 10.1016/j.padiff.2024.100682 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature India Private Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature India Private Limited 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s40819-025-01851-8 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 2199-5796 |
| ExternalDocumentID | 10_1007_s40819_025_01851_8 |
| GroupedDBID | 0R~ 203 4.4 406 AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATHPR AUKKA AVWKF AVXWI AXYYD AYFIA AZFZN BAPOH BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX CITATION |
| ID | FETCH-LOGICAL-c1858-c83a5983c5fceeacffe2ca9cab4825d7f47ee0fd0442fcfb72d4fc66cbfac55b3 |
| ISSN | 2349-5103 |
| IngestDate | Mon Sep 29 04:23:18 EDT 2025 Wed Oct 01 06:33:52 EDT 2025 Mon Jul 21 06:22:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Bilinear neural network method BNNM Exact analytic solution Benney-Luke equation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1858-c83a5983c5fceeacffe2ca9cab4825d7f47ee0fd0442fcfb72d4fc66cbfac55b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3254129829 |
| PQPubID | 2044256 |
| ParticipantIDs | proquest_journals_3254129829 crossref_primary_10_1007_s40819_025_01851_8 springer_journals_10_1007_s40819_025_01851_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250400 2025-04-00 20250401 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 4 year: 2025 text: 20250400 |
| PublicationDecade | 2020 |
| PublicationPlace | New Delhi |
| PublicationPlace_xml | – name: New Delhi – name: Heidelberg |
| PublicationTitle | International journal of applied and computational mathematics |
| PublicationTitleAbbrev | Int. J. Appl. Comput. Math |
| PublicationYear | 2025 |
| Publisher | Springer India Springer Nature B.V |
| Publisher_xml | – name: Springer India – name: Springer Nature B.V |
| References | NM Tuan (1851_CR22) 2024; 5 L Gai (1851_CR11) 2023; 111 NM Tuan (1851_CR6) 2024; 19 H Gundogdu (1851_CR15) 2021; 39 1851_CR28 SO Mbusi (1851_CR12) 2021; 9 1851_CR29 1851_CR24 S Lin (1851_CR17) 2022; 457 1851_CR23 J-G Liu (1851_CR18) 2023; 47 1851_CR20 L Gai (1851_CR8) 2021; 106 U Khan (1851_CR1) 2017; 49 B Hong (1851_CR2) 2022; 15 X Hong (1851_CR4) 2021; 170 NM Tuan (1851_CR13) 2024; 23 S Bai (1851_CR16) 2023; 111 NM Tuan (1851_CR14) 2024; 10 A-M Wazwaz (1851_CR27) 2009 NM Tuan (1851_CR10) 2023; 3 NM Tuan (1851_CR5) 2024; 19 L Gai (1851_CR9) 2024; 124 K Wang (1851_CR26) 2021; 44 NM Tuan (1851_CR25) 2024; 15 R Zhang (1851_CR3) 2021; 34 Z Miao (1851_CR19) 2022; 36 NM Tuan (1851_CR21) 2023; 5 L Gai (1851_CR7) 2020; 384 |
| References_xml | – ident: 1851_CR24 doi: 10.37256/ccds.3220221488 – volume: 111 start-page: 12479 issue: 13 year: 2023 ident: 1851_CR16 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-08467-x – volume: 5 start-page: 928 issue: 7 year: 2024 ident: 1851_CR22 publication-title: SN Computer Sci. doi: 10.1007/s42979-024-03281-7 – volume: 9 start-page: 1480 issue: 13 year: 2021 ident: 1851_CR12 publication-title: Mathematics doi: 10.3390/math9131480 – volume: 106 start-page: 867 issue: 1 year: 2021 ident: 1851_CR8 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06864-8 – volume: 5 start-page: 5 issue: 1 year: 2023 ident: 1851_CR21 publication-title: SN Computer Sci. doi: 10.1007/s42979-023-02339-2 – volume: 23 start-page: 267 year: 2024 ident: 1851_CR13 publication-title: Wseas Trans. Mathem. doi: 10.37394/23206.2024.23.29 – volume: 15 start-page: 3 issue: 1 year: 2022 ident: 1851_CR2 publication-title: Symmetry doi: 10.3390/sym15010003 – volume: 124 year: 2024 ident: 1851_CR9 publication-title: Wave Motion doi: 10.1016/j.wavemoti.2023.103243 – volume: 19 start-page: 51 year: 2024 ident: 1851_CR6 publication-title: Wseas Trans. Syst. Control doi: 10.37394/23203.2024.19.6 – volume: 457 year: 2022 ident: 1851_CR17 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111053 – volume: 19 start-page: 85 year: 2024 ident: 1851_CR5 publication-title: Wseas Trans. Syst. Control doi: 10.37394/23203.2024.19.9 – volume: 39 start-page: 103 issue: 5 year: 2021 ident: 1851_CR15 publication-title: Boletim Da Sociedade Paranaense de Matemática doi: 10.5269/bspm.41244 – volume: 47 year: 2023 ident: 1851_CR18 publication-title: Results Phys. doi: 10.1016/j.rinp.2023.106341 – volume: 3 start-page: 93 year: 2023 ident: 1851_CR10 publication-title: Equations doi: 10.37394/232021.2023.3.11 – volume-title: Partial differential equations and solitary waves theory year: 2009 ident: 1851_CR27 doi: 10.1007/978-3-642-00251-9 – volume: 49 start-page: 362 issue: 11 year: 2017 ident: 1851_CR1 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-017-1191-4 – ident: 1851_CR29 doi: 10.1017/CBO9780511543043 – volume: 44 start-page: 14173 issue: 18 year: 2021 ident: 1851_CR26 publication-title: Mathem. Methods Appl. Sci. doi: 10.1002/mma.7683 – volume: 15 start-page: 30 year: 2024 ident: 1851_CR25 publication-title: CTU J. Innov. Sustain. Develop. doi: 10.22144/ctujoisd.2023.032 – ident: 1851_CR28 doi: 10.1007/978-3-642-81448-8_5 – volume: 34 start-page: 122 issue: 1 year: 2021 ident: 1851_CR3 publication-title: J. Syst. Sci. – volume: 36 start-page: 2150531 issue: 01 year: 2022 ident: 1851_CR19 publication-title: Modern Phys. Lett. B doi: 10.1142/S021798492150531X – volume: 111 start-page: 15335 issue: 16 year: 2023 ident: 1851_CR11 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-08628-y – ident: 1851_CR20 doi: 10.1016/B978-0-12-816176-0.00026-0 – volume: 170 year: 2021 ident: 1851_CR4 publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2021.104338 – volume: 384 issue: 8 year: 2020 ident: 1851_CR7 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2019.126178 – ident: 1851_CR23 doi: 10.1007/978-3-031-58561-6_6 – volume: 10 year: 2024 ident: 1851_CR14 publication-title: Part. Diff. Equat. Appl. Mathem. doi: 10.1016/j.padiff.2024.100682 |
| SSID | ssj0002147028 |
| Score | 2.3288152 |
| Snippet | Finding exact analytic solutions of nonlinear differential equations, one of the fields that are significantly important to mechanic engineering and dynamic... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 35 |
| SubjectTerms | Applications of Mathematics Computational Science and Engineering Exact solutions Machine learning Mathematical analysis Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Neural networks Nonlinear differential equations Nuclear Energy Operations Research/Decision Theory Original Paper Partial differential equations Recurrent neural networks Theoretical Water waves Wave propagation |
| Title | Bilinear Recurrent Neural Network for a Modified Benney-Luke Equation |
| URI | https://link.springer.com/article/10.1007/s40819-025-01851-8 https://www.proquest.com/docview/3254129829 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2199-5796 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002147028 issn: 2349-5103 databaseCode: AFBBN dateStart: 20150301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLdYubDDBmwT3WDygRszSh07H0c6FaFprTgUiVvkOPbWSQRGmwP76_f8Ebt8SWOXKHKrl8Tvl-efX94HQoeUNVRLYSoAZIowphsiCsEJmAVaZnWeMpsePZ1lZxfs2yW_jGHNNrtkVR_LP0_mlfyPVmEM9GqyZF-g2SAUBuAc9AtH0DAc_0nH44UhieLWkD9fZ8kU24BZn7nobhcjaRqeLbThmmMb3UW-m5CMye8uauVXDGiP_sG1qhLCk1WfBXfTrfo_XYW6r4GdzzvnVZ396O5UezRdtMHnPFVq6UB1_lPcdX7Z9F4HyteCVaxxoikrianG59YRNzYqYSx3HWqDdR2toYg-abRdnMaSGXZC7LWARIxIEZeo_rP8g5UrxBOG2stWRgUyKiujKl6hTQr2PhmgzZPT8XgW_G-mP1NiW--GR_E5VTaz8tHN3OctcTPy4Pu5pSXzbfTG7yfwiQPHDtpQ7S566_cW2Fvu5S56PY16eocmPXJwQA52yMEeORiQgwXukYPXkIN75LxHF6eT-dcz4htqEAkPURBZpIKXRSq5Bm4kpNaKSlFKUbOC8ibXLFcq0U3CGLzAus5pw7TMMllrITmv0w9o0F63ag9hPRJNDltXlpSSKWrqNkqZZ6JJTYKjyoboqJ-u6sbVTame19IQ7fczWnlsL6uUcgYGo6DlEH3pZzn-_Ly0jy-69ie0FQG-jwar204dANFc1Z89Zv4ClP16Sw |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bilinear+Recurrent+Neural+Network+for+a+Modified+Benney-Luke+Equation&rft.jtitle=International+journal+of+applied+and+computational+mathematics&rft.au=Tuan%2C+Nguyen+Minh&rft.au=Meesad%2C+Phayung&rft.date=2025-04-01&rft.issn=2349-5103&rft.eissn=2199-5796&rft.volume=11&rft.issue=2&rft_id=info:doi/10.1007%2Fs40819-025-01851-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40819_025_01851_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-5103&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-5103&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-5103&client=summon |