Q-learning-based hyper-heuristic framework for estimating the energy consumption of electric buses for public transport
This research study introduces a Q-learning enhanced hyper-heuristic framework for the accurate estimation of energy consumption rates of electric buses. Fundamentals of reinforcement learning concepts are hybridized with the integrated newly emerged metaheuristic methods of Aquila optimizer, Barnac...
Saved in:
| Published in | Iran Journal of Computer Science (Online) Vol. 7; no. 3; pp. 423 - 483 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.09.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2520-8438 2520-8446 |
| DOI | 10.1007/s42044-024-00179-8 |
Cover
| Abstract | This research study introduces a Q-learning enhanced hyper-heuristic framework for the accurate estimation of energy consumption rates of electric buses. Fundamentals of reinforcement learning concepts are hybridized with the integrated newly emerged metaheuristic methods of Aquila optimizer, Barnacles Mating Optimizer, Gradient-based Optimizer, Harris Hawks Optimization, and Poor and Rich Optimization algorithms to solve high-dimensional optimization problems with higher accuracy. In this context, the Q-learning algorithm is considered a high-level heuristic for administering the selection and move acceptance mechanisms, while search agents of those mentioned above low-level competitive metaheuristic algorithms meticulously explore the search space to find the optimum global point. Q-learning guides the operating hyper-heuristic in selecting the suitable low-level optimizer based on the Q-table score during iterations. An intelligent control mechanism is devised to get a reward or penalty for the actions of the low-level algorithms. The proposed method is evaluated on thirty-two optimization benchmark problems composed of unimodal and multimodal test functions. Then, each constituent algorithm and the hyper-heuristic model are applied to thirty-dimensional benchmark functions of CEC 2017 and twenty-eight test instances of CEC 2013. Four different challenging, complex real-world engineering design cases are also solved to assess the predictability of the proposed method on constrained problems. Finally, the proposed hyper-heuristic is employed to derive the fuel consumption estimates of electric buses. It is seen that the Multiple linear regression model, whose unknown parameters are extracted by the hyper-heuristic framework, gives the best predictions. |
|---|---|
| AbstractList | This research study introduces a Q-learning enhanced hyper-heuristic framework for the accurate estimation of energy consumption rates of electric buses. Fundamentals of reinforcement learning concepts are hybridized with the integrated newly emerged metaheuristic methods of Aquila optimizer, Barnacles Mating Optimizer, Gradient-based Optimizer, Harris Hawks Optimization, and Poor and Rich Optimization algorithms to solve high-dimensional optimization problems with higher accuracy. In this context, the Q-learning algorithm is considered a high-level heuristic for administering the selection and move acceptance mechanisms, while search agents of those mentioned above low-level competitive metaheuristic algorithms meticulously explore the search space to find the optimum global point. Q-learning guides the operating hyper-heuristic in selecting the suitable low-level optimizer based on the Q-table score during iterations. An intelligent control mechanism is devised to get a reward or penalty for the actions of the low-level algorithms. The proposed method is evaluated on thirty-two optimization benchmark problems composed of unimodal and multimodal test functions. Then, each constituent algorithm and the hyper-heuristic model are applied to thirty-dimensional benchmark functions of CEC 2017 and twenty-eight test instances of CEC 2013. Four different challenging, complex real-world engineering design cases are also solved to assess the predictability of the proposed method on constrained problems. Finally, the proposed hyper-heuristic is employed to derive the fuel consumption estimates of electric buses. It is seen that the Multiple linear regression model, whose unknown parameters are extracted by the hyper-heuristic framework, gives the best predictions. |
| Author | Turgut, Oguz Emrah Önçağ, Ali Çaglar Eliiyi, Deniz Türsel Turgut, Mert Sinan Eliiyi, Uğur |
| Author_xml | – sequence: 1 givenname: Oguz Emrah surname: Turgut fullname: Turgut, Oguz Emrah email: oguzemrah.turgut@bakircay.edu.tr organization: Industrial Engineering Department, Faculty of Engineering and Architecture, Izmir Bakırçay University – sequence: 2 givenname: Mert Sinan surname: Turgut fullname: Turgut, Mert Sinan organization: Department of Mechanical Engineering, Faculty of Engineering, Izmir Democracy University – sequence: 3 givenname: Ali Çaglar surname: Önçağ fullname: Önçağ, Ali Çaglar organization: ESHOT General Directorate – sequence: 4 givenname: Uğur surname: Eliiyi fullname: Eliiyi, Uğur organization: Business Department, Faculty of Economics and Administrative Sciences, Izmir Bakırçay University – sequence: 5 givenname: Deniz Türsel surname: Eliiyi fullname: Eliiyi, Deniz Türsel organization: Industrial Engineering Department, Faculty of Engineering and Architecture, Izmir Bakırçay University |
| BookMark | eNp9kEtLAzEQx4NUsNZ-AU8Bz9G8drN7lOILBBH0HLLpbB-2yTrZpfTbG1vRm4dhhuH_m8f_nIxCDEDIpeDXgnNzk7TkWjMuc3BhaladkLEsJGeV1uXot1bVGZmmtOacS6O0keWY7F7ZBhyGVViwxiWY0-W-A2RLGHCV-pWnLbot7CJ-0DYihdzbuj7Lab8ECgFwsac-hjRsu34VA40thQ34HjPbDAnSgeuGZpMbPbqQuoj9BTlt3SbB9CdPyPv93dvskT2_PDzNbp-ZF1VRsUpxV8Pc1YYrZVxTOwlaSMP93JUlN8KDLkoptC8AXKW81G2pmrL2hTMtCDUhV8e5HcbPIV9v13HAkFdaJYtCKiPqMqvkUeUxpoTQ2g7zm7i3gttvj-3RY5s9tgePbZUhdYRSFocF4N_of6gv7x6Ctw |
| Cites_doi | 10.1002/9780470496916 10.1016/j.compstruc.2016.03.001 10.3390/en8088573 10.1007/3-540-44629-X_11 10.1371/journal.pone.0195675 10.1016/j.engappai.2019.08.025 10.1016/j.ins.2018.01.005 10.1016/j.swevo.2011.02.002 10.1016/j.swevo.2023.101358 10.3390/en11082060 10.1016/j.advengsoft.2016.01.008 10.1016/j.asoc.2020.106099 10.1093/genetics/152.3.821 10.1007/BF00992698 10.1016/j.swevo.2018.03.014 10.1109/ACCESS.2019.2920489 10.1007/978-3-540-79438-7_1 10.1016/j.eswa.2021.115079 10.1016/j.isatra.2021.03.046 10.1080/03052150008941301 10.1109/VPPC.2012.6422680 10.1016/j.knosys.2019.105190 10.1109/TSMCA.2012.2226024 10.1016/j.ins.2017.10.041 10.4018/jamc.2010102603 10.1109/CEC48606.2020.9185803 10.1016/j.engappai.2019.103300 10.1016/j.eswa.2021.116158 10.1016/j.compstruc.2003.09.002 10.1109/4235.585893 10.1504/IJEHV.2017.085336 10.1016/j.agwat.2021.106838 10.3390/en13092340 10.1016/j.apenergy.2019.113500 10.1016/j.ejor.2022.03.054 10.1109/TEVC.2013.2239648 10.1016/j.energy.2018.12.064 10.1016/j.asoc.2016.01.006 10.1016/S0893-9659(04)90104-8 10.3390/en11123267 10.1016/j.eswa.2018.12.006 10.1016/j.ins.2019.09.068 10.1243/09544062JMES1732 10.1109/TITS.2023.3296387 10.1016/j.future.2019.02.028 10.1109/CISTI.2015.7170394 10.1057/jors.2013.71 10.1016/j.cie.2021.107250 10.1016/j.engappai.2019.103330 10.1007/s00521-019-04008-z 10.1007/978-1-4419-1665-5_15 10.1016/j.cie.2021.107252 10.1109/TEVC.2014.2319051 10.1016/j.ins.2020.06.037 10.1016/j.conengprac.2021.104791 10.1016/j.enbuild.2012.11.010 10.1109/CEC.2009.4983054 10.1016/j.rser.2020.110618 10.1080/0305215X.2016.1164855 10.1109/CEC.2003.1299807 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s42044-024-00179-8 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2520-8446 |
| EndPage | 483 |
| ExternalDocumentID | 10_1007_s42044_024_00179_8 |
| GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAIAL AAJBT AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABJNI ABKCH ABMQK ABQBU ABTEG ABTKH ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW Z83 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c1858-830a9eda970337ab9a2e41270cda66071ce456214c5eea83c24f63b69c5a7fe13 |
| IEDL.DBID | BENPR |
| ISSN | 2520-8438 |
| IngestDate | Sat Oct 18 23:24:23 EDT 2025 Wed Oct 01 02:31:52 EDT 2025 Fri Feb 21 02:38:32 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Aquila optimizer Q-learning Regression models Electric buses Hyper-heuristics Barnacles mating optimizer |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1858-830a9eda970337ab9a2e41270cda66071ce456214c5eea83c24f63b69c5a7fe13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3255237196 |
| PQPubID | 7435094 |
| PageCount | 61 |
| ParticipantIDs | proquest_journals_3255237196 crossref_primary_10_1007_s42044_024_00179_8 springer_journals_10_1007_s42044_024_00179_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240900 2024-09-00 20240901 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Iran Journal of Computer Science (Online) |
| PublicationTitleAbbrev | Iran J Comput Sci |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | MoosaviSHSBardsiriVKPoor and rich optimization algorithm: a new human-based and multi-populations algorithmEng. Appl. Artif. Intel.20198616518110.1016/j.engappai.2019.08.025 LinZGaoKWuNSuganthanPNScheduling eight-phase urban traffic light problems via ensemble meta-heuristics and q-learning based local searchIEEE Trans. Intell. Transp. Syst.20232411210.1109/TITS.2023.3296387 SuttonRSBartoAGReinforcement Learning: An Introduction2018CambridgeMIT Press OzbanAYSome new variants of Newton’s methodAppl. Math. Lett.200417677682206418010.1016/S0893-9659(04)90104-8 CoelloCACTreating constraints as objectives for single-objective evolutionary optimizationEng. Opt.20003227530810.1080/03052150008941301 ChakhlevitchKCowlingPCottaCSevauxMSorensenKHyperheuristics: recent developmentsAdaptive Multilevel Metaheuristics2008BerlinSpringer32910.1007/978-3-540-79438-7_1 SadhuAKKonarABhattacharjeeTDasSSynergism of Firefly algorithm and Q-Learning for robot arm path planningSwarm Evol. Comput.201843506810.1016/j.swevo.2018.03.014 GaoYGuoSRenJZhaoZEhsanAZhengYAn electric bus power consumption model and optimization of charging scheduling concerning multi-external factorsEnergies20181111710.3390/en11082060 FisherHThompsonGLMuthJFThompsonGLProbabilistic learning combinations of local job-shop scheduling rulesIndustrial Scheduling1963HobokenPrentice-Hall225251 Ozcan, E., Bykov, Y., Birben, M., Burke, E.: Examination timetabling using late acceptance hyper-heuristics. In: IEEE Congress on Evolutionary Computation, CEC-2009, Trondheim, Norway, pp. 997–1004 (2009) AhmadianfarIHeidariAAGandomiAHChuXChenHRUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta methodExpert Syst. Appl.202118110.1016/j.eswa.2021.115079 Innes, M.J., Saba, E., Fischer, K., Gandhi, D., Rudilosso, M.C., Joy, N.M., Karmali, T., Pal, A., Shah, V.B.: Fashionable modeling with Flux. (2018). https://arxiv.org/pdf/1811.01457.pdf AbualigahLAbd-ElazizMSumariPGeemZWGandomiAHReptile search algorithm (RSA): a nature-inspired meta-heuristic optimizerExpert Syst. Appl.202219110.1016/j.eswa.2021.116158 SammaHLimCPSalehJMA new reinforcement learning-based memetic particle swarm optimizerAppl. Soft Comput.20164327629710.1016/j.asoc.2016.01.006 Falcao, D., Madureira, A., Pereira, I.: Q-learning based hyperheuristic for scheduling system self-parameterization In: Proceedings of the 2015 10th Iberian Conference on Information Systems and Technologies, CISTI, Aveiro, Portugal, pp. 1–7 (2015) TalbiEGMetaheuristics: From Design to Implementation20091New YorkWiley10.1002/9780470496916 CatalinaTIordacheVCaracaleanuBMultiple regression model for fast prediction of the heating energy demandEnegy Build20135730231210.1016/j.enbuild.2012.11.010 DerracJGarciaSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol. Comput.2011131810.1016/j.swevo.2011.02.002 Sinhuber, P., Rohlfs, W., Sauer, D.U.: Study on power and energy demand for sizing the energy storage systems for electrified local public transport buses. In: Proceedings of the IEEE Vehicle Power and Propulsion Conference, pp. 315–320. Seoul (2012) BurkeEKHydeMKendallGOchoaGÖzcanEWoodwarJRMichelGJean-YvesPA classification of hyper-heuristic approachesHandbook of Metaheuristics2010BerlinSpringer44946810.1007/978-1-4419-1665-5_15 ZamliKZDinFAhmedBSBuresMA hybrid Q-learning sine-cosine-based strategy for addressing the combinatoral test suite minimization problemPLoS One20181310.1371/journal.pone.0195675 NarayekAChoosing search heuristics by non-stationary reinforcement learning2010New YorkSpringer XuZPanLShenTModel-free reinforcement learning approach to optimal speed control of combustion engines in start-up modeControl. Eng. Pract.202111110.1016/j.conengprac.2021.104791 LiJXiaoDLeiHZhangTTianTUsing Cockoo Search algorithm with Q-learning and genetic operation to solve the problem of logistics distribution center locationMathematics2020149132 ChenMCuiYWangXXieHLiuFLuoTZhengSLuoYA reinforcement learning approach to irrigation decision-making for rice using weather forecastAgric. Water Manag.202125010.1016/j.agwat.2021.106838 PingPQinWXuYMiyajimaCTakedaKImpact of driver behavior on fuel consumption: classification, evaluation and prediction using machine learningIEEE Access20197785157853210.1109/ACCESS.2019.2920489 WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans. Evol. Comput.19971678210.1109/4235.585893 GaoMGaoKMaZTangWEnsemble meta-heuristics and Q-learning for solving unmanned surface vessels scheduling problemsSwarm Evol. Comput.20238210.1016/j.swevo.2023.101358 SulaimanMHMustaffaZSaariMMDaniyalHBarnacles Mating Optimizer: a new bio-inspired algorithm for solving engineering optimization problemsEng. Appl. Artif. Intell.20208710.1016/j.engappai.2019.103330 QuCGaiWZhongMZhangJA novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planningAppl. Soft Comput.20208910.1016/j.asoc.2020.106099 CowlingPKendallGSoubeigaEBurkeEErbenWA hyperheuristic approach to scheduling a sales summitPractice and theory of automated timetabling III2001BerlinSpringer17619010.1007/3-540-44629-X_11 ChoongSSWongLPLimCPAutomatic design of hyper-heuristic based on reinforcement learningInf. Sci.2018436–43789107376381710.1016/j.ins.2018.01.005 De CauwerCVan MierloJCoosemansTEnergy consumption prediction for electric vehicle based on real-world dataEnergies201588573859310.3390/en8088573 FaramarziAHeidarinejadMStephensBMirjaliliSEquilibrium optimizer: a novel optimization algorithmKnowl. Based Syst.202019110.1016/j.knosys.2019.105190 Paul, H.T.: Optimal design of an industrial refrigeration system. In: Proceedings of International Conference on Optimization Techniques and Applications, pp.427–435. National University of Singapore, Singapore (1987). PantMThangarajRSinghVPOptimization of mechanical design problems using improved differential evolution algorithmIJRTE200912125 Deb, K., Goyal, M.: Optimizing engineering designs using a combined genetic search. In: L. J. Eshelman (Ed.) Proceedings of the Sixth International conference in Genetic Algorithms. University of Pittsburgh, Morgan Kaufmann Publishers, San Mateo (1995) Liang, J.J., Qu, B.Y., Suganthan, P.N., Hernandez-Diaz, A.G.: Problem definitions and evolution criteria for the CEC 2013 special session and competition on real parameter optimization, technical report 2012. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang University, Singapore (2013) WatkinsCJCHDayanPQ-learningMach. Learn.1992827929210.1007/BF00992698 CiullaGD’AmicoABuilding energy performance forecasting: a multiple linear regression approachAppl. Energy201925310.1016/j.apenergy.2019.113500 Cowling, P., Chakklevitch, K.: Hyperheuristics for managing a large collection of low level heuristics to schedule personnel. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC-2003, Canberra, Australia, pp. 1214–1221 (2004) Sim, K. KSATS-HH: a simulated annealing hyper-heuristic with reinforcement learning and tabu search. (2021). http://www.asap.cs.nott.ac.uk/external/chesc2011/index.html. Accessed 27 June 2011 Pylyavskyy, Y., Kheiri, A., Ahmed, L.: A reinforcement learning hyperheuristic for the optimization of flight connections. In: 2020 IEEE Congress on Evolutionary Computation, CEC2020, Glasgow, UK, pp. 1–8 (2020) WangJBesselinkINijmeijerHBattery electric vehicle energy consumption modelling for range estimationInt. J. Electr. Hybrid Veh.201797910210.1504/IJEHV.2017.085336 ShenXNMinkuLLMarturiNGuoYNHanYA Q-learning-based memetic algorithm for multiobjective dynamic software project schedulingInf. Sci.201842812910.1016/j.ins.2017.10.041 SammaHMohamed-SalehJSuandiSALahasanBQ-learning-based simulated annealing algorithm for constrained engineering design problemsNeural Comput. Appl.2020325147516110.1007/s00521-019-04008-z LiKFialhoAKwongSZhangQAdaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decompositionIEEE Trans. Evol. Comput.20141811413010.1109/TEVC.2013.2239648 AbualigahLYousriDAbd-ElazizMAhmedAEMohammedAAAGandomiAHAquila Optimizer: a novel meta-heuristic optimization algorithmComput. Ind. Eng.202115710.1016/j.cie.2021.107250 AhmadianfarIBozorg-HaddadOChuXGradient-based optimizer: a new metaheuristic optimization algorithmInf. Sci.2020540131159411942410.1016/j.ins.2020.06.037 RakshitPKonarABhowmikPGoswamiIDasSJainLCNagarAKRealization of an adaptive memetic algorithm using differential evolution and Q-learning: a case study in multirobot path planningIEEE Trans. Syst. Man Cybern.20134381483110.1109/TSMCA.2012.2226024 MirjaliliSLewisAThe Whale optimization algorithmAdv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008 Denzinger, J., Fuchs, M., Fuchs, M.: High performance ATP systems by combining several AI methods. Technical Report, SEKI-Report SR-96-09, University of Kaiserslautern (1997). OzcanEMısırMOchoaGBurkeEKReinforcement learning-great-deluge hyper-heuristic for examination timetablingInt. J. Appl. Metaheuristic Comput.20121395910.4018/jamc.2010102603 PamulaTPamulaWEstimation of the energy consumption of battery electric buses for public transport networks using real-world data and deep learningEnergies20201311710.3390/en13092340 PereraATDKamalarubanPApplications of reinforcement learning in energy systemsRenew. Sustain. Energy Rev.202113710.1016/j.rser.2020.110618 KimT-HMarutaISugieTA simple and efficient constrained particle swarm optimization and its applications to engineering design problemsProc. Inst. Mech. Eng. C J. Mech. Eng. Sci.201022438940010.1243/09544062JMES1732 VepsäläinenJOttoKLajunenATammiKComputationally efficient model for energy demand prediction of electricity city bus in varying operating conditionsEnergy201916943344310.1016/j.energy.2018.12.064 BurkeEKGendreauMHydeMKendallGOchoaGÖzcanEQuRHyper-heuristics : a survey of the state of the artJ. Oper. Re SHS Moosavi (179_CR27) 2019; 86 179_CR4 P Rakshit (179_CR10) 2013; 43 W Qin (179_CR22) 2021; 156 G Ciulla (179_CR69) 2019; 253 J Vepsäläinen (179_CR62) 2019; 169 Z Lin (179_CR25) 2023; 24 EG Talbi (179_CR1) 2009 H Samma (179_CR9) 2020; 32 JF Crow (179_CR48) 1999; 152 EK Burke (179_CR5) 2010 M Al-Gabalawy (179_CR44) 2021 AK Sadhu (179_CR13) 2018; 43 I Ahmadianfar (179_CR35) 2021; 181 179_CR56 L Abualigah (179_CR26) 2021; 157 AA Heidari (179_CR30) 2019; 97 AY Ozban (179_CR49) 2004; 17 MH Sulaiman (179_CR28) 2020; 87 179_CR55 179_CR52 J Li (179_CR12) 2020; 149 Z Xu (179_CR43) 2021; 111 XN Shen (179_CR14) 2018; 428 E Ozcan (179_CR18) 2012; 1 M Gao (179_CR24) 2023; 82 EK Burke (179_CR2) 2013; 64 M Chen (179_CR45) 2021; 250 N Jiang (179_CR47) 2020; 512 A Narayek (179_CR42) 2010 ATD Perera (179_CR46) 2021; 137 L Abualigah (179_CR31) 2022; 191 K Chakhlevitch (179_CR37) 2008 C De Cauwer (179_CR66) 2015; 8 H Samma (179_CR15) 2016; 43 S Kanarachos (179_CR67) 2019; 120 179_CR38 P Cowling (179_CR40) 2001 179_CR41 A Faramarzi (179_CR34) 2020; 191 CAC Coello (179_CR54) 2000; 32 T Catalina (179_CR70) 2013; 57 W Zhao (179_CR33) 2020; 87 KZ Zamli (179_CR11) 2018; 13 CJCH Watkins (179_CR8) 1992; 8 H Fisher (179_CR3) 1963 P Ping (179_CR68) 2019; 7 SS Choong (179_CR21) 2018; 436–437 Y Gao (179_CR63) 2018; 11 179_CR72 J Vepsäläinen (179_CR61) 2018; 11 K Li (179_CR39) 2014; 18 RV Rao (179_CR59) 2016; 49 179_CR71 J Wang (179_CR64) 2017; 9 RS Sutton (179_CR7) 2018 M Pant (179_CR57) 2009; 1 I Ahmadianfar (179_CR29) 2020; 540 T Pamula (179_CR60) 2020; 13 C Qu (179_CR16) 2020; 89 BD Youn (179_CR58) 2004; 82 T-H Kim (179_CR53) 2010; 224 M Karimi-Mamaghan (179_CR23) 2023; 304 A Askarzadeh (179_CR36) 2016; 169 179_CR19 J Derrac (179_CR51) 2011; 1 179_CR17 NR Sabar (179_CR6) 2015; 19 S Mirjalili (179_CR32) 2016; 95 179_CR65 179_CR20 DH Wolpert (179_CR50) 1997; 1 |
| References_xml | – reference: FaramarziAHeidarinejadMStephensBMirjaliliSEquilibrium optimizer: a novel optimization algorithmKnowl. Based Syst.202019110.1016/j.knosys.2019.105190 – reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans. Evol. Comput.19971678210.1109/4235.585893 – reference: DerracJGarciaSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol. Comput.2011131810.1016/j.swevo.2011.02.002 – reference: De CauwerCVan MierloJCoosemansTEnergy consumption prediction for electric vehicle based on real-world dataEnergies201588573859310.3390/en8088573 – reference: BurkeEKHydeMKendallGOchoaGÖzcanEWoodwarJRMichelGJean-YvesPA classification of hyper-heuristic approachesHandbook of Metaheuristics2010BerlinSpringer44946810.1007/978-1-4419-1665-5_15 – reference: Denzinger, J., Fuchs, M., Fuchs, M.: High performance ATP systems by combining several AI methods. Technical Report, SEKI-Report SR-96-09, University of Kaiserslautern (1997). – reference: QinWZhuangZHuangZHuangHA novel reinforcement learning-based hyper-heuristic for heterogenous vehicle routing problemComput. Ind. Eng.202115610.1016/j.cie.2021.107252 – reference: Paul, H.T.: Optimal design of an industrial refrigeration system. In: Proceedings of International Conference on Optimization Techniques and Applications, pp.427–435. National University of Singapore, Singapore (1987). – reference: OzcanEMısırMOchoaGBurkeEKReinforcement learning-great-deluge hyper-heuristic for examination timetablingInt. J. Appl. Metaheuristic Comput.20121395910.4018/jamc.2010102603 – reference: NarayekAChoosing search heuristics by non-stationary reinforcement learning2010New YorkSpringer – reference: LiKFialhoAKwongSZhangQAdaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decompositionIEEE Trans. Evol. Comput.20141811413010.1109/TEVC.2013.2239648 – reference: Karimi-MamaghanMMohammadiMPasdeloupBMeyerPLearning to select operators in meta-heuristic: an integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problemEur. J. Oper. Res.202330412961330448806410.1016/j.ejor.2022.03.054 – reference: RaoRVWagmareGGA new optimization algorithm for solving complex constrained design optimization problemsEng. Optim.201649608310.1080/0305215X.2016.1164855 – reference: WangJBesselinkINijmeijerHBattery electric vehicle energy consumption modelling for range estimationInt. J. Electr. Hybrid Veh.201797910210.1504/IJEHV.2017.085336 – reference: Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference for Learning Representations-ICLR 2015. San Diego (2015) – reference: CowlingPKendallGSoubeigaEBurkeEErbenWA hyperheuristic approach to scheduling a sales summitPractice and theory of automated timetabling III2001BerlinSpringer17619010.1007/3-540-44629-X_11 – reference: Pylyavskyy, Y., Kheiri, A., Ahmed, L.: A reinforcement learning hyperheuristic for the optimization of flight connections. In: 2020 IEEE Congress on Evolutionary Computation, CEC2020, Glasgow, UK, pp. 1–8 (2020) – reference: PereraATDKamalarubanPApplications of reinforcement learning in energy systemsRenew. Sustain. Energy Rev.202113710.1016/j.rser.2020.110618 – reference: PamulaTPamulaWEstimation of the energy consumption of battery electric buses for public transport networks using real-world data and deep learningEnergies20201311710.3390/en13092340 – reference: AbualigahLAbd-ElazizMSumariPGeemZWGandomiAHReptile search algorithm (RSA): a nature-inspired meta-heuristic optimizerExpert Syst. Appl.202219110.1016/j.eswa.2021.116158 – reference: CoelloCACTreating constraints as objectives for single-objective evolutionary optimizationEng. Opt.20003227530810.1080/03052150008941301 – reference: OzbanAYSome new variants of Newton’s methodAppl. Math. Lett.200417677682206418010.1016/S0893-9659(04)90104-8 – reference: CrowJFHardy–Weinberberg and language impedimentsGenetics199915282182510.1093/genetics/152.3.821 – reference: TalbiEGMetaheuristics: From Design to Implementation20091New YorkWiley10.1002/9780470496916 – reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris Hawks optimization: algorithm and applicationsFuture Gener. Comput. Syst.20199784987210.1016/j.future.2019.02.028 – reference: AbualigahLYousriDAbd-ElazizMAhmedAEMohammedAAAGandomiAHAquila Optimizer: a novel meta-heuristic optimization algorithmComput. Ind. Eng.202115710.1016/j.cie.2021.107250 – reference: SammaHMohamed-SalehJSuandiSALahasanBQ-learning-based simulated annealing algorithm for constrained engineering design problemsNeural Comput. Appl.2020325147516110.1007/s00521-019-04008-z – reference: Al-GabalawyMA Hybrid MPC for constrained deep reinforcement learning applied for planar robotic armISA Trans.202110.1016/j.isatra.2021.03.046 – reference: CiullaGD’AmicoABuilding energy performance forecasting: a multiple linear regression approachAppl. Energy201925310.1016/j.apenergy.2019.113500 – reference: QuCGaiWZhongMZhangJA novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planningAppl. Soft Comput.20208910.1016/j.asoc.2020.106099 – reference: Falcao, D., Madureira, A., Pereira, I.: Q-learning based hyperheuristic for scheduling system self-parameterization In: Proceedings of the 2015 10th Iberian Conference on Information Systems and Technologies, CISTI, Aveiro, Portugal, pp. 1–7 (2015) – reference: PantMThangarajRSinghVPOptimization of mechanical design problems using improved differential evolution algorithmIJRTE200912125 – reference: MoosaviSHSBardsiriVKPoor and rich optimization algorithm: a new human-based and multi-populations algorithmEng. Appl. Artif. Intel.20198616518110.1016/j.engappai.2019.08.025 – reference: ZamliKZDinFAhmedBSBuresMA hybrid Q-learning sine-cosine-based strategy for addressing the combinatoral test suite minimization problemPLoS One20181310.1371/journal.pone.0195675 – reference: XuZPanLShenTModel-free reinforcement learning approach to optimal speed control of combustion engines in start-up modeControl. Eng. Pract.202111110.1016/j.conengprac.2021.104791 – reference: SuttonRSBartoAGReinforcement Learning: An Introduction2018CambridgeMIT Press – reference: Sim, K. KSATS-HH: a simulated annealing hyper-heuristic with reinforcement learning and tabu search. (2021). http://www.asap.cs.nott.ac.uk/external/chesc2011/index.html. Accessed 27 June 2011 – reference: AskarzadehAA novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithmComput. Struct.201616911210.1016/j.compstruc.2016.03.001 – reference: Cowling, P., Chakklevitch, K.: Hyperheuristics for managing a large collection of low level heuristics to schedule personnel. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC-2003, Canberra, Australia, pp. 1214–1221 (2004) – reference: PingPQinWXuYMiyajimaCTakedaKImpact of driver behavior on fuel consumption: classification, evaluation and prediction using machine learningIEEE Access20197785157853210.1109/ACCESS.2019.2920489 – reference: Liang, J.J., Qu, B.Y., Suganthan, P.N., Hernandez-Diaz, A.G.: Problem definitions and evolution criteria for the CEC 2013 special session and competition on real parameter optimization, technical report 2012. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang University, Singapore (2013) – reference: ChakhlevitchKCowlingPCottaCSevauxMSorensenKHyperheuristics: recent developmentsAdaptive Multilevel Metaheuristics2008BerlinSpringer32910.1007/978-3-540-79438-7_1 – reference: RakshitPKonarABhowmikPGoswamiIDasSJainLCNagarAKRealization of an adaptive memetic algorithm using differential evolution and Q-learning: a case study in multirobot path planningIEEE Trans. Syst. Man Cybern.20134381483110.1109/TSMCA.2012.2226024 – reference: ChoongSSWongLPLimCPAutomatic design of hyper-heuristic based on reinforcement learningInf. Sci.2018436–43789107376381710.1016/j.ins.2018.01.005 – reference: SulaimanMHMustaffaZSaariMMDaniyalHBarnacles Mating Optimizer: a new bio-inspired algorithm for solving engineering optimization problemsEng. Appl. Artif. Intell.20208710.1016/j.engappai.2019.103330 – reference: MirjaliliSLewisAThe Whale optimization algorithmAdv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008 – reference: CatalinaTIordacheVCaracaleanuBMultiple regression model for fast prediction of the heating energy demandEnegy Build20135730231210.1016/j.enbuild.2012.11.010 – reference: AhmadianfarIHeidariAAGandomiAHChuXChenHRUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta methodExpert Syst. Appl.202118110.1016/j.eswa.2021.115079 – reference: GaoYGuoSRenJZhaoZEhsanAZhengYAn electric bus power consumption model and optimization of charging scheduling concerning multi-external factorsEnergies20181111710.3390/en11082060 – reference: LiJXiaoDLeiHZhangTTianTUsing Cockoo Search algorithm with Q-learning and genetic operation to solve the problem of logistics distribution center locationMathematics2020149132 – reference: JiangNXuDZhouJYanHYWanTZhengJQToward optimal participant decisions with voting-based incentive model for crowd sensingInf. Sci.202051211710.1016/j.ins.2019.09.068 – reference: ShenXNMinkuLLMarturiNGuoYNHanYA Q-learning-based memetic algorithm for multiobjective dynamic software project schedulingInf. Sci.201842812910.1016/j.ins.2017.10.041 – reference: VepsäläinenJRitariALajunenAKivekäsKTammiKEnergy uncertainty analysis of electric busesEnergies201811326710.3390/en11123267 – reference: ChenMCuiYWangXXieHLiuFLuoTZhengSLuoYA reinforcement learning approach to irrigation decision-making for rice using weather forecastAgric. Water Manag.202125010.1016/j.agwat.2021.106838 – reference: KimT-HMarutaISugieTA simple and efficient constrained particle swarm optimization and its applications to engineering design problemsProc. Inst. Mech. Eng. C J. Mech. Eng. Sci.201022438940010.1243/09544062JMES1732 – reference: WatkinsCJCHDayanPQ-learningMach. Learn.1992827929210.1007/BF00992698 – reference: BurkeEKGendreauMHydeMKendallGOchoaGÖzcanEQuRHyper-heuristics : a survey of the state of the artJ. Oper. Res. Soc.2013641695172410.1057/jors.2013.71 – reference: FisherHThompsonGLMuthJFThompsonGLProbabilistic learning combinations of local job-shop scheduling rulesIndustrial Scheduling1963HobokenPrentice-Hall225251 – reference: SabarNRAyobMKendallGQuRAutomatic design of a hyper-heuristic framework with gene expression programming for combinatoral optimization problemsIEEE Trans. Evol. Comput.20151930932510.1109/TEVC.2014.2319051 – reference: SadhuAKKonarABhattacharjeeTDasSSynergism of Firefly algorithm and Q-Learning for robot arm path planningSwarm Evol. Comput.201843506810.1016/j.swevo.2018.03.014 – reference: Deb, K., Goyal, M.: Optimizing engineering designs using a combined genetic search. In: L. J. Eshelman (Ed.) Proceedings of the Sixth International conference in Genetic Algorithms. University of Pittsburgh, Morgan Kaufmann Publishers, San Mateo (1995) – reference: Innes, M.J., Saba, E., Fischer, K., Gandhi, D., Rudilosso, M.C., Joy, N.M., Karmali, T., Pal, A., Shah, V.B.: Fashionable modeling with Flux. (2018). https://arxiv.org/pdf/1811.01457.pdf – reference: SammaHLimCPSalehJMA new reinforcement learning-based memetic particle swarm optimizerAppl. Soft Comput.20164327629710.1016/j.asoc.2016.01.006 – reference: YounBDChoiKKA new response surface methodology for reliability-based design optimizationComput. Struct.20048224125610.1016/j.compstruc.2003.09.002 – reference: ZhaoWZhangZWangLManta ray foraging optimization : an effective bio inspired optimizer for engineering applicationsEng. Appl. Artif. Intell.20208710.1016/j.engappai.2019.103300 – reference: VepsäläinenJOttoKLajunenATammiKComputationally efficient model for energy demand prediction of electricity city bus in varying operating conditionsEnergy201916943344310.1016/j.energy.2018.12.064 – reference: GaoMGaoKMaZTangWEnsemble meta-heuristics and Q-learning for solving unmanned surface vessels scheduling problemsSwarm Evol. Comput.20238210.1016/j.swevo.2023.101358 – reference: KanarachosSMathewJFitzpatrickMEInstantaneous vehicle fuel consumption using smartphones and recurrent neural networksExpert Syst. Appl.201912043644710.1016/j.eswa.2018.12.006 – reference: LinZGaoKWuNSuganthanPNScheduling eight-phase urban traffic light problems via ensemble meta-heuristics and q-learning based local searchIEEE Trans. Intell. Transp. Syst.20232411210.1109/TITS.2023.3296387 – reference: Ozcan, E., Bykov, Y., Birben, M., Burke, E.: Examination timetabling using late acceptance hyper-heuristics. In: IEEE Congress on Evolutionary Computation, CEC-2009, Trondheim, Norway, pp. 997–1004 (2009) – reference: Sinhuber, P., Rohlfs, W., Sauer, D.U.: Study on power and energy demand for sizing the energy storage systems for electrified local public transport buses. In: Proceedings of the IEEE Vehicle Power and Propulsion Conference, pp. 315–320. Seoul (2012) – reference: AhmadianfarIBozorg-HaddadOChuXGradient-based optimizer: a new metaheuristic optimization algorithmInf. Sci.2020540131159411942410.1016/j.ins.2020.06.037 – volume-title: Metaheuristics: From Design to Implementation year: 2009 ident: 179_CR1 doi: 10.1002/9780470496916 – volume: 169 start-page: 1 year: 2016 ident: 179_CR36 publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.03.001 – volume: 8 start-page: 8573 year: 2015 ident: 179_CR66 publication-title: Energies doi: 10.3390/en8088573 – start-page: 176 volume-title: Practice and theory of automated timetabling III year: 2001 ident: 179_CR40 doi: 10.1007/3-540-44629-X_11 – ident: 179_CR72 – volume: 13 year: 2018 ident: 179_CR11 publication-title: PLoS One doi: 10.1371/journal.pone.0195675 – volume: 86 start-page: 165 year: 2019 ident: 179_CR27 publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2019.08.025 – volume: 436–437 start-page: 89 year: 2018 ident: 179_CR21 publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.01.005 – volume: 1 start-page: 3 year: 2011 ident: 179_CR51 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 82 year: 2023 ident: 179_CR24 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101358 – volume: 1 start-page: 21 year: 2009 ident: 179_CR57 publication-title: IJRTE – volume: 11 start-page: 1 year: 2018 ident: 179_CR63 publication-title: Energies doi: 10.3390/en11082060 – volume: 95 start-page: 51 year: 2016 ident: 179_CR32 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 89 year: 2020 ident: 179_CR16 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106099 – volume: 152 start-page: 821 year: 1999 ident: 179_CR48 publication-title: Genetics doi: 10.1093/genetics/152.3.821 – volume: 8 start-page: 279 year: 1992 ident: 179_CR8 publication-title: Mach. Learn. doi: 10.1007/BF00992698 – volume: 43 start-page: 50 year: 2018 ident: 179_CR13 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.03.014 – volume: 7 start-page: 78515 year: 2019 ident: 179_CR68 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920489 – start-page: 3 volume-title: Adaptive Multilevel Metaheuristics year: 2008 ident: 179_CR37 doi: 10.1007/978-3-540-79438-7_1 – volume: 181 year: 2021 ident: 179_CR35 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115079 – ident: 179_CR52 – year: 2021 ident: 179_CR44 publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.03.046 – volume: 32 start-page: 275 year: 2000 ident: 179_CR54 publication-title: Eng. Opt. doi: 10.1080/03052150008941301 – ident: 179_CR65 doi: 10.1109/VPPC.2012.6422680 – volume: 191 year: 2020 ident: 179_CR34 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2019.105190 – ident: 179_CR56 – volume: 43 start-page: 814 year: 2013 ident: 179_CR10 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMCA.2012.2226024 – volume: 428 start-page: 1 year: 2018 ident: 179_CR14 publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.10.041 – volume: 1 start-page: 39 year: 2012 ident: 179_CR18 publication-title: Int. J. Appl. Metaheuristic Comput. doi: 10.4018/jamc.2010102603 – ident: 179_CR20 doi: 10.1109/CEC48606.2020.9185803 – volume: 87 year: 2020 ident: 179_CR33 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103300 – volume: 191 year: 2022 ident: 179_CR31 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – volume-title: Choosing search heuristics by non-stationary reinforcement learning year: 2010 ident: 179_CR42 – volume: 82 start-page: 241 year: 2004 ident: 179_CR58 publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2003.09.002 – volume: 1 start-page: 67 year: 1997 ident: 179_CR50 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – ident: 179_CR4 – volume: 9 start-page: 79 year: 2017 ident: 179_CR64 publication-title: Int. J. Electr. Hybrid Veh. doi: 10.1504/IJEHV.2017.085336 – volume: 250 year: 2021 ident: 179_CR45 publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.106838 – volume: 13 start-page: 1 year: 2020 ident: 179_CR60 publication-title: Energies doi: 10.3390/en13092340 – volume: 253 year: 2019 ident: 179_CR69 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113500 – volume: 304 start-page: 1296 year: 2023 ident: 179_CR23 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2022.03.054 – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: 179_CR7 – volume: 18 start-page: 114 year: 2014 ident: 179_CR39 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2239648 – ident: 179_CR55 – volume: 169 start-page: 433 year: 2019 ident: 179_CR62 publication-title: Energy doi: 10.1016/j.energy.2018.12.064 – volume: 43 start-page: 276 year: 2016 ident: 179_CR15 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.01.006 – volume: 17 start-page: 677 year: 2004 ident: 179_CR49 publication-title: Appl. Math. Lett. doi: 10.1016/S0893-9659(04)90104-8 – volume: 11 start-page: 3267 year: 2018 ident: 179_CR61 publication-title: Energies doi: 10.3390/en11123267 – volume: 120 start-page: 436 year: 2019 ident: 179_CR67 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.12.006 – volume: 512 start-page: 1 year: 2020 ident: 179_CR47 publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.09.068 – volume: 224 start-page: 389 year: 2010 ident: 179_CR53 publication-title: Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. doi: 10.1243/09544062JMES1732 – volume: 24 start-page: 1 year: 2023 ident: 179_CR25 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2023.3296387 – ident: 179_CR17 – start-page: 225 volume-title: Industrial Scheduling year: 1963 ident: 179_CR3 – volume: 97 start-page: 849 year: 2019 ident: 179_CR30 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – ident: 179_CR19 doi: 10.1109/CISTI.2015.7170394 – volume: 64 start-page: 1695 year: 2013 ident: 179_CR2 publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.2013.71 – volume: 157 year: 2021 ident: 179_CR26 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – volume: 149 start-page: 1 year: 2020 ident: 179_CR12 publication-title: Mathematics – ident: 179_CR71 – volume: 87 year: 2020 ident: 179_CR28 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103330 – volume: 32 start-page: 5147 year: 2020 ident: 179_CR9 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04008-z – start-page: 449 volume-title: Handbook of Metaheuristics year: 2010 ident: 179_CR5 doi: 10.1007/978-1-4419-1665-5_15 – volume: 156 year: 2021 ident: 179_CR22 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107252 – volume: 19 start-page: 309 year: 2015 ident: 179_CR6 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2319051 – volume: 540 start-page: 131 year: 2020 ident: 179_CR29 publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.06.037 – volume: 111 year: 2021 ident: 179_CR43 publication-title: Control. Eng. Pract. doi: 10.1016/j.conengprac.2021.104791 – volume: 57 start-page: 302 year: 2013 ident: 179_CR70 publication-title: Enegy Build doi: 10.1016/j.enbuild.2012.11.010 – ident: 179_CR38 doi: 10.1109/CEC.2009.4983054 – volume: 137 year: 2021 ident: 179_CR46 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110618 – volume: 49 start-page: 60 year: 2016 ident: 179_CR59 publication-title: Eng. Optim. doi: 10.1080/0305215X.2016.1164855 – ident: 179_CR41 doi: 10.1109/CEC.2003.1299807 |
| SSID | ssj0002734726 ssib031263613 |
| Score | 2.2690334 |
| Snippet | This research study introduces a Q-learning enhanced hyper-heuristic framework for the accurate estimation of energy consumption rates of electric buses.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 423 |
| SubjectTerms | Algorithms Artificial Intelligence Benchmarks Buses (vehicles) Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Design engineering Energy consumption Estimation Heuristic methods Machine learning Mathematics of Computing Optimization Public transportation Regression models Software Engineering/Programming and Operating Systems Theory of Computation |
| Title | Q-learning-based hyper-heuristic framework for estimating the energy consumption of electric buses for public transport |
| URI | https://link.springer.com/article/10.1007/s42044-024-00179-8 https://www.proquest.com/docview/3255237196 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2520-8446 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002734726 issn: 2520-8438 databaseCode: AFBBN dateStart: 20180401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2520-8446 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0002734726 issn: 2520-8438 databaseCode: BENPR dateStart: 20230301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbhMxEB21yYULFAoi0EY-cGstdm3vrveAUIMSIg4RrVqpt5XXO27VQxKaRPw-Y6_dqEhwXcs-eMYzz-uZ9wA-GcJAaJzhFZqSq0I7bhw6nhemsPTNJ2FfbbEo5zfqx21xewCL1AvjyypTTAyBultZ_4_8syTsK2RFDvN1_Yt71Sj_upokNEyUVui-BIqxQxgKz4w1gOFkuvh5lTxM5qKUKYE9RHKXKmiyiYLuUVpJHTtrQn-dEplSnNIY99G85vp59tpD0r9eUUNymh3By4gq2UXvBq_hAJdv4FVSbGDxAB_D70seZSLuuM9fHbune-gjv8ddz9jMXCrWYoRmmafg8JB2eccIKDIMjYLMhrbNEGvYyrFeSYfmtrsNbsK8njybbRNz-lu4mU2vv815lF7glhK45lpmpsbO1BQQZGXa2ghU_pHadqb0lHQW_dUpV7ZANFpaoVwp27K2hakc5vIdDJarJb4H1hFAMVlLYTRrVdE6nUvXOZsJREVR343gLG1ps-4ZNponLuVggIYM0AQDNHoEJ2nXm3jaNs3eN0ZwniyxH_73ah_-v9pHeCGC8X1J2QkMto87PCUMsm3HcKhn38cwvJhNJotxdLM_7yHckw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1ROLSX0k-xQFsf2lNrNbGdxDkgRAtoKXTVViBxSx1nDOphF9hdIf4cv61jx-6qSO2NayL74JnMexPPvAF4a4gDoXGGV2hKrgrtuHHoeF6YwtIzD8K-2mJUDk_Ul9PidAluUy-ML6tMMTEE6m5i_T_yj5K4r5AVOcz2xSX3U6P87WoaoWHiaIVuK0iMxcaOQ7y5phRuunWwS_Z-J8T-3vHnIY9TBrglrNJcy8zU2JmafF9Wpq2NQOXvY21nSq--ZtFnCbmyBaLR0grlStmWtS1M5TCXtO8DWFFS1ZT8rXzaG337kTxa5qKUCTB_RTGZKsyAEwXlbVpJHTt5Qj-fEplSnGCTe_Souf4bLRcU-M6tbQDD_SfwOLJYttO73VNYwvEzWE0TIlgMGM_h-juPYynOuMfLjp1T3nvFz3HeK0Qzl4rDGLFn5iU_PIUenzEipgxDYyKzoU00xDY2cayf3ENr2_kUp2FdL9bNZkmp_QWc3IsRXsLyeDLGNWAdESKTtRS2s1YVrdO5dJ2zmUBUhDJuAO_TkTYXvaJH80e7ORigIQM0wQCNHsBmOvUmft3TZuGLA_iQLLF4_e_d1v-_2xt4ODz-etQcHYwON-CRCI7gy9k2YXl2NcdXxH9m7evoZAx-3rdf_wZ-XxZ2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Q-learning-based+hyper-heuristic+framework+for+estimating+the+energy+consumption+of+electric+buses+for+public+transport&rft.jtitle=Iran+Journal+of+Computer+Science+%28Online%29&rft.au=Turgut%2C+Oguz+Emrah&rft.au=Turgut%2C+Mert+Sinan&rft.au=%C3%96n%C3%A7a%C4%9F%2C+Ali+%C3%87aglar&rft.au=Eliiyi%2C+U%C4%9Fur&rft.date=2024-09-01&rft.issn=2520-8438&rft.eissn=2520-8446&rft.volume=7&rft.issue=3&rft.spage=423&rft.epage=483&rft_id=info:doi/10.1007%2Fs42044-024-00179-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42044_024_00179_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8438&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8438&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8438&client=summon |