Q-learning-based hyper-heuristic framework for estimating the energy consumption of electric buses for public transport

This research study introduces a Q-learning enhanced hyper-heuristic framework for the accurate estimation of energy consumption rates of electric buses. Fundamentals of reinforcement learning concepts are hybridized with the integrated newly emerged metaheuristic methods of Aquila optimizer, Barnac...

Full description

Saved in:
Bibliographic Details
Published inIran Journal of Computer Science (Online) Vol. 7; no. 3; pp. 423 - 483
Main Authors Turgut, Oguz Emrah, Turgut, Mert Sinan, Önçağ, Ali Çaglar, Eliiyi, Uğur, Eliiyi, Deniz Türsel
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2520-8438
2520-8446
DOI10.1007/s42044-024-00179-8

Cover

Abstract This research study introduces a Q-learning enhanced hyper-heuristic framework for the accurate estimation of energy consumption rates of electric buses. Fundamentals of reinforcement learning concepts are hybridized with the integrated newly emerged metaheuristic methods of Aquila optimizer, Barnacles Mating Optimizer, Gradient-based Optimizer, Harris Hawks Optimization, and Poor and Rich Optimization algorithms to solve high-dimensional optimization problems with higher accuracy. In this context, the Q-learning algorithm is considered a high-level heuristic for administering the selection and move acceptance mechanisms, while search agents of those mentioned above low-level competitive metaheuristic algorithms meticulously explore the search space to find the optimum global point. Q-learning guides the operating hyper-heuristic in selecting the suitable low-level optimizer based on the Q-table score during iterations. An intelligent control mechanism is devised to get a reward or penalty for the actions of the low-level algorithms. The proposed method is evaluated on thirty-two optimization benchmark problems composed of unimodal and multimodal test functions. Then, each constituent algorithm and the hyper-heuristic model are applied to thirty-dimensional benchmark functions of CEC 2017 and twenty-eight test instances of CEC 2013. Four different challenging, complex real-world engineering design cases are also solved to assess the predictability of the proposed method on constrained problems. Finally, the proposed hyper-heuristic is employed to derive the fuel consumption estimates of electric buses. It is seen that the Multiple linear regression model, whose unknown parameters are extracted by the hyper-heuristic framework, gives the best predictions.
AbstractList This research study introduces a Q-learning enhanced hyper-heuristic framework for the accurate estimation of energy consumption rates of electric buses. Fundamentals of reinforcement learning concepts are hybridized with the integrated newly emerged metaheuristic methods of Aquila optimizer, Barnacles Mating Optimizer, Gradient-based Optimizer, Harris Hawks Optimization, and Poor and Rich Optimization algorithms to solve high-dimensional optimization problems with higher accuracy. In this context, the Q-learning algorithm is considered a high-level heuristic for administering the selection and move acceptance mechanisms, while search agents of those mentioned above low-level competitive metaheuristic algorithms meticulously explore the search space to find the optimum global point. Q-learning guides the operating hyper-heuristic in selecting the suitable low-level optimizer based on the Q-table score during iterations. An intelligent control mechanism is devised to get a reward or penalty for the actions of the low-level algorithms. The proposed method is evaluated on thirty-two optimization benchmark problems composed of unimodal and multimodal test functions. Then, each constituent algorithm and the hyper-heuristic model are applied to thirty-dimensional benchmark functions of CEC 2017 and twenty-eight test instances of CEC 2013. Four different challenging, complex real-world engineering design cases are also solved to assess the predictability of the proposed method on constrained problems. Finally, the proposed hyper-heuristic is employed to derive the fuel consumption estimates of electric buses. It is seen that the Multiple linear regression model, whose unknown parameters are extracted by the hyper-heuristic framework, gives the best predictions.
Author Turgut, Oguz Emrah
Önçağ, Ali Çaglar
Eliiyi, Deniz Türsel
Turgut, Mert Sinan
Eliiyi, Uğur
Author_xml – sequence: 1
  givenname: Oguz Emrah
  surname: Turgut
  fullname: Turgut, Oguz Emrah
  email: oguzemrah.turgut@bakircay.edu.tr
  organization: Industrial Engineering Department, Faculty of Engineering and Architecture, Izmir Bakırçay University
– sequence: 2
  givenname: Mert Sinan
  surname: Turgut
  fullname: Turgut, Mert Sinan
  organization: Department of Mechanical Engineering, Faculty of Engineering, Izmir Democracy University
– sequence: 3
  givenname: Ali Çaglar
  surname: Önçağ
  fullname: Önçağ, Ali Çaglar
  organization: ESHOT General Directorate
– sequence: 4
  givenname: Uğur
  surname: Eliiyi
  fullname: Eliiyi, Uğur
  organization: Business Department, Faculty of Economics and Administrative Sciences, Izmir Bakırçay University
– sequence: 5
  givenname: Deniz Türsel
  surname: Eliiyi
  fullname: Eliiyi, Deniz Türsel
  organization: Industrial Engineering Department, Faculty of Engineering and Architecture, Izmir Bakırçay University
BookMark eNp9kEtLAzEQx4NUsNZ-AU8Bz9G8drN7lOILBBH0HLLpbB-2yTrZpfTbG1vRm4dhhuH_m8f_nIxCDEDIpeDXgnNzk7TkWjMuc3BhaladkLEsJGeV1uXot1bVGZmmtOacS6O0keWY7F7ZBhyGVViwxiWY0-W-A2RLGHCV-pWnLbot7CJ-0DYihdzbuj7Lab8ECgFwsac-hjRsu34VA40thQ34HjPbDAnSgeuGZpMbPbqQuoj9BTlt3SbB9CdPyPv93dvskT2_PDzNbp-ZF1VRsUpxV8Pc1YYrZVxTOwlaSMP93JUlN8KDLkoptC8AXKW81G2pmrL2hTMtCDUhV8e5HcbPIV9v13HAkFdaJYtCKiPqMqvkUeUxpoTQ2g7zm7i3gttvj-3RY5s9tgePbZUhdYRSFocF4N_of6gv7x6Ctw
Cites_doi 10.1002/9780470496916
10.1016/j.compstruc.2016.03.001
10.3390/en8088573
10.1007/3-540-44629-X_11
10.1371/journal.pone.0195675
10.1016/j.engappai.2019.08.025
10.1016/j.ins.2018.01.005
10.1016/j.swevo.2011.02.002
10.1016/j.swevo.2023.101358
10.3390/en11082060
10.1016/j.advengsoft.2016.01.008
10.1016/j.asoc.2020.106099
10.1093/genetics/152.3.821
10.1007/BF00992698
10.1016/j.swevo.2018.03.014
10.1109/ACCESS.2019.2920489
10.1007/978-3-540-79438-7_1
10.1016/j.eswa.2021.115079
10.1016/j.isatra.2021.03.046
10.1080/03052150008941301
10.1109/VPPC.2012.6422680
10.1016/j.knosys.2019.105190
10.1109/TSMCA.2012.2226024
10.1016/j.ins.2017.10.041
10.4018/jamc.2010102603
10.1109/CEC48606.2020.9185803
10.1016/j.engappai.2019.103300
10.1016/j.eswa.2021.116158
10.1016/j.compstruc.2003.09.002
10.1109/4235.585893
10.1504/IJEHV.2017.085336
10.1016/j.agwat.2021.106838
10.3390/en13092340
10.1016/j.apenergy.2019.113500
10.1016/j.ejor.2022.03.054
10.1109/TEVC.2013.2239648
10.1016/j.energy.2018.12.064
10.1016/j.asoc.2016.01.006
10.1016/S0893-9659(04)90104-8
10.3390/en11123267
10.1016/j.eswa.2018.12.006
10.1016/j.ins.2019.09.068
10.1243/09544062JMES1732
10.1109/TITS.2023.3296387
10.1016/j.future.2019.02.028
10.1109/CISTI.2015.7170394
10.1057/jors.2013.71
10.1016/j.cie.2021.107250
10.1016/j.engappai.2019.103330
10.1007/s00521-019-04008-z
10.1007/978-1-4419-1665-5_15
10.1016/j.cie.2021.107252
10.1109/TEVC.2014.2319051
10.1016/j.ins.2020.06.037
10.1016/j.conengprac.2021.104791
10.1016/j.enbuild.2012.11.010
10.1109/CEC.2009.4983054
10.1016/j.rser.2020.110618
10.1080/0305215X.2016.1164855
10.1109/CEC.2003.1299807
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s42044-024-00179-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2520-8446
EndPage 483
ExternalDocumentID 10_1007_s42044_024_00179_8
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
Z83
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c1858-830a9eda970337ab9a2e41270cda66071ce456214c5eea83c24f63b69c5a7fe13
IEDL.DBID BENPR
ISSN 2520-8438
IngestDate Sat Oct 18 23:24:23 EDT 2025
Wed Oct 01 02:31:52 EDT 2025
Fri Feb 21 02:38:32 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Aquila optimizer
Q-learning
Regression models
Electric buses
Hyper-heuristics
Barnacles mating optimizer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1858-830a9eda970337ab9a2e41270cda66071ce456214c5eea83c24f63b69c5a7fe13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255237196
PQPubID 7435094
PageCount 61
ParticipantIDs proquest_journals_3255237196
crossref_primary_10_1007_s42044_024_00179_8
springer_journals_10_1007_s42044_024_00179_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle An International Journal
PublicationTitle Iran Journal of Computer Science (Online)
PublicationTitleAbbrev Iran J Comput Sci
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References MoosaviSHSBardsiriVKPoor and rich optimization algorithm: a new human-based and multi-populations algorithmEng. Appl. Artif. Intel.20198616518110.1016/j.engappai.2019.08.025
LinZGaoKWuNSuganthanPNScheduling eight-phase urban traffic light problems via ensemble meta-heuristics and q-learning based local searchIEEE Trans. Intell. Transp. Syst.20232411210.1109/TITS.2023.3296387
SuttonRSBartoAGReinforcement Learning: An Introduction2018CambridgeMIT Press
OzbanAYSome new variants of Newton’s methodAppl. Math. Lett.200417677682206418010.1016/S0893-9659(04)90104-8
CoelloCACTreating constraints as objectives for single-objective evolutionary optimizationEng. Opt.20003227530810.1080/03052150008941301
ChakhlevitchKCowlingPCottaCSevauxMSorensenKHyperheuristics: recent developmentsAdaptive Multilevel Metaheuristics2008BerlinSpringer32910.1007/978-3-540-79438-7_1
SadhuAKKonarABhattacharjeeTDasSSynergism of Firefly algorithm and Q-Learning for robot arm path planningSwarm Evol. Comput.201843506810.1016/j.swevo.2018.03.014
GaoYGuoSRenJZhaoZEhsanAZhengYAn electric bus power consumption model and optimization of charging scheduling concerning multi-external factorsEnergies20181111710.3390/en11082060
FisherHThompsonGLMuthJFThompsonGLProbabilistic learning combinations of local job-shop scheduling rulesIndustrial Scheduling1963HobokenPrentice-Hall225251
Ozcan, E., Bykov, Y., Birben, M., Burke, E.: Examination timetabling using late acceptance hyper-heuristics. In: IEEE Congress on Evolutionary Computation, CEC-2009, Trondheim, Norway, pp. 997–1004 (2009)
AhmadianfarIHeidariAAGandomiAHChuXChenHRUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta methodExpert Syst. Appl.202118110.1016/j.eswa.2021.115079
Innes, M.J., Saba, E., Fischer, K., Gandhi, D., Rudilosso, M.C., Joy, N.M., Karmali, T., Pal, A., Shah, V.B.: Fashionable modeling with Flux. (2018). https://arxiv.org/pdf/1811.01457.pdf
AbualigahLAbd-ElazizMSumariPGeemZWGandomiAHReptile search algorithm (RSA): a nature-inspired meta-heuristic optimizerExpert Syst. Appl.202219110.1016/j.eswa.2021.116158
SammaHLimCPSalehJMA new reinforcement learning-based memetic particle swarm optimizerAppl. Soft Comput.20164327629710.1016/j.asoc.2016.01.006
Falcao, D., Madureira, A., Pereira, I.: Q-learning based hyperheuristic for scheduling system self-parameterization In: Proceedings of the 2015 10th Iberian Conference on Information Systems and Technologies, CISTI, Aveiro, Portugal, pp. 1–7 (2015)
TalbiEGMetaheuristics: From Design to Implementation20091New YorkWiley10.1002/9780470496916
CatalinaTIordacheVCaracaleanuBMultiple regression model for fast prediction of the heating energy demandEnegy Build20135730231210.1016/j.enbuild.2012.11.010
DerracJGarciaSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol. Comput.2011131810.1016/j.swevo.2011.02.002
Sinhuber, P., Rohlfs, W., Sauer, D.U.: Study on power and energy demand for sizing the energy storage systems for electrified local public transport buses. In: Proceedings of the IEEE Vehicle Power and Propulsion Conference, pp. 315–320. Seoul (2012)
BurkeEKHydeMKendallGOchoaGÖzcanEWoodwarJRMichelGJean-YvesPA classification of hyper-heuristic approachesHandbook of Metaheuristics2010BerlinSpringer44946810.1007/978-1-4419-1665-5_15
ZamliKZDinFAhmedBSBuresMA hybrid Q-learning sine-cosine-based strategy for addressing the combinatoral test suite minimization problemPLoS One20181310.1371/journal.pone.0195675
NarayekAChoosing search heuristics by non-stationary reinforcement learning2010New YorkSpringer
XuZPanLShenTModel-free reinforcement learning approach to optimal speed control of combustion engines in start-up modeControl. Eng. Pract.202111110.1016/j.conengprac.2021.104791
LiJXiaoDLeiHZhangTTianTUsing Cockoo Search algorithm with Q-learning and genetic operation to solve the problem of logistics distribution center locationMathematics2020149132
ChenMCuiYWangXXieHLiuFLuoTZhengSLuoYA reinforcement learning approach to irrigation decision-making for rice using weather forecastAgric. Water Manag.202125010.1016/j.agwat.2021.106838
PingPQinWXuYMiyajimaCTakedaKImpact of driver behavior on fuel consumption: classification, evaluation and prediction using machine learningIEEE Access20197785157853210.1109/ACCESS.2019.2920489
WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans. Evol. Comput.19971678210.1109/4235.585893
GaoMGaoKMaZTangWEnsemble meta-heuristics and Q-learning for solving unmanned surface vessels scheduling problemsSwarm Evol. Comput.20238210.1016/j.swevo.2023.101358
SulaimanMHMustaffaZSaariMMDaniyalHBarnacles Mating Optimizer: a new bio-inspired algorithm for solving engineering optimization problemsEng. Appl. Artif. Intell.20208710.1016/j.engappai.2019.103330
QuCGaiWZhongMZhangJA novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planningAppl. Soft Comput.20208910.1016/j.asoc.2020.106099
CowlingPKendallGSoubeigaEBurkeEErbenWA hyperheuristic approach to scheduling a sales summitPractice and theory of automated timetabling III2001BerlinSpringer17619010.1007/3-540-44629-X_11
ChoongSSWongLPLimCPAutomatic design of hyper-heuristic based on reinforcement learningInf. Sci.2018436–43789107376381710.1016/j.ins.2018.01.005
De CauwerCVan MierloJCoosemansTEnergy consumption prediction for electric vehicle based on real-world dataEnergies201588573859310.3390/en8088573
FaramarziAHeidarinejadMStephensBMirjaliliSEquilibrium optimizer: a novel optimization algorithmKnowl. Based Syst.202019110.1016/j.knosys.2019.105190
Paul, H.T.: Optimal design of an industrial refrigeration system. In: Proceedings of International Conference on Optimization Techniques and Applications, pp.427–435. National University of Singapore, Singapore (1987).
PantMThangarajRSinghVPOptimization of mechanical design problems using improved differential evolution algorithmIJRTE200912125
Deb, K., Goyal, M.: Optimizing engineering designs using a combined genetic search. In: L. J. Eshelman (Ed.) Proceedings of the Sixth International conference in Genetic Algorithms. University of Pittsburgh, Morgan Kaufmann Publishers, San Mateo (1995)
Liang, J.J., Qu, B.Y., Suganthan, P.N., Hernandez-Diaz, A.G.: Problem definitions and evolution criteria for the CEC 2013 special session and competition on real parameter optimization, technical report 2012. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang University, Singapore (2013)
WatkinsCJCHDayanPQ-learningMach. Learn.1992827929210.1007/BF00992698
CiullaGD’AmicoABuilding energy performance forecasting: a multiple linear regression approachAppl. Energy201925310.1016/j.apenergy.2019.113500
Cowling, P., Chakklevitch, K.: Hyperheuristics for managing a large collection of low level heuristics to schedule personnel. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC-2003, Canberra, Australia, pp. 1214–1221 (2004)
Sim, K. KSATS-HH: a simulated annealing hyper-heuristic with reinforcement learning and tabu search. (2021). http://www.asap.cs.nott.ac.uk/external/chesc2011/index.html. Accessed 27 June 2011
Pylyavskyy, Y., Kheiri, A., Ahmed, L.: A reinforcement learning hyperheuristic for the optimization of flight connections. In: 2020 IEEE Congress on Evolutionary Computation, CEC2020, Glasgow, UK, pp. 1–8 (2020)
WangJBesselinkINijmeijerHBattery electric vehicle energy consumption modelling for range estimationInt. J. Electr. Hybrid Veh.201797910210.1504/IJEHV.2017.085336
ShenXNMinkuLLMarturiNGuoYNHanYA Q-learning-based memetic algorithm for multiobjective dynamic software project schedulingInf. Sci.201842812910.1016/j.ins.2017.10.041
SammaHMohamed-SalehJSuandiSALahasanBQ-learning-based simulated annealing algorithm for constrained engineering design problemsNeural Comput. Appl.2020325147516110.1007/s00521-019-04008-z
LiKFialhoAKwongSZhangQAdaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decompositionIEEE Trans. Evol. Comput.20141811413010.1109/TEVC.2013.2239648
AbualigahLYousriDAbd-ElazizMAhmedAEMohammedAAAGandomiAHAquila Optimizer: a novel meta-heuristic optimization algorithmComput. Ind. Eng.202115710.1016/j.cie.2021.107250
AhmadianfarIBozorg-HaddadOChuXGradient-based optimizer: a new metaheuristic optimization algorithmInf. Sci.2020540131159411942410.1016/j.ins.2020.06.037
RakshitPKonarABhowmikPGoswamiIDasSJainLCNagarAKRealization of an adaptive memetic algorithm using differential evolution and Q-learning: a case study in multirobot path planningIEEE Trans. Syst. Man Cybern.20134381483110.1109/TSMCA.2012.2226024
MirjaliliSLewisAThe Whale optimization algorithmAdv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008
Denzinger, J., Fuchs, M., Fuchs, M.: High performance ATP systems by combining several AI methods. Technical Report, SEKI-Report SR-96-09, University of Kaiserslautern (1997).
OzcanEMısırMOchoaGBurkeEKReinforcement learning-great-deluge hyper-heuristic for examination timetablingInt. J. Appl. Metaheuristic Comput.20121395910.4018/jamc.2010102603
PamulaTPamulaWEstimation of the energy consumption of battery electric buses for public transport networks using real-world data and deep learningEnergies20201311710.3390/en13092340
PereraATDKamalarubanPApplications of reinforcement learning in energy systemsRenew. Sustain. Energy Rev.202113710.1016/j.rser.2020.110618
KimT-HMarutaISugieTA simple and efficient constrained particle swarm optimization and its applications to engineering design problemsProc. Inst. Mech. Eng. C J. Mech. Eng. Sci.201022438940010.1243/09544062JMES1732
VepsäläinenJOttoKLajunenATammiKComputationally efficient model for energy demand prediction of electricity city bus in varying operating conditionsEnergy201916943344310.1016/j.energy.2018.12.064
BurkeEKGendreauMHydeMKendallGOchoaGÖzcanEQuRHyper-heuristics : a survey of the state of the artJ. Oper. Re
SHS Moosavi (179_CR27) 2019; 86
179_CR4
P Rakshit (179_CR10) 2013; 43
W Qin (179_CR22) 2021; 156
G Ciulla (179_CR69) 2019; 253
J Vepsäläinen (179_CR62) 2019; 169
Z Lin (179_CR25) 2023; 24
EG Talbi (179_CR1) 2009
H Samma (179_CR9) 2020; 32
JF Crow (179_CR48) 1999; 152
EK Burke (179_CR5) 2010
M Al-Gabalawy (179_CR44) 2021
AK Sadhu (179_CR13) 2018; 43
I Ahmadianfar (179_CR35) 2021; 181
179_CR56
L Abualigah (179_CR26) 2021; 157
AA Heidari (179_CR30) 2019; 97
AY Ozban (179_CR49) 2004; 17
MH Sulaiman (179_CR28) 2020; 87
179_CR55
179_CR52
J Li (179_CR12) 2020; 149
Z Xu (179_CR43) 2021; 111
XN Shen (179_CR14) 2018; 428
E Ozcan (179_CR18) 2012; 1
M Gao (179_CR24) 2023; 82
EK Burke (179_CR2) 2013; 64
M Chen (179_CR45) 2021; 250
N Jiang (179_CR47) 2020; 512
A Narayek (179_CR42) 2010
ATD Perera (179_CR46) 2021; 137
L Abualigah (179_CR31) 2022; 191
K Chakhlevitch (179_CR37) 2008
C De Cauwer (179_CR66) 2015; 8
H Samma (179_CR15) 2016; 43
S Kanarachos (179_CR67) 2019; 120
179_CR38
P Cowling (179_CR40) 2001
179_CR41
A Faramarzi (179_CR34) 2020; 191
CAC Coello (179_CR54) 2000; 32
T Catalina (179_CR70) 2013; 57
W Zhao (179_CR33) 2020; 87
KZ Zamli (179_CR11) 2018; 13
CJCH Watkins (179_CR8) 1992; 8
H Fisher (179_CR3) 1963
P Ping (179_CR68) 2019; 7
SS Choong (179_CR21) 2018; 436–437
Y Gao (179_CR63) 2018; 11
179_CR72
J Vepsäläinen (179_CR61) 2018; 11
K Li (179_CR39) 2014; 18
RV Rao (179_CR59) 2016; 49
179_CR71
J Wang (179_CR64) 2017; 9
RS Sutton (179_CR7) 2018
M Pant (179_CR57) 2009; 1
I Ahmadianfar (179_CR29) 2020; 540
T Pamula (179_CR60) 2020; 13
C Qu (179_CR16) 2020; 89
BD Youn (179_CR58) 2004; 82
T-H Kim (179_CR53) 2010; 224
M Karimi-Mamaghan (179_CR23) 2023; 304
A Askarzadeh (179_CR36) 2016; 169
179_CR19
J Derrac (179_CR51) 2011; 1
179_CR17
NR Sabar (179_CR6) 2015; 19
S Mirjalili (179_CR32) 2016; 95
179_CR65
179_CR20
DH Wolpert (179_CR50) 1997; 1
References_xml – reference: FaramarziAHeidarinejadMStephensBMirjaliliSEquilibrium optimizer: a novel optimization algorithmKnowl. Based Syst.202019110.1016/j.knosys.2019.105190
– reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans. Evol. Comput.19971678210.1109/4235.585893
– reference: DerracJGarciaSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol. Comput.2011131810.1016/j.swevo.2011.02.002
– reference: De CauwerCVan MierloJCoosemansTEnergy consumption prediction for electric vehicle based on real-world dataEnergies201588573859310.3390/en8088573
– reference: BurkeEKHydeMKendallGOchoaGÖzcanEWoodwarJRMichelGJean-YvesPA classification of hyper-heuristic approachesHandbook of Metaheuristics2010BerlinSpringer44946810.1007/978-1-4419-1665-5_15
– reference: Denzinger, J., Fuchs, M., Fuchs, M.: High performance ATP systems by combining several AI methods. Technical Report, SEKI-Report SR-96-09, University of Kaiserslautern (1997).
– reference: QinWZhuangZHuangZHuangHA novel reinforcement learning-based hyper-heuristic for heterogenous vehicle routing problemComput. Ind. Eng.202115610.1016/j.cie.2021.107252
– reference: Paul, H.T.: Optimal design of an industrial refrigeration system. In: Proceedings of International Conference on Optimization Techniques and Applications, pp.427–435. National University of Singapore, Singapore (1987).
– reference: OzcanEMısırMOchoaGBurkeEKReinforcement learning-great-deluge hyper-heuristic for examination timetablingInt. J. Appl. Metaheuristic Comput.20121395910.4018/jamc.2010102603
– reference: NarayekAChoosing search heuristics by non-stationary reinforcement learning2010New YorkSpringer
– reference: LiKFialhoAKwongSZhangQAdaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decompositionIEEE Trans. Evol. Comput.20141811413010.1109/TEVC.2013.2239648
– reference: Karimi-MamaghanMMohammadiMPasdeloupBMeyerPLearning to select operators in meta-heuristic: an integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problemEur. J. Oper. Res.202330412961330448806410.1016/j.ejor.2022.03.054
– reference: RaoRVWagmareGGA new optimization algorithm for solving complex constrained design optimization problemsEng. Optim.201649608310.1080/0305215X.2016.1164855
– reference: WangJBesselinkINijmeijerHBattery electric vehicle energy consumption modelling for range estimationInt. J. Electr. Hybrid Veh.201797910210.1504/IJEHV.2017.085336
– reference: Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference for Learning Representations-ICLR 2015. San Diego (2015)
– reference: CowlingPKendallGSoubeigaEBurkeEErbenWA hyperheuristic approach to scheduling a sales summitPractice and theory of automated timetabling III2001BerlinSpringer17619010.1007/3-540-44629-X_11
– reference: Pylyavskyy, Y., Kheiri, A., Ahmed, L.: A reinforcement learning hyperheuristic for the optimization of flight connections. In: 2020 IEEE Congress on Evolutionary Computation, CEC2020, Glasgow, UK, pp. 1–8 (2020)
– reference: PereraATDKamalarubanPApplications of reinforcement learning in energy systemsRenew. Sustain. Energy Rev.202113710.1016/j.rser.2020.110618
– reference: PamulaTPamulaWEstimation of the energy consumption of battery electric buses for public transport networks using real-world data and deep learningEnergies20201311710.3390/en13092340
– reference: AbualigahLAbd-ElazizMSumariPGeemZWGandomiAHReptile search algorithm (RSA): a nature-inspired meta-heuristic optimizerExpert Syst. Appl.202219110.1016/j.eswa.2021.116158
– reference: CoelloCACTreating constraints as objectives for single-objective evolutionary optimizationEng. Opt.20003227530810.1080/03052150008941301
– reference: OzbanAYSome new variants of Newton’s methodAppl. Math. Lett.200417677682206418010.1016/S0893-9659(04)90104-8
– reference: CrowJFHardy–Weinberberg and language impedimentsGenetics199915282182510.1093/genetics/152.3.821
– reference: TalbiEGMetaheuristics: From Design to Implementation20091New YorkWiley10.1002/9780470496916
– reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris Hawks optimization: algorithm and applicationsFuture Gener. Comput. Syst.20199784987210.1016/j.future.2019.02.028
– reference: AbualigahLYousriDAbd-ElazizMAhmedAEMohammedAAAGandomiAHAquila Optimizer: a novel meta-heuristic optimization algorithmComput. Ind. Eng.202115710.1016/j.cie.2021.107250
– reference: SammaHMohamed-SalehJSuandiSALahasanBQ-learning-based simulated annealing algorithm for constrained engineering design problemsNeural Comput. Appl.2020325147516110.1007/s00521-019-04008-z
– reference: Al-GabalawyMA Hybrid MPC for constrained deep reinforcement learning applied for planar robotic armISA Trans.202110.1016/j.isatra.2021.03.046
– reference: CiullaGD’AmicoABuilding energy performance forecasting: a multiple linear regression approachAppl. Energy201925310.1016/j.apenergy.2019.113500
– reference: QuCGaiWZhongMZhangJA novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planningAppl. Soft Comput.20208910.1016/j.asoc.2020.106099
– reference: Falcao, D., Madureira, A., Pereira, I.: Q-learning based hyperheuristic for scheduling system self-parameterization In: Proceedings of the 2015 10th Iberian Conference on Information Systems and Technologies, CISTI, Aveiro, Portugal, pp. 1–7 (2015)
– reference: PantMThangarajRSinghVPOptimization of mechanical design problems using improved differential evolution algorithmIJRTE200912125
– reference: MoosaviSHSBardsiriVKPoor and rich optimization algorithm: a new human-based and multi-populations algorithmEng. Appl. Artif. Intel.20198616518110.1016/j.engappai.2019.08.025
– reference: ZamliKZDinFAhmedBSBuresMA hybrid Q-learning sine-cosine-based strategy for addressing the combinatoral test suite minimization problemPLoS One20181310.1371/journal.pone.0195675
– reference: XuZPanLShenTModel-free reinforcement learning approach to optimal speed control of combustion engines in start-up modeControl. Eng. Pract.202111110.1016/j.conengprac.2021.104791
– reference: SuttonRSBartoAGReinforcement Learning: An Introduction2018CambridgeMIT Press
– reference: Sim, K. KSATS-HH: a simulated annealing hyper-heuristic with reinforcement learning and tabu search. (2021). http://www.asap.cs.nott.ac.uk/external/chesc2011/index.html. Accessed 27 June 2011
– reference: AskarzadehAA novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithmComput. Struct.201616911210.1016/j.compstruc.2016.03.001
– reference: Cowling, P., Chakklevitch, K.: Hyperheuristics for managing a large collection of low level heuristics to schedule personnel. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC-2003, Canberra, Australia, pp. 1214–1221 (2004)
– reference: PingPQinWXuYMiyajimaCTakedaKImpact of driver behavior on fuel consumption: classification, evaluation and prediction using machine learningIEEE Access20197785157853210.1109/ACCESS.2019.2920489
– reference: Liang, J.J., Qu, B.Y., Suganthan, P.N., Hernandez-Diaz, A.G.: Problem definitions and evolution criteria for the CEC 2013 special session and competition on real parameter optimization, technical report 2012. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang University, Singapore (2013)
– reference: ChakhlevitchKCowlingPCottaCSevauxMSorensenKHyperheuristics: recent developmentsAdaptive Multilevel Metaheuristics2008BerlinSpringer32910.1007/978-3-540-79438-7_1
– reference: RakshitPKonarABhowmikPGoswamiIDasSJainLCNagarAKRealization of an adaptive memetic algorithm using differential evolution and Q-learning: a case study in multirobot path planningIEEE Trans. Syst. Man Cybern.20134381483110.1109/TSMCA.2012.2226024
– reference: ChoongSSWongLPLimCPAutomatic design of hyper-heuristic based on reinforcement learningInf. Sci.2018436–43789107376381710.1016/j.ins.2018.01.005
– reference: SulaimanMHMustaffaZSaariMMDaniyalHBarnacles Mating Optimizer: a new bio-inspired algorithm for solving engineering optimization problemsEng. Appl. Artif. Intell.20208710.1016/j.engappai.2019.103330
– reference: MirjaliliSLewisAThe Whale optimization algorithmAdv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008
– reference: CatalinaTIordacheVCaracaleanuBMultiple regression model for fast prediction of the heating energy demandEnegy Build20135730231210.1016/j.enbuild.2012.11.010
– reference: AhmadianfarIHeidariAAGandomiAHChuXChenHRUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta methodExpert Syst. Appl.202118110.1016/j.eswa.2021.115079
– reference: GaoYGuoSRenJZhaoZEhsanAZhengYAn electric bus power consumption model and optimization of charging scheduling concerning multi-external factorsEnergies20181111710.3390/en11082060
– reference: LiJXiaoDLeiHZhangTTianTUsing Cockoo Search algorithm with Q-learning and genetic operation to solve the problem of logistics distribution center locationMathematics2020149132
– reference: JiangNXuDZhouJYanHYWanTZhengJQToward optimal participant decisions with voting-based incentive model for crowd sensingInf. Sci.202051211710.1016/j.ins.2019.09.068
– reference: ShenXNMinkuLLMarturiNGuoYNHanYA Q-learning-based memetic algorithm for multiobjective dynamic software project schedulingInf. Sci.201842812910.1016/j.ins.2017.10.041
– reference: VepsäläinenJRitariALajunenAKivekäsKTammiKEnergy uncertainty analysis of electric busesEnergies201811326710.3390/en11123267
– reference: ChenMCuiYWangXXieHLiuFLuoTZhengSLuoYA reinforcement learning approach to irrigation decision-making for rice using weather forecastAgric. Water Manag.202125010.1016/j.agwat.2021.106838
– reference: KimT-HMarutaISugieTA simple and efficient constrained particle swarm optimization and its applications to engineering design problemsProc. Inst. Mech. Eng. C J. Mech. Eng. Sci.201022438940010.1243/09544062JMES1732
– reference: WatkinsCJCHDayanPQ-learningMach. Learn.1992827929210.1007/BF00992698
– reference: BurkeEKGendreauMHydeMKendallGOchoaGÖzcanEQuRHyper-heuristics : a survey of the state of the artJ. Oper. Res. Soc.2013641695172410.1057/jors.2013.71
– reference: FisherHThompsonGLMuthJFThompsonGLProbabilistic learning combinations of local job-shop scheduling rulesIndustrial Scheduling1963HobokenPrentice-Hall225251
– reference: SabarNRAyobMKendallGQuRAutomatic design of a hyper-heuristic framework with gene expression programming for combinatoral optimization problemsIEEE Trans. Evol. Comput.20151930932510.1109/TEVC.2014.2319051
– reference: SadhuAKKonarABhattacharjeeTDasSSynergism of Firefly algorithm and Q-Learning for robot arm path planningSwarm Evol. Comput.201843506810.1016/j.swevo.2018.03.014
– reference: Deb, K., Goyal, M.: Optimizing engineering designs using a combined genetic search. In: L. J. Eshelman (Ed.) Proceedings of the Sixth International conference in Genetic Algorithms. University of Pittsburgh, Morgan Kaufmann Publishers, San Mateo (1995)
– reference: Innes, M.J., Saba, E., Fischer, K., Gandhi, D., Rudilosso, M.C., Joy, N.M., Karmali, T., Pal, A., Shah, V.B.: Fashionable modeling with Flux. (2018). https://arxiv.org/pdf/1811.01457.pdf
– reference: SammaHLimCPSalehJMA new reinforcement learning-based memetic particle swarm optimizerAppl. Soft Comput.20164327629710.1016/j.asoc.2016.01.006
– reference: YounBDChoiKKA new response surface methodology for reliability-based design optimizationComput. Struct.20048224125610.1016/j.compstruc.2003.09.002
– reference: ZhaoWZhangZWangLManta ray foraging optimization : an effective bio inspired optimizer for engineering applicationsEng. Appl. Artif. Intell.20208710.1016/j.engappai.2019.103300
– reference: VepsäläinenJOttoKLajunenATammiKComputationally efficient model for energy demand prediction of electricity city bus in varying operating conditionsEnergy201916943344310.1016/j.energy.2018.12.064
– reference: GaoMGaoKMaZTangWEnsemble meta-heuristics and Q-learning for solving unmanned surface vessels scheduling problemsSwarm Evol. Comput.20238210.1016/j.swevo.2023.101358
– reference: KanarachosSMathewJFitzpatrickMEInstantaneous vehicle fuel consumption using smartphones and recurrent neural networksExpert Syst. Appl.201912043644710.1016/j.eswa.2018.12.006
– reference: LinZGaoKWuNSuganthanPNScheduling eight-phase urban traffic light problems via ensemble meta-heuristics and q-learning based local searchIEEE Trans. Intell. Transp. Syst.20232411210.1109/TITS.2023.3296387
– reference: Ozcan, E., Bykov, Y., Birben, M., Burke, E.: Examination timetabling using late acceptance hyper-heuristics. In: IEEE Congress on Evolutionary Computation, CEC-2009, Trondheim, Norway, pp. 997–1004 (2009)
– reference: Sinhuber, P., Rohlfs, W., Sauer, D.U.: Study on power and energy demand for sizing the energy storage systems for electrified local public transport buses. In: Proceedings of the IEEE Vehicle Power and Propulsion Conference, pp. 315–320. Seoul (2012)
– reference: AhmadianfarIBozorg-HaddadOChuXGradient-based optimizer: a new metaheuristic optimization algorithmInf. Sci.2020540131159411942410.1016/j.ins.2020.06.037
– volume-title: Metaheuristics: From Design to Implementation
  year: 2009
  ident: 179_CR1
  doi: 10.1002/9780470496916
– volume: 169
  start-page: 1
  year: 2016
  ident: 179_CR36
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.03.001
– volume: 8
  start-page: 8573
  year: 2015
  ident: 179_CR66
  publication-title: Energies
  doi: 10.3390/en8088573
– start-page: 176
  volume-title: Practice and theory of automated timetabling III
  year: 2001
  ident: 179_CR40
  doi: 10.1007/3-540-44629-X_11
– ident: 179_CR72
– volume: 13
  year: 2018
  ident: 179_CR11
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0195675
– volume: 86
  start-page: 165
  year: 2019
  ident: 179_CR27
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2019.08.025
– volume: 436–437
  start-page: 89
  year: 2018
  ident: 179_CR21
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.01.005
– volume: 1
  start-page: 3
  year: 2011
  ident: 179_CR51
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 82
  year: 2023
  ident: 179_CR24
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101358
– volume: 1
  start-page: 21
  year: 2009
  ident: 179_CR57
  publication-title: IJRTE
– volume: 11
  start-page: 1
  year: 2018
  ident: 179_CR63
  publication-title: Energies
  doi: 10.3390/en11082060
– volume: 95
  start-page: 51
  year: 2016
  ident: 179_CR32
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 89
  year: 2020
  ident: 179_CR16
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106099
– volume: 152
  start-page: 821
  year: 1999
  ident: 179_CR48
  publication-title: Genetics
  doi: 10.1093/genetics/152.3.821
– volume: 8
  start-page: 279
  year: 1992
  ident: 179_CR8
  publication-title: Mach. Learn.
  doi: 10.1007/BF00992698
– volume: 43
  start-page: 50
  year: 2018
  ident: 179_CR13
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.03.014
– volume: 7
  start-page: 78515
  year: 2019
  ident: 179_CR68
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920489
– start-page: 3
  volume-title: Adaptive Multilevel Metaheuristics
  year: 2008
  ident: 179_CR37
  doi: 10.1007/978-3-540-79438-7_1
– volume: 181
  year: 2021
  ident: 179_CR35
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115079
– ident: 179_CR52
– year: 2021
  ident: 179_CR44
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.03.046
– volume: 32
  start-page: 275
  year: 2000
  ident: 179_CR54
  publication-title: Eng. Opt.
  doi: 10.1080/03052150008941301
– ident: 179_CR65
  doi: 10.1109/VPPC.2012.6422680
– volume: 191
  year: 2020
  ident: 179_CR34
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2019.105190
– ident: 179_CR56
– volume: 43
  start-page: 814
  year: 2013
  ident: 179_CR10
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCA.2012.2226024
– volume: 428
  start-page: 1
  year: 2018
  ident: 179_CR14
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.10.041
– volume: 1
  start-page: 39
  year: 2012
  ident: 179_CR18
  publication-title: Int. J. Appl. Metaheuristic Comput.
  doi: 10.4018/jamc.2010102603
– ident: 179_CR20
  doi: 10.1109/CEC48606.2020.9185803
– volume: 87
  year: 2020
  ident: 179_CR33
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103300
– volume: 191
  year: 2022
  ident: 179_CR31
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
– volume-title: Choosing search heuristics by non-stationary reinforcement learning
  year: 2010
  ident: 179_CR42
– volume: 82
  start-page: 241
  year: 2004
  ident: 179_CR58
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2003.09.002
– volume: 1
  start-page: 67
  year: 1997
  ident: 179_CR50
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– ident: 179_CR4
– volume: 9
  start-page: 79
  year: 2017
  ident: 179_CR64
  publication-title: Int. J. Electr. Hybrid Veh.
  doi: 10.1504/IJEHV.2017.085336
– volume: 250
  year: 2021
  ident: 179_CR45
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.106838
– volume: 13
  start-page: 1
  year: 2020
  ident: 179_CR60
  publication-title: Energies
  doi: 10.3390/en13092340
– volume: 253
  year: 2019
  ident: 179_CR69
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113500
– volume: 304
  start-page: 1296
  year: 2023
  ident: 179_CR23
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2022.03.054
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: 179_CR7
– volume: 18
  start-page: 114
  year: 2014
  ident: 179_CR39
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2239648
– ident: 179_CR55
– volume: 169
  start-page: 433
  year: 2019
  ident: 179_CR62
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.064
– volume: 43
  start-page: 276
  year: 2016
  ident: 179_CR15
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.01.006
– volume: 17
  start-page: 677
  year: 2004
  ident: 179_CR49
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(04)90104-8
– volume: 11
  start-page: 3267
  year: 2018
  ident: 179_CR61
  publication-title: Energies
  doi: 10.3390/en11123267
– volume: 120
  start-page: 436
  year: 2019
  ident: 179_CR67
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.006
– volume: 512
  start-page: 1
  year: 2020
  ident: 179_CR47
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.09.068
– volume: 224
  start-page: 389
  year: 2010
  ident: 179_CR53
  publication-title: Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
  doi: 10.1243/09544062JMES1732
– volume: 24
  start-page: 1
  year: 2023
  ident: 179_CR25
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3296387
– ident: 179_CR17
– start-page: 225
  volume-title: Industrial Scheduling
  year: 1963
  ident: 179_CR3
– volume: 97
  start-page: 849
  year: 2019
  ident: 179_CR30
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– ident: 179_CR19
  doi: 10.1109/CISTI.2015.7170394
– volume: 64
  start-page: 1695
  year: 2013
  ident: 179_CR2
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.2013.71
– volume: 157
  year: 2021
  ident: 179_CR26
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107250
– volume: 149
  start-page: 1
  year: 2020
  ident: 179_CR12
  publication-title: Mathematics
– ident: 179_CR71
– volume: 87
  year: 2020
  ident: 179_CR28
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103330
– volume: 32
  start-page: 5147
  year: 2020
  ident: 179_CR9
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04008-z
– start-page: 449
  volume-title: Handbook of Metaheuristics
  year: 2010
  ident: 179_CR5
  doi: 10.1007/978-1-4419-1665-5_15
– volume: 156
  year: 2021
  ident: 179_CR22
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107252
– volume: 19
  start-page: 309
  year: 2015
  ident: 179_CR6
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2319051
– volume: 540
  start-page: 131
  year: 2020
  ident: 179_CR29
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.06.037
– volume: 111
  year: 2021
  ident: 179_CR43
  publication-title: Control. Eng. Pract.
  doi: 10.1016/j.conengprac.2021.104791
– volume: 57
  start-page: 302
  year: 2013
  ident: 179_CR70
  publication-title: Enegy Build
  doi: 10.1016/j.enbuild.2012.11.010
– ident: 179_CR38
  doi: 10.1109/CEC.2009.4983054
– volume: 137
  year: 2021
  ident: 179_CR46
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110618
– volume: 49
  start-page: 60
  year: 2016
  ident: 179_CR59
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2016.1164855
– ident: 179_CR41
  doi: 10.1109/CEC.2003.1299807
SSID ssj0002734726
ssib031263613
Score 2.2690334
Snippet This research study introduces a Q-learning enhanced hyper-heuristic framework for the accurate estimation of energy consumption rates of electric buses....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 423
SubjectTerms Algorithms
Artificial Intelligence
Benchmarks
Buses (vehicles)
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Design engineering
Energy consumption
Estimation
Heuristic methods
Machine learning
Mathematics of Computing
Optimization
Public transportation
Regression models
Software Engineering/Programming and Operating Systems
Theory of Computation
Title Q-learning-based hyper-heuristic framework for estimating the energy consumption of electric buses for public transport
URI https://link.springer.com/article/10.1007/s42044-024-00179-8
https://www.proquest.com/docview/3255237196
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2520-8446
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002734726
  issn: 2520-8438
  databaseCode: AFBBN
  dateStart: 20180401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2520-8446
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0002734726
  issn: 2520-8438
  databaseCode: BENPR
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbhMxEB21yYULFAoi0EY-cGstdm3vrveAUIMSIg4RrVqpt5XXO27VQxKaRPw-Y6_dqEhwXcs-eMYzz-uZ9wA-GcJAaJzhFZqSq0I7bhw6nhemsPTNJ2FfbbEo5zfqx21xewCL1AvjyypTTAyBultZ_4_8syTsK2RFDvN1_Yt71Sj_upokNEyUVui-BIqxQxgKz4w1gOFkuvh5lTxM5qKUKYE9RHKXKmiyiYLuUVpJHTtrQn-dEplSnNIY99G85vp59tpD0r9eUUNymh3By4gq2UXvBq_hAJdv4FVSbGDxAB_D70seZSLuuM9fHbune-gjv8ddz9jMXCrWYoRmmafg8JB2eccIKDIMjYLMhrbNEGvYyrFeSYfmtrsNbsK8njybbRNz-lu4mU2vv815lF7glhK45lpmpsbO1BQQZGXa2ghU_pHadqb0lHQW_dUpV7ZANFpaoVwp27K2hakc5vIdDJarJb4H1hFAMVlLYTRrVdE6nUvXOZsJREVR343gLG1ps-4ZNponLuVggIYM0AQDNHoEJ2nXm3jaNs3eN0ZwniyxH_73ah_-v9pHeCGC8X1J2QkMto87PCUMsm3HcKhn38cwvJhNJotxdLM_7yHckw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1ROLSX0k-xQFsf2lNrNbGdxDkgRAtoKXTVViBxSx1nDOphF9hdIf4cv61jx-6qSO2NayL74JnMexPPvAF4a4gDoXGGV2hKrgrtuHHoeF6YwtIzD8K-2mJUDk_Ul9PidAluUy-ML6tMMTEE6m5i_T_yj5K4r5AVOcz2xSX3U6P87WoaoWHiaIVuK0iMxcaOQ7y5phRuunWwS_Z-J8T-3vHnIY9TBrglrNJcy8zU2JmafF9Wpq2NQOXvY21nSq--ZtFnCbmyBaLR0grlStmWtS1M5TCXtO8DWFFS1ZT8rXzaG337kTxa5qKUCTB_RTGZKsyAEwXlbVpJHTt5Qj-fEplSnGCTe_Souf4bLRcU-M6tbQDD_SfwOLJYttO73VNYwvEzWE0TIlgMGM_h-juPYynOuMfLjp1T3nvFz3HeK0Qzl4rDGLFn5iU_PIUenzEipgxDYyKzoU00xDY2cayf3ENr2_kUp2FdL9bNZkmp_QWc3IsRXsLyeDLGNWAdESKTtRS2s1YVrdO5dJ2zmUBUhDJuAO_TkTYXvaJH80e7ORigIQM0wQCNHsBmOvUmft3TZuGLA_iQLLF4_e_d1v-_2xt4ODz-etQcHYwON-CRCI7gy9k2YXl2NcdXxH9m7evoZAx-3rdf_wZ-XxZ2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Q-learning-based+hyper-heuristic+framework+for+estimating+the+energy+consumption+of+electric+buses+for+public+transport&rft.jtitle=Iran+Journal+of+Computer+Science+%28Online%29&rft.au=Turgut%2C+Oguz+Emrah&rft.au=Turgut%2C+Mert+Sinan&rft.au=%C3%96n%C3%A7a%C4%9F%2C+Ali+%C3%87aglar&rft.au=Eliiyi%2C+U%C4%9Fur&rft.date=2024-09-01&rft.issn=2520-8438&rft.eissn=2520-8446&rft.volume=7&rft.issue=3&rft.spage=423&rft.epage=483&rft_id=info:doi/10.1007%2Fs42044-024-00179-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42044_024_00179_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8438&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8438&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8438&client=summon