Traffic sign recognition using CNN and Res-Net

  In the realm of contemporary applications and everyday life, the significance of object recognition and classification cannot be overstated. A multitude of valuable domains, including G-lens technology, cancer prediction, Optical Character Recognition (OCR), Face Recognition, and more, heavily rel...

Full description

Saved in:
Bibliographic Details
Published inEAI endorsed transactions on internet of things Vol. 10
Main Authors Cruz Antony, J, Karpura Dheepan, G M, K, Veena, Vikas, Vellanki, Satyamitra, Vuppala
Format Journal Article
LanguageEnglish
Published 27.11.2024
Online AccessGet full text
ISSN2414-1399
2414-1399
DOI10.4108/eetiot.5098

Cover

Abstract   In the realm of contemporary applications and everyday life, the significance of object recognition and classification cannot be overstated. A multitude of valuable domains, including G-lens technology, cancer prediction, Optical Character Recognition (OCR), Face Recognition, and more, heavily rely on the efficacy of image identification algorithms. Among these, Convolutional Neural Networks (CNN) have emerged as a cutting-edge technique that excels in its aptitude for feature extraction, offering pragmatic solutions to a diverse array of object recognition challenges. CNN's notable strength is underscored by its swifter execution, rendering it particularly advantageous for real-time processing. The domain of traffic sign recognition holds profound importance, especially in the development of practical applications like autonomous driving for vehicles such as Tesla, as well as in the realm of traffic surveillance. In this research endeavour, the focus was directed towards the Belgium Traffic Signs Dataset (BTS), an encompassing repository comprising a total of 62 distinct traffic signs. By employing a CNN model, a meticulously methodical approach was obtained commencing with a rigorous phase of data pre-processing. This preparatory stage was complemented by the strategic incorporation of residual blocks during model training, thereby enhancing the network's ability to glean intricate features from traffic sign images. Notably, our proposed methodology yielded a commendable accuracy rate of 94.25%, demonstrating the system's robust and proficient recognition capabilities. The distinctive prowess of our methodology shines through its substantial improvements in specific parameters compared to pre-existing techniques. Our approach thrives in terms of accuracy, capitalizing on CNN's rapid execution speed, and offering an efficient means of feature extraction. By effectively training on a diverse dataset encompassing 62 varied traffic signs, our model showcases a promising potential for real-world applications. The overarching analysis highlights the efficacy of our proposed technique, reaffirming its potency in achieving precise traffic sign recognition and positioning it as a viable solution for real-time scenarios and autonomous systems.
AbstractList   In the realm of contemporary applications and everyday life, the significance of object recognition and classification cannot be overstated. A multitude of valuable domains, including G-lens technology, cancer prediction, Optical Character Recognition (OCR), Face Recognition, and more, heavily rely on the efficacy of image identification algorithms. Among these, Convolutional Neural Networks (CNN) have emerged as a cutting-edge technique that excels in its aptitude for feature extraction, offering pragmatic solutions to a diverse array of object recognition challenges. CNN's notable strength is underscored by its swifter execution, rendering it particularly advantageous for real-time processing. The domain of traffic sign recognition holds profound importance, especially in the development of practical applications like autonomous driving for vehicles such as Tesla, as well as in the realm of traffic surveillance. In this research endeavour, the focus was directed towards the Belgium Traffic Signs Dataset (BTS), an encompassing repository comprising a total of 62 distinct traffic signs. By employing a CNN model, a meticulously methodical approach was obtained commencing with a rigorous phase of data pre-processing. This preparatory stage was complemented by the strategic incorporation of residual blocks during model training, thereby enhancing the network's ability to glean intricate features from traffic sign images. Notably, our proposed methodology yielded a commendable accuracy rate of 94.25%, demonstrating the system's robust and proficient recognition capabilities. The distinctive prowess of our methodology shines through its substantial improvements in specific parameters compared to pre-existing techniques. Our approach thrives in terms of accuracy, capitalizing on CNN's rapid execution speed, and offering an efficient means of feature extraction. By effectively training on a diverse dataset encompassing 62 varied traffic signs, our model showcases a promising potential for real-world applications. The overarching analysis highlights the efficacy of our proposed technique, reaffirming its potency in achieving precise traffic sign recognition and positioning it as a viable solution for real-time scenarios and autonomous systems.
Author Karpura Dheepan, G M
K, Veena
Cruz Antony, J
Satyamitra, Vuppala
Vikas, Vellanki
Author_xml – sequence: 1
  givenname: J
  surname: Cruz Antony
  fullname: Cruz Antony, J
– sequence: 2
  givenname: G M
  surname: Karpura Dheepan
  fullname: Karpura Dheepan, G M
– sequence: 3
  givenname: Veena
  surname: K
  fullname: K, Veena
– sequence: 4
  givenname: Vellanki
  surname: Vikas
  fullname: Vikas, Vellanki
– sequence: 5
  givenname: Vuppala
  surname: Satyamitra
  fullname: Satyamitra, Vuppala
BookMark eNp9j01LxDAURYOM4DjOyj_QvbbmNUlNllL8gqGCjOuQZJISqemQdJD597bUhQi6endx7n2cc7QIfbAIXQIuKGB-Y-3g-6FgWPATtCwp0ByIEIsf-QytU3rHGJclZZUQS1Rso3LOmyz5NmTRmr4NftwJ2SH50GZ102Qq7LJXm_LGDhfo1Kku2fX3XaG3h_tt_ZRvXh6f67tNboAznhNHFFfqlgjCtHMVN5YKLRwhoEELS5wRDFiFzc4KrKkuKeUMRsQwCpUlK3Q97x7CXh0_VdfJffQfKh4lYDnpyllXTrojDjNuYp9StE4aP6hJY4jKd390rn51_vvwBdejabk
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3459708
Cites_doi 10.1016/j.ijtst.2022.06.002
10.1109/FSKD.2016.7603237
10.1016/j.proeng.2017.09.594
10.1109/IVS.2016.7535376
10.1007/978-3-319-23989-7_28
10.12792/iciae2015.013
10.1016/j.micpro.2023.104791
10.1007/s42979-020-0114-9
10.1016/j.eswa.2022.117247
10.14299/ijser.2021.07.01
10.1002/cpe.7615
10.4304/jcp.8.5.1366-1370
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.4108/eetiot.5098
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2414-1399
ExternalDocumentID 10.4108/eetiot.5098
10_4108_eetiot_5098
GroupedDBID 8FE
8FG
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CITATION
EN8
GROUPED_DOAJ
HCIFZ
M~E
OK1
P62
PIMPY
ADTOC
AFFHD
CCPQU
PHGZM
PHGZT
PQGLB
UNPAY
ID FETCH-LOGICAL-c1858-3f3a8aa73935bff68ce49b9f331b1b9e3fc951560cde90b4b2448519b9c5416e3
IEDL.DBID UNPAY
ISSN 2414-1399
IngestDate Thu Oct 30 06:00:11 EDT 2025
Tue Jul 01 04:27:35 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/3.0
cc-by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1858-3f3a8aa73935bff68ce49b9f331b1b9e3fc951560cde90b4b2448519b9c5416e3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://publications.eai.eu/index.php/IoT/article/download/5098/2884
ParticipantIDs unpaywall_primary_10_4108_eetiot_5098
crossref_citationtrail_10_4108_eetiot_5098
crossref_primary_10_4108_eetiot_5098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-27
PublicationDateYYYYMMDD 2024-11-27
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-27
  day: 27
PublicationDecade 2020
PublicationTitle EAI endorsed transactions on internet of things
PublicationYear 2024
References 66088
66089
66090
66082
66083
66080
66091
66081
66092
66086
66087
66084
66085
References_xml – ident: 66090
  doi: 10.1016/j.ijtst.2022.06.002
– ident: 66084
  doi: 10.1109/FSKD.2016.7603237
– ident: 66085
  doi: 10.1016/j.proeng.2017.09.594
– ident: 66082
  doi: 10.1109/IVS.2016.7535376
– ident: 66083
  doi: 10.1007/978-3-319-23989-7_28
– ident: 66081
  doi: 10.12792/iciae2015.013
– ident: 66089
  doi: 10.1016/j.micpro.2023.104791
– ident: 66086
  doi: 10.1007/s42979-020-0114-9
– ident: 66087
– ident: 66091
  doi: 10.1016/j.eswa.2022.117247
– ident: 66088
  doi: 10.14299/ijser.2021.07.01
– ident: 66092
  doi: 10.1002/cpe.7615
– ident: 66080
  doi: 10.4304/jcp.8.5.1366-1370
SSID ssj0002245699
Score 2.277653
Snippet   In the realm of contemporary applications and everyday life, the significance of object recognition and classification cannot be overstated. A multitude of...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
Title Traffic sign recognition using CNN and Res-Net
URI https://publications.eai.eu/index.php/IoT/article/download/5098/2884
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2414-1399
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002245699
  issn: 2414-1399
  databaseCode: ABDBF
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2414-1399
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002245699
  issn: 2414-1399
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2414-1399
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002245699
  issn: 2414-1399
  databaseCode: 8FG
  dateStart: 20151001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1qe9CLH6hYP0oO9SIkabrbNjmW2lIFg0gL9RR2NxMRS1I0QfTgb3e2SUMVEcH727C7M_Dehpk3AM2IKXSwxXTbR8vkUjFTOEKanIeUMryHSi4LZP3ueMqvZ51ZBS5XvTCLtZ9VFopHCzN76RuozSLsq2RiFzdqh9pMPhGhTZTn2m3X5RtQ63ZIkVehNvVv-_d6rhx3uEkix8tb87geeoNIX08tvewLGW1m8UK8vYr5fI1hRjuA5d6WhSVPVpZKS71_s2387-Z3YbuQoEY_B-1BBeN9sIi0tJuEoQs6jLKsKIkNXRn_YAx83xBxaNzhi-ljegDT0XAyGJvFLAVTESO7JouYcIXQ_ncdGUVdVyH3pBcx5khHesgiRVqL5I8K0WtJLon2SYwRRHVIsyE7hGqcxHgEhici0ROkFKUQnNCS8sBh2HJUGGnznzpcrC41UIXRuJ53MQ_owaEjEOQRCPTZ69AswYvcX-Nn2HkZnd9wx3_EncBWm9SJbips906hmj5neEbqIpUN2Lj5GDaKFPoEth_VpA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1qe9CLH6hYv9hDvQj56m7a5FiqpXoIIi3UU9jdzIpYkqIJor_e2SYNVUQE72_D7s7Aextm3hDS0UyBBy4zbR-uxaVilvCEtDhPMGV4H5RcFshGvfGU3878WYNcrXphFms_q2wQTzYUztI30JhFODfZxKlu1EmMmXwmEgcpL3C6QcA3SKvnoyJvktY0uhs8mLly3OMWipywbM3jZugNAH49t82yL2S0WaQL8f4m5vM1hhntEKj3tiwsebaLXNrq45tt4383v0u2KwlKByVojzQg3Sc2kpZxk6CmoIPWZUVZSk1l_CMdRhEVaULv4dWKID8g09H1ZDi2qlkKlkJGDiymmQiEMP53vtS6FyjgoQw1Y570ZAhMK9RaKH9UAqEruUTaRzGGEOWjZgN2SJpplsIRoaHQoi9QKUohOKIl5oHHwPVUoo35T5tcri41VpXRuJl3MY_xwWEiEJcRiM3Z26RTgxelv8bPsIs6Or_hjv-IOyFbXVQnpqmw2z8lzfylgDNUF7k8r5LnE7jS1HM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+sign+recognition+using+CNN+and+Res-Net&rft.jtitle=EAI+endorsed+transactions+on+internet+of+things&rft.au=Cruz+Antony%2C+J&rft.au=Karpura+Dheepan%2C+G+M&rft.au=K%2C+Veena&rft.au=Vikas%2C+Vellanki&rft.date=2024-11-27&rft.issn=2414-1399&rft.eissn=2414-1399&rft.volume=10&rft_id=info:doi/10.4108%2Feetiot.5098&rft.externalDBID=n%2Fa&rft.externalDocID=10_4108_eetiot_5098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2414-1399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2414-1399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2414-1399&client=summon