Multi-Sensor Data Fusion-based Parallel Manipulator with IoT Monitoring Employing Machine Learning
A robotic parallel manipulator is implemented by employing embedded systems integrated with a set of sensors. More than one type of sensor are implemented together with the control input data from a human limb. Initially, a data set is collected on the map to certain equivalent actuations at the man...
        Saved in:
      
    
          | Published in | SN computer science Vol. 4; no. 2; p. 165 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Singapore
          Springer Nature Singapore
    
        01.03.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2661-8907 2662-995X 2661-8907  | 
| DOI | 10.1007/s42979-022-01600-4 | 
Cover
| Abstract | A robotic parallel manipulator is implemented by employing embedded systems integrated with a set of sensors. More than one type of sensor are implemented together with the control input data from a human limb. Initially, a data set is collected on the map to certain equivalent actuations at the manipulator, and then using an appropriate machine learning algorithm, the control data value for the continuous position of the actuator is generated. A substantial amount of work is done on mapping the position of the limb to the actuator position by creating a three-dimensional model conventional 3D conversion, which is used on the boundary values of the input and output matched with a certain level of intermediate values, a proper training dataset for a machine learning algorithm can be created. The position of the manipulator is monitored by an IoT system and a set of sensors installed at the end. In addition, applied sciences transmits the possession date of the equator, and this information can be viewed remotely from any device connected to the internet. | 
    
|---|---|
| AbstractList | A robotic parallel manipulator is implemented by employing embedded systems integrated with a set of sensors. More than one type of sensor are implemented together with the control input data from a human limb. Initially, a data set is collected on the map to certain equivalent actuations at the manipulator, and then using an appropriate machine learning algorithm, the control data value for the continuous position of the actuator is generated. A substantial amount of work is done on mapping the position of the limb to the actuator position by creating a three-dimensional model conventional 3D conversion, which is used on the boundary values of the input and output matched with a certain level of intermediate values, a proper training dataset for a machine learning algorithm can be created. The position of the manipulator is monitored by an IoT system and a set of sensors installed at the end. In addition, applied sciences transmits the possession date of the equator, and this information can be viewed remotely from any device connected to the internet. | 
    
| ArticleNumber | 165 | 
    
| Author | Shreyanth, S. | 
    
| Author_xml | – sequence: 1 givenname: S. orcidid: 0000-0002-9991-5491 surname: Shreyanth fullname: Shreyanth, S. email: shreyanth0810@gmail.com organization: Department of Electronics and Communication Engineering, Anna University, Data Science and Engineering, Birla Institute of Technology and Science  | 
    
| BookMark | eNp9UE1Lw0AUXKSCtfYPeAp4Xn272c3HUWqrhQYF63l5TTY2Jd2NuwnSf29iBD15mmGYmcebSzIx1mhCrhncMoD4zguexikFzimwCICKMzLlUcRokkI8-cMvyNz7AwBwCUJEckp2WVe3FX3VxlsXPGCLwarzlTV0h14XwQs6rGtdBxmaqulqbHvbZ9Xug7XdBpk1VS9U5j1YHpvangaWYb6vjA42Gp3phStyXmLt9fwHZ-Rttdwunujm-XG9uN_QnCVS0JLFYVoAi3WPYcEKEEzGWIaRkDmgLvIQGY8lhnnBMAGQmAtRyl0pBeNJGM7IzdjbOPvRad-qg-2c6U8qnvIhKiLoXXx05c5673SpGlcd0Z0UAzXMqcY5VT-n-p5TiT4UjiHfDM9q91v9T-oLwpx49g | 
    
| Cites_doi | 10.1109/CACS.2017.8284267 10.1109/MSPEC.2014.6905491 10.1109/BSN.2006.41 10.1016/j.isatra.2015.09.014 10.1109/CompComm.2017.8322712 10.13052/rp-9788793609105 10.1016/j.isatra.2021.02.001 10.1016/j.inffus.2019.11.001 10.2991/jrnal.2017.3.4.12 10.13140/RG.2.2.10227.53286 10.1155/2018/2607497 10.1049/iet-csr.2019.0035 10.1109/TENSYMP.2015.26  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI  | 
    
| DOI | 10.1007/s42979-022-01600-4 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 2661-8907 | 
    
| ExternalDocumentID | 10_1007_s42979_022_01600_4 | 
    
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ CCPQU DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI  | 
    
| ID | FETCH-LOGICAL-c1854-f1739d017e7393d1d04157af3645c0aedc3a1275a3cd1a8005ac44f5bf5412833 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2661-8907 2662-995X  | 
    
| IngestDate | Sat Jul 26 02:27:42 EDT 2025 Wed Oct 01 03:59:11 EDT 2025 Fri Feb 21 02:45:30 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Internet of things Image processing Multi-sensor data fusion Machine learning Sensor fusion Signal processing Convolution neural networks Artificial intelligence Intelligent systems Robotics  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c1854-f1739d017e7393d1d04157af3645c0aedc3a1275a3cd1a8005ac44f5bf5412833 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-9991-5491 | 
    
| PQID | 2921275460 | 
    
| PQPubID | 6623307 | 
    
| ParticipantIDs | proquest_journals_2921275460 crossref_primary_10_1007_s42979_022_01600_4 springer_journals_10_1007_s42979_022_01600_4  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-03-01 | 
    
| PublicationDateYYYYMMDD | 2023-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Singapore | 
    
| PublicationPlace_xml | – name: Singapore – name: Kolkata  | 
    
| PublicationTitle | SN computer science | 
    
| PublicationTitleAbbrev | SN COMPUT. SCI | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer Nature Singapore Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V  | 
    
| References | Aimn MAM. Robotic Arm Control with Arduino. 1403730048. 2017. https://doi.org/10.13140/RG.2.2.10227.53286. ZhangHFangHFangYJiangB“Workspace analysis of a hybrid kinematic machine tool with high rotational applications”Mathemat Prob Eng.2018201811210.1155/2018/2607497 LinKLiYSunJZhouDZhangQMulti-sensor fusion for body sensor network in medical human–robot interaction scenarioInformat Fusion.202057152610.1016/j.inffus.2019.11.001 Dong W, Pentland A. Multi-sensor data fusion using the influence model. In: International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06), vol. 4. 2006. https://doi.org/10.1109/BSN.2006.41. GuoQYuTJiangDRobust H positional control of 2-DOF robotic arm driven by electro-hydraulic servo systemISA Trans201559556410.1016/j.isatra.2015.09.014 Padiya T, Bhise M, Rajkotiya P. Data management for internet of things. In: 2015 IEEE Region 10 Symposium. Ahmedabad, India; 2015. pp. 62-65. https://doi.org/10.1109/TENSYMP.2015.26. Yan L, Shuai Z, Bo C. Multi-sensor data fusion system based on apache storm. In: IEEE International Conference on Computer and Communications (ICCC). 2017. pp. 1094–1098. https://doi.org/10.1109/CompComm.2017.8322712. Abhishek Kumar Dewangan, Rohit Raja. “An Implementation of Multi Sensor-based Mobile Robot with Image Stitching Application.” IJCSMC. 3(6). 2014. https://www.academia.edu/66772162/An_Implementation_of_Multi_Sensor_Based_Mobile_Robot_with_Image_Stitching_Application. BabaogluOMarzollaMThe People’s cloud2014Spectrum, North AmericanIEEE5010.1109/MSPEC.2014.6905491 Ovidiu Vermesan. “Internet of Things—Converging Sensing/Actuating, Hyper connectivity, AI and IoT Platform.” SINTEF. 2016. https://doi.org/10.13052/rp-9788793609105. Anushka Gaur, Anurag Jain, “Glimpse of Cloud Computing.” International Journal of Advanced Research Ideas and Innovations in Technology. 3(2). 2017. https://www.ijariit.com/manuscripts/v3i2/V3I2-1510.pdf. JhangL-HSantiagoCChian-SongCMulti-sensor based glove control of an industrial mobile robot arm2017Pingtung, TaiwanIEEE1757692310.1109/CACS.2017.8284267 Ramana Babu, S. Ramachandra Raju, V. Ramji K, “Design Optimization of a 3 DOF Translational,” (2015). https://www.ijeat.org/wp-content/uploads/papers/v4i3/C3692024315.pdf. Sahu UK, Mishra A, Sahu B, Pradhan PP, Patra D, Subudhi B. Vision based tip position control of a 2-DOF single-link robot manipulator. In: Proceedings of international conference on sustainable computing in science. Technology and management. IEEE; 2019. pp. 1–7. https://doi.org/10.1049/iet-csr.2019.0035. Pagliarini L, Lund HH. Future of Robotics Technology. Centre for play ware. Technical University of Denmark, International Conference on Artificial Life and Robotics. Miyazaki, Japan. 2017. https://doi.org/10.2991/jrnal.2017.3.4.12. RadSATamiziMGMirfakharAMasoulehMTKalhorAControl of a two-DOF parallel robot with unknown parameters using a novel robust adaptive approachISA Transact2021117708410.1016/j.isatra.2021.02.001 K Lin (1600_CR8) 2020; 57 O Babaoglu (1600_CR11) 2014 L-H Jhang (1600_CR7) 2017 SA Rad (1600_CR12) 2021; 117 1600_CR4 1600_CR16 1600_CR3 1600_CR2 1600_CR14 1600_CR1 1600_CR15 1600_CR13 1600_CR10 Q Guo (1600_CR5) 2015; 59 H Zhang (1600_CR6) 2018; 2018 1600_CR9  | 
    
| References_xml | – reference: JhangL-HSantiagoCChian-SongCMulti-sensor based glove control of an industrial mobile robot arm2017Pingtung, TaiwanIEEE1757692310.1109/CACS.2017.8284267 – reference: Abhishek Kumar Dewangan, Rohit Raja. “An Implementation of Multi Sensor-based Mobile Robot with Image Stitching Application.” IJCSMC. 3(6). 2014. https://www.academia.edu/66772162/An_Implementation_of_Multi_Sensor_Based_Mobile_Robot_with_Image_Stitching_Application. – reference: Ovidiu Vermesan. “Internet of Things—Converging Sensing/Actuating, Hyper connectivity, AI and IoT Platform.” SINTEF. 2016. https://doi.org/10.13052/rp-9788793609105. – reference: Sahu UK, Mishra A, Sahu B, Pradhan PP, Patra D, Subudhi B. Vision based tip position control of a 2-DOF single-link robot manipulator. In: Proceedings of international conference on sustainable computing in science. Technology and management. IEEE; 2019. pp. 1–7. https://doi.org/10.1049/iet-csr.2019.0035. – reference: Aimn MAM. Robotic Arm Control with Arduino. 1403730048. 2017. https://doi.org/10.13140/RG.2.2.10227.53286. – reference: Pagliarini L, Lund HH. Future of Robotics Technology. Centre for play ware. Technical University of Denmark, International Conference on Artificial Life and Robotics. Miyazaki, Japan. 2017. https://doi.org/10.2991/jrnal.2017.3.4.12. – reference: Dong W, Pentland A. Multi-sensor data fusion using the influence model. In: International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06), vol. 4. 2006. https://doi.org/10.1109/BSN.2006.41. – reference: RadSATamiziMGMirfakharAMasoulehMTKalhorAControl of a two-DOF parallel robot with unknown parameters using a novel robust adaptive approachISA Transact2021117708410.1016/j.isatra.2021.02.001 – reference: GuoQYuTJiangDRobust H positional control of 2-DOF robotic arm driven by electro-hydraulic servo systemISA Trans201559556410.1016/j.isatra.2015.09.014 – reference: Padiya T, Bhise M, Rajkotiya P. Data management for internet of things. In: 2015 IEEE Region 10 Symposium. Ahmedabad, India; 2015. pp. 62-65. https://doi.org/10.1109/TENSYMP.2015.26. – reference: Ramana Babu, S. Ramachandra Raju, V. Ramji K, “Design Optimization of a 3 DOF Translational,” (2015). https://www.ijeat.org/wp-content/uploads/papers/v4i3/C3692024315.pdf. – reference: LinKLiYSunJZhouDZhangQMulti-sensor fusion for body sensor network in medical human–robot interaction scenarioInformat Fusion.202057152610.1016/j.inffus.2019.11.001 – reference: Yan L, Shuai Z, Bo C. Multi-sensor data fusion system based on apache storm. In: IEEE International Conference on Computer and Communications (ICCC). 2017. pp. 1094–1098. https://doi.org/10.1109/CompComm.2017.8322712. – reference: BabaogluOMarzollaMThe People’s cloud2014Spectrum, North AmericanIEEE5010.1109/MSPEC.2014.6905491 – reference: ZhangHFangHFangYJiangB“Workspace analysis of a hybrid kinematic machine tool with high rotational applications”Mathemat Prob Eng.2018201811210.1155/2018/2607497 – reference: Anushka Gaur, Anurag Jain, “Glimpse of Cloud Computing.” International Journal of Advanced Research Ideas and Innovations in Technology. 3(2). 2017. https://www.ijariit.com/manuscripts/v3i2/V3I2-1510.pdf. – start-page: 17576923 volume-title: Multi-sensor based glove control of an industrial mobile robot arm year: 2017 ident: 1600_CR7 doi: 10.1109/CACS.2017.8284267 – start-page: 50 volume-title: The People’s cloud year: 2014 ident: 1600_CR11 doi: 10.1109/MSPEC.2014.6905491 – ident: 1600_CR4 doi: 10.1109/BSN.2006.41 – volume: 59 start-page: 55 year: 2015 ident: 1600_CR5 publication-title: ISA Trans doi: 10.1016/j.isatra.2015.09.014 – ident: 1600_CR16 doi: 10.1109/CompComm.2017.8322712 – ident: 1600_CR13 – ident: 1600_CR10 doi: 10.13052/rp-9788793609105 – volume: 117 start-page: 70 year: 2021 ident: 1600_CR12 publication-title: ISA Transact doi: 10.1016/j.isatra.2021.02.001 – ident: 1600_CR3 – volume: 57 start-page: 15 year: 2020 ident: 1600_CR8 publication-title: Informat Fusion. doi: 10.1016/j.inffus.2019.11.001 – ident: 1600_CR9 doi: 10.2991/jrnal.2017.3.4.12 – ident: 1600_CR2 doi: 10.13140/RG.2.2.10227.53286 – volume: 2018 start-page: 1 year: 2018 ident: 1600_CR6 publication-title: Mathemat Prob Eng. doi: 10.1155/2018/2607497 – ident: 1600_CR14 doi: 10.1049/iet-csr.2019.0035 – ident: 1600_CR15 doi: 10.1109/TENSYMP.2015.26 – ident: 1600_CR1  | 
    
| SSID | ssj0002504465 | 
    
| Score | 2.2214496 | 
    
| Snippet | A robotic parallel manipulator is implemented by employing embedded systems integrated with a set of sensors. More than one type of sensor are implemented... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 165 | 
    
| SubjectTerms | Access control Accuracy Actuator position Advances in Computational Intelligence for Artificial Intelligence Algorithms Artificial intelligence Computer engineering Computer Imaging Computer Science Computer Systems Organization and Communication Networks Control data (computers) Cost control Data integration Data integrity Data Structures and Information Theory Design Information Systems and Communication Service Internet of Things and Data Analytics Machine Learning Manipulators Multisensor fusion Neural networks Original Research Pattern Recognition and Graphics Python Robot arms Robotics Robots Sensors Software Software Engineering/Programming and Operating Systems Three dimensional models Vision  | 
    
| Title | Multi-Sensor Data Fusion-based Parallel Manipulator with IoT Monitoring Employing Machine Learning | 
    
| URI | https://link.springer.com/article/10.1007/s42979-022-01600-4 https://www.proquest.com/docview/2921275460  | 
    
| Volume | 4 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: AFBBN dateStart: 20190625 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2661-8907 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEB36cfEiiorVWvbgTReTZtM0B5FWG6vQULSF3sJ-RQRJam3_vzubpEVBb4GEDbxk983OzrwHcBnIMBRKM2qoSlAmA02FThlVva7wpCukb90aJnFvPGfPC39Rg7jqhcGyympNtAu1yiXmyG-6odUiZz3nbvlJ0TUKT1crCw1eWiuoWysxVodmF5WxGtAcjuLpyzbrgoJdzPpLGmLq0jD0F2Unje2nM4tzEFIscEfhNYeyn2y1C0F_nZpaMooOYL-MIsmg-OyHUNPZEQjbTEtfzcY0X5EHvuYk2mAyjCJVKTLlKzRO-SATnr1b2y7zGOZhyVM-I8XkxteRwgUYrya21FKTUoX17Rjm0Wh2P6alhQKVhogZTd3AC5WZdRqV75SrsCM_4CkePkqHayU9jrByTyqXm-DR55Kx1Bepzwxzed4JNLI806dAnL5yUid0NGr8SbNPS5WWvoFJ6r50Pd2CqwqqZFkoZSRbTWQLbGKATSywCWtBu0IzKWfNV7L7xi24rhDe3f57tLP_RzuHPXSJL0rH2tBYrzb6wsQSa9GBej967EBzEA2Hcaf8Xb4BAkzHbA | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF6KHvQiior1uQc96WIem8Y9iKhtaa0toi30Fje7GxEkqX0g_jl_mzObxKKgN2-BhA18mczMzs58HyGHoRIi1oYzCFUx4yo0LDYJZ7rmxb5yYxVYtYZur9Ya8JthMKyQj3IWBtsqS59oHbXOFNbITz1huch5zbkYvTJUjcLT1VJCQxbSCvrcUowVgx0d8_4GW7jJebsO3_vI85qN_nWLFSoDTEGs4ixxQ19oMEyD5HDa1Ti0HsoEz-eUI41WvsQ3S19pV0J-FUjFeRLEScDBuWNBFELAIve5gM3f4lWjd3f_VeVBgjBu9SwhEHpMiGBYTO7Y-T0IBqFg2FCPRG8O49-j4zzl_XFKa4Nfc5WsFFkrvczNbI1UTLpOYju8yx5gI5yNaV1OJW3OsPjGMDRqeifHKNTyQrsyfbYyYfAY1n1pO-vT3Jng62iuOoxXXdvaaWjB-vq0QQb_AuYmWUiz1GwR6pxpJ3GEY5BTUMG-MNFGBQCTMmfK9U2VHJdQRaOcmSP64mC2wEYAbGSBjXiV7JZoRsVfOonmNlUlJyXC89u_r7b992oHZKnV795Gt-1eZ4cso0J93ra2Sxam45nZgzxmGu8XxkLJ43_b5ycdMABf | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Sensor+Data+Fusion-based+Parallel+Manipulator+with+IoT+Monitoring+Employing+Machine+Learning&rft.jtitle=SN+computer+science&rft.au=Shreyanth%2C+S&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=4&rft.issue=2&rft.spage=165&rft_id=info:doi/10.1007%2Fs42979-022-01600-4 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |