Photoplethysmography Bio-Signal Extraction for Classifying Diabetes Mellitus Diseases Using Pretrained Deep Learning Networks

This study investigates the association between the presence of blood glucose and blood pressure variations to determine an individual’s health. It classified diabetes mellitus by using a publicly available PPG-BP dataset of 72 subjects. Increasing diabetes trends due to undiagnosed disease were ove...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 6; no. 2; p. 104
Main Authors Tarmizi, Syaidatus Syahira Ahmad, Suriani, Nor Surayahani, Mohd, Mohd Norzali Bin Hj, Bagchi, Susama, Debnath, Sanjoy Kumar, Shah, Syed Mehr Ali
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.02.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2661-8907
2662-995X
2661-8907
DOI10.1007/s42979-024-03589-4

Cover

Abstract This study investigates the association between the presence of blood glucose and blood pressure variations to determine an individual’s health. It classified diabetes mellitus by using a publicly available PPG-BP dataset of 72 subjects. Increasing diabetes trends due to undiagnosed disease were overcome through continuous finger cuff-based blood pressure measurements via photoplethysmography to extract diabetes related features including the baseline anthropometrical characteristics and signal morphology. The variations in blood pressure obtained from single channel PPG are processed to extract signal information and the results which are the STFT transformed version of the signal as the input data to investigate the meaningful patterns of the original raw, filtered and their derivatives between healthy and diabetic individuals. This can be followed by the state of the art of pretrained deep learning networks such as DenseNet121, DenseNet169, EfficientNetB0, EfficientNetB1, InceptionResNetV2, ResNet50, ResNet101 and Xception which were discussed in the comparative analysis that can be effectively used for classification on the respective sets of signals. The result indicates that InceptionResNetV2 and Xception networks outperform the rest of the pretrained deep learning used in the study with the highest recorded accuracy, precision and recall values which making them the most effective networks for classification problems.
AbstractList This study investigates the association between the presence of blood glucose and blood pressure variations to determine an individual’s health. It classified diabetes mellitus by using a publicly available PPG-BP dataset of 72 subjects. Increasing diabetes trends due to undiagnosed disease were overcome through continuous finger cuff-based blood pressure measurements via photoplethysmography to extract diabetes related features including the baseline anthropometrical characteristics and signal morphology. The variations in blood pressure obtained from single channel PPG are processed to extract signal information and the results which are the STFT transformed version of the signal as the input data to investigate the meaningful patterns of the original raw, filtered and their derivatives between healthy and diabetic individuals. This can be followed by the state of the art of pretrained deep learning networks such as DenseNet121, DenseNet169, EfficientNetB0, EfficientNetB1, InceptionResNetV2, ResNet50, ResNet101 and Xception which were discussed in the comparative analysis that can be effectively used for classification on the respective sets of signals. The result indicates that InceptionResNetV2 and Xception networks outperform the rest of the pretrained deep learning used in the study with the highest recorded accuracy, precision and recall values which making them the most effective networks for classification problems.
ArticleNumber 104
Author Tarmizi, Syaidatus Syahira Ahmad
Suriani, Nor Surayahani
Shah, Syed Mehr Ali
Debnath, Sanjoy Kumar
Mohd, Mohd Norzali Bin Hj
Bagchi, Susama
Author_xml – sequence: 1
  givenname: Syaidatus Syahira Ahmad
  surname: Tarmizi
  fullname: Tarmizi, Syaidatus Syahira Ahmad
  organization: Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia
– sequence: 2
  givenname: Nor Surayahani
  surname: Suriani
  fullname: Suriani, Nor Surayahani
  organization: Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia
– sequence: 3
  givenname: Mohd Norzali Bin Hj
  surname: Mohd
  fullname: Mohd, Mohd Norzali Bin Hj
  organization: Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia
– sequence: 4
  givenname: Susama
  orcidid: 0000-0002-7665-1550
  surname: Bagchi
  fullname: Bagchi, Susama
  email: susama.bagchi@chitkara.edu.in, bagchi.susama@gmail.com
  organization: Chitkara University Institute of Engineering and Technology, Chitkara University
– sequence: 5
  givenname: Sanjoy Kumar
  surname: Debnath
  fullname: Debnath, Sanjoy Kumar
  organization: Chitkara University Institute of Engineering and Technology, Chitkara University
– sequence: 6
  givenname: Syed Mehr Ali
  surname: Shah
  fullname: Shah, Syed Mehr Ali
  organization: College of Computing & Information Sciences, University of Technology & Applied Sciences
BookMark eNp9kEtPwzAQhC1UJErhD3CKxDngpHYcH6HlJZWHBJwtO1m3hjQO3lTQA_8dlyLBidOuxjOj9bdPBq1vgZCjjJ5klIpTZLkUMqU5S-mYlzJlO2SYF0WWlpKKwZ99jxwivlBKc04ZK_iQfD4sfO-7BvrFGpd-HnS3WCfnzqePbt7qJrn46IOueufbxPqQTBqN6OzatfNk6rSBHjC5haZx_QqjgqAxKs-4MTwEiGHXQp1MAbpkBjq0m4c76N99eMUDsmt1g3D4M0fk-fLiaXKdzu6vbiZns7TKSs7SQtBaCMNEXRtuShbvF5ZpXRlTi4oxS_OoWmm4LKiti8KClBXosrSFsYaNR-R429sF_7YC7NWLX4X4PVTjjEsuMi7y6Mq3rip4xABWdcEtdVirjKoNabUlrSJp9U1abarH2xBGczuH8Fv9T-oLFB-F0A
Cites_doi 10.1155/2021/9925033
10.1016/j.compbiomed.2019.103387
10.3389/fphys.2022.1020458
10.1109/ELEKTRO60337.2024.10557075
10.1016/j.bspc.2020.102328
10.14569/IJACSA.2019.0101212
10.3390/s20113127
10.3390/ijms24076775
10.1155/2021/5597624
10.3389/fendo.2023.1260623
10.1609/aaai.v31i1.11231
10.1109/CVPRW53098.2021.00423
10.3389/fphys.2022.1085240
10.1155/2022/1672677
10.1109/ACCESS.2022.3217904
10.4103/jfcm.jfcm_33_23
10.1016/j.eswa.2023.122388
10.1109/ACCESS.2021.3117969
10.3389/fpubh.2022.920946
10.3390/info14030145
10.1038/sdata.2018.20
10.1016/j.cmpb.2020.105596
10.1109/SCOReD50371.2020.9383186
10.1007/s40200-020-00520-5
10.1016/j.patrec.2021.07.025
10.1159/000479560
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Feb 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s42979-024-03589-4
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_024_03589_4
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
BAPOH
BSONS
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
IKXTQ
IWAJR
JZLTJ
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c1854-670d77b47ddb5b840027f4aacbbd7c44f02b84f9b5960fd66fe99cea88f6bfb43
ISSN 2661-8907
2662-995X
IngestDate Fri Jul 25 22:27:16 EDT 2025
Wed Oct 01 00:38:02 EDT 2025
Fri Feb 21 02:37:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Blood glucose
Photoplethysmography
Blood pressure
Diabetes mellitus
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1854-670d77b47ddb5b840027f4aacbbd7c44f02b84f9b5960fd66fe99cea88f6bfb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7665-1550
PQID 3159571572
PQPubID 6623307
ParticipantIDs proquest_journals_3159571572
crossref_primary_10_1007_s42979_024_03589_4
springer_journals_10_1007_s42979_024_03589_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References MZ Suboh (3589_CR20) 2022; 10
3589_CR16
3589_CR18
3589_CR12
3589_CR13
3589_CR15
3589_CR11
VKD Le (3589_CR19) 2022; 13
YK Qawqzeh (3589_CR2) 2019; 10
3589_CR8
A Agliata (3589_CR1) 2023; 24
3589_CR9
3589_CR27
3589_CR3
3589_CR28
3589_CR6
3589_CR29
H Naz (3589_CR17) 2020; 19
3589_CR23
3589_CR24
3589_CR25
3589_CR26
SSA Tarmizi (3589_CR7) 2022; 10
3589_CR21
3589_CR22
U Halajur (3589_CR4) 2021; 2
E Afsaneh (3589_CR5) 2022; 14
T Sadad (3589_CR10) 2022; 2022
JB Ginting (3589_CR14) 2023; 30
References_xml – ident: 3589_CR12
  doi: 10.1155/2021/9925033
– ident: 3589_CR23
  doi: 10.1016/j.compbiomed.2019.103387
– volume: 13
  start-page: 1
  year: 2022
  ident: 3589_CR19
  publication-title: Front Physiol
  doi: 10.3389/fphys.2022.1020458
– ident: 3589_CR27
  doi: 10.1109/ELEKTRO60337.2024.10557075
– volume: 2
  start-page: 358
  issue: 1
  year: 2021
  ident: 3589_CR4
  publication-title: Int J Sci Technol Manage
– ident: 3589_CR8
  doi: 10.1016/j.bspc.2020.102328
– volume: 10
  start-page: 88
  issue: 12
  year: 2019
  ident: 3589_CR2
  publication-title: Int J Adv Comput Sci Application
  doi: 10.14569/IJACSA.2019.0101212
– ident: 3589_CR11
  doi: 10.3390/s20113127
– ident: 3589_CR16
– volume: 24
  start-page: 1
  issue: 7
  year: 2023
  ident: 3589_CR1
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms24076775
– ident: 3589_CR22
  doi: 10.1155/2021/5597624
– ident: 3589_CR6
  doi: 10.3389/fendo.2023.1260623
– ident: 3589_CR25
  doi: 10.1609/aaai.v31i1.11231
– ident: 3589_CR13
  doi: 10.1109/CVPRW53098.2021.00423
– ident: 3589_CR3
  doi: 10.3389/fphys.2022.1085240
– volume: 2022
  start-page: 1
  issue: 1
  year: 2022
  ident: 3589_CR10
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/1672677
– volume: 10
  start-page: 115583
  year: 2022
  ident: 3589_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3217904
– volume: 30
  start-page: 171
  issue: 3
  year: 2023
  ident: 3589_CR14
  publication-title: J Family Community Med
  doi: 10.4103/jfcm.jfcm_33_23
– ident: 3589_CR24
  doi: 10.1016/j.eswa.2023.122388
– ident: 3589_CR9
  doi: 10.1109/ACCESS.2021.3117969
– volume: 10
  start-page: 1
  year: 2022
  ident: 3589_CR20
  publication-title: Front Public Health
  doi: 10.3389/fpubh.2022.920946
– ident: 3589_CR29
  doi: 10.3390/info14030145
– ident: 3589_CR18
  doi: 10.1038/sdata.2018.20
– ident: 3589_CR15
  doi: 10.1016/j.cmpb.2020.105596
– ident: 3589_CR21
  doi: 10.1109/SCOReD50371.2020.9383186
– volume: 14
  start-page: 1
  issue: 196
  year: 2022
  ident: 3589_CR5
  publication-title: Diabetol Metabolic Syndrome
– volume: 19
  start-page: 391
  year: 2020
  ident: 3589_CR17
  publication-title: J Diabetes Metabolic Disorders
  doi: 10.1007/s40200-020-00520-5
– ident: 3589_CR26
  doi: 10.1016/j.patrec.2021.07.025
– ident: 3589_CR28
  doi: 10.1159/000479560
SSID ssj0002504465
Score 2.2909038
Snippet This study investigates the association between the presence of blood glucose and blood pressure variations to determine an individual’s health. It classified...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 104
SubjectTerms Accuracy
Aging
Algorithms
Biomarkers
Blood pressure
Channel morphology
Classification
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Deep learning
Diabetes
Diabetes mellitus
Disease
Glucose
Heart rate
Hypertension
Information Systems and Communication Service
Metabolic disorders
Morphology
Networks
Original Research
Oxygen saturation
Pattern Recognition and Graphics
Physiology
Respiration
Sensors
Signal processing
Skin
Software Engineering/Programming and Operating Systems
Trends
Unleashing the Advances in ICT for Digital Transformation through Data Engineering and Data Analytics
Vision
Title Photoplethysmography Bio-Signal Extraction for Classifying Diabetes Mellitus Diseases Using Pretrained Deep Learning Networks
URI https://link.springer.com/article/10.1007/s42979-024-03589-4
https://www.proquest.com/docview/3159571572
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: AFBBN
  dateStart: 20190625
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZ-rKXsbGNZe2GHvbmuTi2_Osx3VrCoKGQFvpmLEuKM2hSbAe2wP6t_n29kyU77VJY9-IYxUiO7ovudPrujpAvofJ8GcNOVSgZuCxhyk2LVLiJZFKBQvWCHB3657NoesV-XIfXg8HdDmtp0_DjYrs3ruR_pAptIFeMkn2GZLtOoQHuQb5wBQnD9Z9kfFGuGySA42TfmNzTWF3SnS8XaGWe_moqUwsc2YS6AOayDWz6bn2u55iRs9nUmIcTj2pqp2URXFRSl4-QyFSWtzYR6wJDhJHMVe-atfOZ5qZjeQjH6NTeJQBQ2mrOwPx3vhQ5jgV35bLKnUl5k4v-XAqmTFeYwtMkWNKqHB6Dlg4U67ItgQyf-MgW9hDwc1fO9GfvkF0U5dLSjYzOMU4NP7Q8aLv2odngJmlbEPdY7mkzi3e0g1F_r0poWSA16N04hWGY6wVhkprQogf5tx_pxY6t2GV21n1k0Eem-8jYC3LggzbxhuRgcnZyMuu8e5gYjuk6pt1bm4gtHbf518s8tIr6rc6j03lt9Fy-Jq_MboVOWui9IQO5ekv-7IMd7WFHe9hRgB3dgR21sKMWdtTCjmrY0R52FGFHLeyohd07cnV2evlt6poqHm4BtiBzo9gTccxZLAQPecLQEaJYnheci7hgDBYLaFUpD2EzrUQUKZmmhcyTREVccRa8J8PVeiU_EOqpgIH5zz0pOAt9WH_EGMzvccKKIsmVGhHHzmJ22yZryZ4W3ogc2YnOzJ-6zgIw78N4HMb-iHy1k99__XRvH5819iF56Wvxoy_viAybaiM_gXXb8M8GSvcSk6dx
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoplethysmography+Bio-Signal+Extraction+for+Classifying+Diabetes+Mellitus+Diseases+Using+Pretrained+Deep+Learning+Networks&rft.jtitle=SN+computer+science&rft.au=Tarmizi%2C+Syaidatus+Syahira+Ahmad&rft.au=Suriani%2C+Nor+Surayahani&rft.au=Mohd%2C+Mohd+Norzali+Bin+Hj&rft.au=Bagchi%2C+Susama&rft.date=2025-02-01&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1007%2Fs42979-024-03589-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_024_03589_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon