Photoplethysmography Bio-Signal Extraction for Classifying Diabetes Mellitus Diseases Using Pretrained Deep Learning Networks
This study investigates the association between the presence of blood glucose and blood pressure variations to determine an individual’s health. It classified diabetes mellitus by using a publicly available PPG-BP dataset of 72 subjects. Increasing diabetes trends due to undiagnosed disease were ove...
Saved in:
| Published in | SN computer science Vol. 6; no. 2; p. 104 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Nature Singapore
01.02.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2661-8907 2662-995X 2661-8907 |
| DOI | 10.1007/s42979-024-03589-4 |
Cover
| Abstract | This study investigates the association between the presence of blood glucose and blood pressure variations to determine an individual’s health. It classified diabetes mellitus by using a publicly available PPG-BP dataset of 72 subjects. Increasing diabetes trends due to undiagnosed disease were overcome through continuous finger cuff-based blood pressure measurements via photoplethysmography to extract diabetes related features including the baseline anthropometrical characteristics and signal morphology. The variations in blood pressure obtained from single channel PPG are processed to extract signal information and the results which are the STFT transformed version of the signal as the input data to investigate the meaningful patterns of the original raw, filtered and their derivatives between healthy and diabetic individuals. This can be followed by the state of the art of pretrained deep learning networks such as DenseNet121, DenseNet169, EfficientNetB0, EfficientNetB1, InceptionResNetV2, ResNet50, ResNet101 and Xception which were discussed in the comparative analysis that can be effectively used for classification on the respective sets of signals. The result indicates that InceptionResNetV2 and Xception networks outperform the rest of the pretrained deep learning used in the study with the highest recorded accuracy, precision and recall values which making them the most effective networks for classification problems. |
|---|---|
| AbstractList | This study investigates the association between the presence of blood glucose and blood pressure variations to determine an individual’s health. It classified diabetes mellitus by using a publicly available PPG-BP dataset of 72 subjects. Increasing diabetes trends due to undiagnosed disease were overcome through continuous finger cuff-based blood pressure measurements via photoplethysmography to extract diabetes related features including the baseline anthropometrical characteristics and signal morphology. The variations in blood pressure obtained from single channel PPG are processed to extract signal information and the results which are the STFT transformed version of the signal as the input data to investigate the meaningful patterns of the original raw, filtered and their derivatives between healthy and diabetic individuals. This can be followed by the state of the art of pretrained deep learning networks such as DenseNet121, DenseNet169, EfficientNetB0, EfficientNetB1, InceptionResNetV2, ResNet50, ResNet101 and Xception which were discussed in the comparative analysis that can be effectively used for classification on the respective sets of signals. The result indicates that InceptionResNetV2 and Xception networks outperform the rest of the pretrained deep learning used in the study with the highest recorded accuracy, precision and recall values which making them the most effective networks for classification problems. |
| ArticleNumber | 104 |
| Author | Tarmizi, Syaidatus Syahira Ahmad Suriani, Nor Surayahani Shah, Syed Mehr Ali Debnath, Sanjoy Kumar Mohd, Mohd Norzali Bin Hj Bagchi, Susama |
| Author_xml | – sequence: 1 givenname: Syaidatus Syahira Ahmad surname: Tarmizi fullname: Tarmizi, Syaidatus Syahira Ahmad organization: Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia – sequence: 2 givenname: Nor Surayahani surname: Suriani fullname: Suriani, Nor Surayahani organization: Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia – sequence: 3 givenname: Mohd Norzali Bin Hj surname: Mohd fullname: Mohd, Mohd Norzali Bin Hj organization: Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia – sequence: 4 givenname: Susama orcidid: 0000-0002-7665-1550 surname: Bagchi fullname: Bagchi, Susama email: susama.bagchi@chitkara.edu.in, bagchi.susama@gmail.com organization: Chitkara University Institute of Engineering and Technology, Chitkara University – sequence: 5 givenname: Sanjoy Kumar surname: Debnath fullname: Debnath, Sanjoy Kumar organization: Chitkara University Institute of Engineering and Technology, Chitkara University – sequence: 6 givenname: Syed Mehr Ali surname: Shah fullname: Shah, Syed Mehr Ali organization: College of Computing & Information Sciences, University of Technology & Applied Sciences |
| BookMark | eNp9kEtPwzAQhC1UJErhD3CKxDngpHYcH6HlJZWHBJwtO1m3hjQO3lTQA_8dlyLBidOuxjOj9bdPBq1vgZCjjJ5klIpTZLkUMqU5S-mYlzJlO2SYF0WWlpKKwZ99jxwivlBKc04ZK_iQfD4sfO-7BvrFGpd-HnS3WCfnzqePbt7qJrn46IOueufbxPqQTBqN6OzatfNk6rSBHjC5haZx_QqjgqAxKs-4MTwEiGHXQp1MAbpkBjq0m4c76N99eMUDsmt1g3D4M0fk-fLiaXKdzu6vbiZns7TKSs7SQtBaCMNEXRtuShbvF5ZpXRlTi4oxS_OoWmm4LKiti8KClBXosrSFsYaNR-R429sF_7YC7NWLX4X4PVTjjEsuMi7y6Mq3rip4xABWdcEtdVirjKoNabUlrSJp9U1abarH2xBGczuH8Fv9T-oLFB-F0A |
| Cites_doi | 10.1155/2021/9925033 10.1016/j.compbiomed.2019.103387 10.3389/fphys.2022.1020458 10.1109/ELEKTRO60337.2024.10557075 10.1016/j.bspc.2020.102328 10.14569/IJACSA.2019.0101212 10.3390/s20113127 10.3390/ijms24076775 10.1155/2021/5597624 10.3389/fendo.2023.1260623 10.1609/aaai.v31i1.11231 10.1109/CVPRW53098.2021.00423 10.3389/fphys.2022.1085240 10.1155/2022/1672677 10.1109/ACCESS.2022.3217904 10.4103/jfcm.jfcm_33_23 10.1016/j.eswa.2023.122388 10.1109/ACCESS.2021.3117969 10.3389/fpubh.2022.920946 10.3390/info14030145 10.1038/sdata.2018.20 10.1016/j.cmpb.2020.105596 10.1109/SCOReD50371.2020.9383186 10.1007/s40200-020-00520-5 10.1016/j.patrec.2021.07.025 10.1159/000479560 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Feb 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Feb 2025 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s42979-024-03589-4 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | 10_1007_s42979_024_03589_4 |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF BAPOH BSONS DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR IKXTQ IWAJR JZLTJ LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c1854-670d77b47ddb5b840027f4aacbbd7c44f02b84f9b5960fd66fe99cea88f6bfb43 |
| ISSN | 2661-8907 2662-995X |
| IngestDate | Fri Jul 25 22:27:16 EDT 2025 Wed Oct 01 00:38:02 EDT 2025 Fri Feb 21 02:37:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Blood glucose Photoplethysmography Blood pressure Diabetes mellitus |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1854-670d77b47ddb5b840027f4aacbbd7c44f02b84f9b5960fd66fe99cea88f6bfb43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7665-1550 |
| PQID | 3159571572 |
| PQPubID | 6623307 |
| ParticipantIDs | proquest_journals_3159571572 crossref_primary_10_1007_s42979_024_03589_4 springer_journals_10_1007_s42979_024_03589_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationYear | 2025 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | MZ Suboh (3589_CR20) 2022; 10 3589_CR16 3589_CR18 3589_CR12 3589_CR13 3589_CR15 3589_CR11 VKD Le (3589_CR19) 2022; 13 YK Qawqzeh (3589_CR2) 2019; 10 3589_CR8 A Agliata (3589_CR1) 2023; 24 3589_CR9 3589_CR27 3589_CR3 3589_CR28 3589_CR6 3589_CR29 H Naz (3589_CR17) 2020; 19 3589_CR23 3589_CR24 3589_CR25 3589_CR26 SSA Tarmizi (3589_CR7) 2022; 10 3589_CR21 3589_CR22 U Halajur (3589_CR4) 2021; 2 E Afsaneh (3589_CR5) 2022; 14 T Sadad (3589_CR10) 2022; 2022 JB Ginting (3589_CR14) 2023; 30 |
| References_xml | – ident: 3589_CR12 doi: 10.1155/2021/9925033 – ident: 3589_CR23 doi: 10.1016/j.compbiomed.2019.103387 – volume: 13 start-page: 1 year: 2022 ident: 3589_CR19 publication-title: Front Physiol doi: 10.3389/fphys.2022.1020458 – ident: 3589_CR27 doi: 10.1109/ELEKTRO60337.2024.10557075 – volume: 2 start-page: 358 issue: 1 year: 2021 ident: 3589_CR4 publication-title: Int J Sci Technol Manage – ident: 3589_CR8 doi: 10.1016/j.bspc.2020.102328 – volume: 10 start-page: 88 issue: 12 year: 2019 ident: 3589_CR2 publication-title: Int J Adv Comput Sci Application doi: 10.14569/IJACSA.2019.0101212 – ident: 3589_CR11 doi: 10.3390/s20113127 – ident: 3589_CR16 – volume: 24 start-page: 1 issue: 7 year: 2023 ident: 3589_CR1 publication-title: Int J Mol Sci doi: 10.3390/ijms24076775 – ident: 3589_CR22 doi: 10.1155/2021/5597624 – ident: 3589_CR6 doi: 10.3389/fendo.2023.1260623 – ident: 3589_CR25 doi: 10.1609/aaai.v31i1.11231 – ident: 3589_CR13 doi: 10.1109/CVPRW53098.2021.00423 – ident: 3589_CR3 doi: 10.3389/fphys.2022.1085240 – volume: 2022 start-page: 1 issue: 1 year: 2022 ident: 3589_CR10 publication-title: Comput Intell Neurosci doi: 10.1155/2022/1672677 – volume: 10 start-page: 115583 year: 2022 ident: 3589_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3217904 – volume: 30 start-page: 171 issue: 3 year: 2023 ident: 3589_CR14 publication-title: J Family Community Med doi: 10.4103/jfcm.jfcm_33_23 – ident: 3589_CR24 doi: 10.1016/j.eswa.2023.122388 – ident: 3589_CR9 doi: 10.1109/ACCESS.2021.3117969 – volume: 10 start-page: 1 year: 2022 ident: 3589_CR20 publication-title: Front Public Health doi: 10.3389/fpubh.2022.920946 – ident: 3589_CR29 doi: 10.3390/info14030145 – ident: 3589_CR18 doi: 10.1038/sdata.2018.20 – ident: 3589_CR15 doi: 10.1016/j.cmpb.2020.105596 – ident: 3589_CR21 doi: 10.1109/SCOReD50371.2020.9383186 – volume: 14 start-page: 1 issue: 196 year: 2022 ident: 3589_CR5 publication-title: Diabetol Metabolic Syndrome – volume: 19 start-page: 391 year: 2020 ident: 3589_CR17 publication-title: J Diabetes Metabolic Disorders doi: 10.1007/s40200-020-00520-5 – ident: 3589_CR26 doi: 10.1016/j.patrec.2021.07.025 – ident: 3589_CR28 doi: 10.1159/000479560 |
| SSID | ssj0002504465 |
| Score | 2.2909038 |
| Snippet | This study investigates the association between the presence of blood glucose and blood pressure variations to determine an individual’s health. It classified... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 104 |
| SubjectTerms | Accuracy Aging Algorithms Biomarkers Blood pressure Channel morphology Classification Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Deep learning Diabetes Diabetes mellitus Disease Glucose Heart rate Hypertension Information Systems and Communication Service Metabolic disorders Morphology Networks Original Research Oxygen saturation Pattern Recognition and Graphics Physiology Respiration Sensors Signal processing Skin Software Engineering/Programming and Operating Systems Trends Unleashing the Advances in ICT for Digital Transformation through Data Engineering and Data Analytics Vision |
| Title | Photoplethysmography Bio-Signal Extraction for Classifying Diabetes Mellitus Diseases Using Pretrained Deep Learning Networks |
| URI | https://link.springer.com/article/10.1007/s42979-024-03589-4 https://www.proquest.com/docview/3159571572 |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: AFBBN dateStart: 20190625 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZ-rKXsbGNZe2GHvbmuTi2_Osx3VrCoKGQFvpmLEuKM2hSbAe2wP6t_n29kyU77VJY9-IYxUiO7ovudPrujpAvofJ8GcNOVSgZuCxhyk2LVLiJZFKBQvWCHB3657NoesV-XIfXg8HdDmtp0_DjYrs3ruR_pAptIFeMkn2GZLtOoQHuQb5wBQnD9Z9kfFGuGySA42TfmNzTWF3SnS8XaGWe_moqUwsc2YS6AOayDWz6bn2u55iRs9nUmIcTj2pqp2URXFRSl4-QyFSWtzYR6wJDhJHMVe-atfOZ5qZjeQjH6NTeJQBQ2mrOwPx3vhQ5jgV35bLKnUl5k4v-XAqmTFeYwtMkWNKqHB6Dlg4U67ItgQyf-MgW9hDwc1fO9GfvkF0U5dLSjYzOMU4NP7Q8aLv2odngJmlbEPdY7mkzi3e0g1F_r0poWSA16N04hWGY6wVhkprQogf5tx_pxY6t2GV21n1k0Eem-8jYC3LggzbxhuRgcnZyMuu8e5gYjuk6pt1bm4gtHbf518s8tIr6rc6j03lt9Fy-Jq_MboVOWui9IQO5ekv-7IMd7WFHe9hRgB3dgR21sKMWdtTCjmrY0R52FGFHLeyohd07cnV2evlt6poqHm4BtiBzo9gTccxZLAQPecLQEaJYnheci7hgDBYLaFUpD2EzrUQUKZmmhcyTREVccRa8J8PVeiU_EOqpgIH5zz0pOAt9WH_EGMzvccKKIsmVGhHHzmJ22yZryZ4W3ogc2YnOzJ-6zgIw78N4HMb-iHy1k99__XRvH5819iF56Wvxoy_viAybaiM_gXXb8M8GSvcSk6dx |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoplethysmography+Bio-Signal+Extraction+for+Classifying+Diabetes+Mellitus+Diseases+Using+Pretrained+Deep+Learning+Networks&rft.jtitle=SN+computer+science&rft.au=Tarmizi%2C+Syaidatus+Syahira+Ahmad&rft.au=Suriani%2C+Nor+Surayahani&rft.au=Mohd%2C+Mohd+Norzali+Bin+Hj&rft.au=Bagchi%2C+Susama&rft.date=2025-02-01&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1007%2Fs42979-024-03589-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_024_03589_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |