Neural Networks Predicting Submesoscale Tracer Dispersion

In this paper we examine the possibility of directly predicting passive tracer dynamics from flow fields. We use a two‐vertical‐mode model for generating flows ranging from low to high Rossby numbers and advect the passive tracer with such flows. While typically tracer dynamics are obtained by time...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 3
Main Authors Bijay, Mayank Kumar, Thomas, Jim
Format Journal Article
LanguageEnglish
Published Wiley 01.09.2025
Online AccessGet full text
ISSN2993-5210
2993-5210
DOI10.1029/2025JH000655

Cover

Abstract In this paper we examine the possibility of directly predicting passive tracer dynamics from flow fields. We use a two‐vertical‐mode model for generating flows ranging from low to high Rossby numbers and advect the passive tracer with such flows. While typically tracer dynamics are obtained by time integrating a tracer advection equation, here the emphasis is on predicting the tracer dynamics from the flow field. We experiment with popular architectures such as Autoencoder, UNet, and GAN, and also develop a novel model, that we call LoConv, to make predictions. The LoConv model uses custom Local Convolution layers that allows convolution with spatially varying weights and this model outperforms usually used architectures such as Autoencoder, UNet, and GAN based on various metrics. Autoencoders with very few trainable parameters were unsuccessful in making good predictions even at large‐scales. GAN and UNet predictions were biased towards large‐scale features, unfavorable for capturing small‐scale tracer dispersion, especially at high Rossby numbers. Overall, the LoConv model with some physics‐informed training produced the best fine‐scale tracer predictions, along with tracer flux and related derived quantities. More broadly, the results of this study point towards successful direct ways of predicting tracer fields from the flow, overcoming the computational cost of long numerical integration of tracer advection equations. Plain Language Summary Oceanic tracers such as dissolved oxygen and carbon are important from a climate and ecological perspective. Typically these tracers are obtained computationally by integrating differential equations along with the flow in ocean models, which is computationally expensive and time‐consuming. In this study we explore the possibility of using deep learning tools to make predictions about tracers. We trained neural network models to predict tracers from flow generated in different regimes, similar to oceanic flows whose scales vary from hundreds of kilometers to a kilometer. We experiment with some popular architectures and also develop some new neural net algorithms to make these predictions, with the aim of accurately predicting fine‐scale tracer features. This makes analysis of tracer fields fast and highly efficient, by instantaneously obtaining tracer predictions instead of waiting for long computations. With these experiments, we come to a better understanding of the strengths and weaknesses of the various neural network architectures. Our developed model is particularly seen to make excellent fine‐scale tracer predictions, outperforming popular architectures in various metrics. Key Points We use neural network models to predict passive tracer fields directly from flow fields across a broad range of Rossby numbers Popular convolution based neural network architectures are seen to miss small‐scale features in the predictions A new neural network architecture is developed and it successfully predicts submesoscale tracer dispersion features very well
AbstractList In this paper we examine the possibility of directly predicting passive tracer dynamics from flow fields. We use a two‐vertical‐mode model for generating flows ranging from low to high Rossby numbers and advect the passive tracer with such flows. While typically tracer dynamics are obtained by time integrating a tracer advection equation, here the emphasis is on predicting the tracer dynamics from the flow field. We experiment with popular architectures such as Autoencoder, UNet, and GAN, and also develop a novel model, that we call LoConv, to make predictions. The LoConv model uses custom Local Convolution layers that allows convolution with spatially varying weights and this model outperforms usually used architectures such as Autoencoder, UNet, and GAN based on various metrics. Autoencoders with very few trainable parameters were unsuccessful in making good predictions even at large‐scales. GAN and UNet predictions were biased towards large‐scale features, unfavorable for capturing small‐scale tracer dispersion, especially at high Rossby numbers. Overall, the LoConv model with some physics‐informed training produced the best fine‐scale tracer predictions, along with tracer flux and related derived quantities. More broadly, the results of this study point towards successful direct ways of predicting tracer fields from the flow, overcoming the computational cost of long numerical integration of tracer advection equations. Plain Language Summary Oceanic tracers such as dissolved oxygen and carbon are important from a climate and ecological perspective. Typically these tracers are obtained computationally by integrating differential equations along with the flow in ocean models, which is computationally expensive and time‐consuming. In this study we explore the possibility of using deep learning tools to make predictions about tracers. We trained neural network models to predict tracers from flow generated in different regimes, similar to oceanic flows whose scales vary from hundreds of kilometers to a kilometer. We experiment with some popular architectures and also develop some new neural net algorithms to make these predictions, with the aim of accurately predicting fine‐scale tracer features. This makes analysis of tracer fields fast and highly efficient, by instantaneously obtaining tracer predictions instead of waiting for long computations. With these experiments, we come to a better understanding of the strengths and weaknesses of the various neural network architectures. Our developed model is particularly seen to make excellent fine‐scale tracer predictions, outperforming popular architectures in various metrics. Key Points We use neural network models to predict passive tracer fields directly from flow fields across a broad range of Rossby numbers Popular convolution based neural network architectures are seen to miss small‐scale features in the predictions A new neural network architecture is developed and it successfully predicts submesoscale tracer dispersion features very well
In this paper we examine the possibility of directly predicting passive tracer dynamics from flow fields. We use a two‐vertical‐mode model for generating flows ranging from low to high Rossby numbers and advect the passive tracer with such flows. While typically tracer dynamics are obtained by time integrating a tracer advection equation, here the emphasis is on predicting the tracer dynamics from the flow field. We experiment with popular architectures such as Autoencoder, UNet, and GAN, and also develop a novel model, that we call LoConv, to make predictions. The LoConv model uses custom Local Convolution layers that allows convolution with spatially varying weights and this model outperforms usually used architectures such as Autoencoder, UNet, and GAN based on various metrics. Autoencoders with very few trainable parameters were unsuccessful in making good predictions even at large‐scales. GAN and UNet predictions were biased towards large‐scale features, unfavorable for capturing small‐scale tracer dispersion, especially at high Rossby numbers. Overall, the LoConv model with some physics‐informed training produced the best fine‐scale tracer predictions, along with tracer flux and related derived quantities. More broadly, the results of this study point towards successful direct ways of predicting tracer fields from the flow, overcoming the computational cost of long numerical integration of tracer advection equations. Oceanic tracers such as dissolved oxygen and carbon are important from a climate and ecological perspective. Typically these tracers are obtained computationally by integrating differential equations along with the flow in ocean models, which is computationally expensive and time‐consuming. In this study we explore the possibility of using deep learning tools to make predictions about tracers. We trained neural network models to predict tracers from flow generated in different regimes, similar to oceanic flows whose scales vary from hundreds of kilometers to a kilometer. We experiment with some popular architectures and also develop some new neural net algorithms to make these predictions, with the aim of accurately predicting fine‐scale tracer features. This makes analysis of tracer fields fast and highly efficient, by instantaneously obtaining tracer predictions instead of waiting for long computations. With these experiments, we come to a better understanding of the strengths and weaknesses of the various neural network architectures. Our developed model is particularly seen to make excellent fine‐scale tracer predictions, outperforming popular architectures in various metrics. We use neural network models to predict passive tracer fields directly from flow fields across a broad range of Rossby numbers Popular convolution based neural network architectures are seen to miss small‐scale features in the predictions A new neural network architecture is developed and it successfully predicts submesoscale tracer dispersion features very well
Abstract In this paper we examine the possibility of directly predicting passive tracer dynamics from flow fields. We use a two‐vertical‐mode model for generating flows ranging from low to high Rossby numbers and advect the passive tracer with such flows. While typically tracer dynamics are obtained by time integrating a tracer advection equation, here the emphasis is on predicting the tracer dynamics from the flow field. We experiment with popular architectures such as Autoencoder, UNet, and GAN, and also develop a novel model, that we call LoConv, to make predictions. The LoConv model uses custom Local Convolution layers that allows convolution with spatially varying weights and this model outperforms usually used architectures such as Autoencoder, UNet, and GAN based on various metrics. Autoencoders with very few trainable parameters were unsuccessful in making good predictions even at large‐scales. GAN and UNet predictions were biased towards large‐scale features, unfavorable for capturing small‐scale tracer dispersion, especially at high Rossby numbers. Overall, the LoConv model with some physics‐informed training produced the best fine‐scale tracer predictions, along with tracer flux and related derived quantities. More broadly, the results of this study point towards successful direct ways of predicting tracer fields from the flow, overcoming the computational cost of long numerical integration of tracer advection equations.
Author Bijay, Mayank Kumar
Thomas, Jim
Author_xml – sequence: 1
  givenname: Mayank Kumar
  surname: Bijay
  fullname: Bijay, Mayank Kumar
  organization: Tata Institute of Fundamental Research
– sequence: 2
  givenname: Jim
  orcidid: 0000-0002-5431-1619
  surname: Thomas
  fullname: Thomas, Jim
  email: jimthomas.edu@gmail.com
  organization: Tata Institute of Fundamental Research
BookMark eNp9kNtKAzEQQINUsNa--QH7Aa5Okr0kj1K1F0oVrc_LbDapqdtNSVpK_97WVfFBhIEZhsN5OOek07hGE3JJ4ZoCkzcMWDoZAUCWpieky6TkccoodH7dZ6QfwvLAcM5AQN4lcqa3Hutopjc7599D9OR1ZdXGNovoZVuudHBBYa2juUelfXRnw1r7YF1zQU4N1kH3v3aPvD7czwejePo4HA9up7GiIoVYIOPGqCpBI3VZiewwKEtTQi5LniuZ5khBqMSkpU5A6RwU4wqQZSpTFfIeGbfeyuGyWHu7Qr8vHNri8-H8okC_sarWhUkQUCSMCVElmqnSoDKSZpnJJBh5dMWta9uscb_Duv4RUiiOGYtjxuVbm_HAX7W88i4Er82f-Hf1A85bfGdrvf-XLSbDZ5oD5MA_AN4yg8A
Cites_doi 10.1175/jpo‐d‐21‐0270.1
10.1016/j.jag.2024.103714
10.1175/jpo‐d‐21‐0205.1
10.1175/jpo‐d‐19‐0019.1
10.1126/sciadv.aav5014
10.5194/essd‐14‐4811‐2022
10.1098/rspa.2016.0117
10.1029/2018ms001472
10.1175/jpo‐d‐15‐0170.1
10.1029/2007jc004510
10.1175/jpo‐d‐19‐0077.1
10.1016/0011-7471(70)90022-7
10.1175/jpo‐d‐13‐0159.1
10.1175/jpo‐d‐18‐0253.1
10.1038/35003164
10.1016/j.jcp.2018.10.045
10.1175/1520‐0485(2002)032<2113:oobmot>2.0.co;2
10.1029/2022ms003124
10.1029/2023jc019999
10.1002/2013jc009421
10.1029/2011gb004209
10.1002/2015gl064100
10.1029/2001gl013422
10.1016/j.pocean.2008.01.005
10.5281/zenodo.15305424
10.1016/j.palaeo.2005.10.014
10.1109/PRRS.2016.7867019
10.1029/2023ms003681
10.1175/1520‐0485(1997)027<1770:tvpooh>2.0.co;2
10.1098/rspa.2022.0565
10.3390/rs14133198
10.1175/jpo‐d‐13‐0175.1
10.1175/jpo‐d‐23‐0132.1
10.1175/jpo‐d‐22‐0251.1
10.1038/364701a0
10.1038/nature14539
10.1146/annurev‐marine‐010814‐015746
10.1038/s41586‐024‐07744‐y
10.1002/jgrc.20066
10.1007/978-3-319-24574-4_28
10.1029/2021gl095088
10.5670/oceanog.2004.67
10.1175/2008jpo3810.1
10.1145/3394486.3403198
10.1029/2003jc002241
10.1146/annurev‐marine‐010814‐015912
10.1175/bams‐d‐14‐00015.1
10.1029/2022gl099400
10.1146/annurev.fluid.40.111406.102139
10.1038/323243a0
10.5194/essd‐15‐5517‐2023
10.1146/annurev‐fluid‐031422‐095147
10.1002/grl.50998
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1029/2025JH000655
DatabaseName Wiley Online Library Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID oai_doaj_org_article_f4a0a842288d4e2cbfacf9166f690f9a
10.1029/2025jh000655
10_1029_2025JH000655
JGR170070
Genre researchArticle
GrantInformation_xml – fundername: Ministry of Earth Sciences
  funderid: F.No.MoES/PAMC/DOM/18/2022 (E‐12926)
– fundername: Mathematical modeling of Climate, Ocean, and Atmosphere processes
  funderid: ICTS/COAPS2023/04
– fundername: Theoretical and Practical Perspectives in Geophysical Fluid Dynamics
  funderid: ICTS/TAPGFD2024/05
GroupedDBID 0R~
24P
AAMMB
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
M~E
WIN
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c1850-8a23ffcd4af9ebd86d86a9bfb079b37c957a108c4f5be40ce70c23c0a26c6cda3
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Tue Oct 14 19:02:52 EDT 2025
Wed Oct 01 16:44:28 EDT 2025
Sat Oct 25 05:29:35 EDT 2025
Fri Sep 26 10:30:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1850-8a23ffcd4af9ebd86d86a9bfb079b37c957a108c4f5be40ce70c23c0a26c6cda3
ORCID 0000-0002-5431-1619
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2025JH000655
PageCount 36
ParticipantIDs doaj_primary_oai_doaj_org_article_f4a0a842288d4e2cbfacf9166f690f9a
unpaywall_primary_10_1029_2025jh000655
crossref_primary_10_1029_2025JH000655
wiley_primary_10_1029_2025JH000655_JGR170070
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
Publisher Wiley
Publisher_xml – name: Wiley
References 2009; 41
2019; 11
1981; 664
2008; 38
2008; 76
2025
1993; 364
2024; 632
2020; 50
2015; 42
2000; 403
2013; 118
2020; 49
2012; 26
2008; 113
2018; 31
2016; 46
2023; 53
2021; 48
2023; 55
2019; 5
2015; 18
2023; 15
2024; 128
2015; 521
2024; 129
2013; 40
2015; 96
2015; 120
2002; 32
1997; 27
2024; 54
2014; 2014
2001; 28
2004; 109
1970; 17
2022; 49
2006; 232
2014; 44
1986; 323
2015; 28
2021
2004; 17
2020
2019; 46
2016; A472
2019
2023; 479
2022; 14
2019; 378
2022; 52
2016
2015
2014
2013
2016; 8
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Goodfellow I. (e_1_2_10_21_1) 2016
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
Gauthier J. (e_1_2_10_18_1) 2014; 2014
e_1_2_10_22_1
Rahaman N. (e_1_2_10_41_1) 2019
e_1_2_10_43_1
e_1_2_10_20_1
Zhang Z. (e_1_2_10_63_1) 2018; 31
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 8
  start-page: 161
  issue: 1
  year: 2016
  end-page: 184
  article-title: The impact of submesoscale physics on primary productivity of plankton
  publication-title: Annual Review of Marine Science
– volume: 49
  issue: 11
  year: 2022
  article-title: A deep learning approach to extract internal tides scattered by geostrophic turbulence
  publication-title: Geophysical Research Letters
– volume: 109
  issue: C5
  year: 2004
  article-title: Drifter‐derived maps of lateral diffusivity in the Pacific and Atlantic Oceans in relation to surface circulation patterns
  publication-title: Journal of Geophysical Research
– volume: 15
  start-page: 5517
  issue: 12
  year: 2023
  end-page: 5534
  article-title: A year of transient tracers (chlorofluorocarbon 12 and sulfur hexafluoride), noble gases (helium and neon), and tritium in the arctic ocean from the mosaic expedition (2019–2020)
  publication-title: Earth System Science Data
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 41
  start-page: 253
  issue: 1
  year: 2009
  end-page: 282
  article-title: Ocean circulation kinetic energy: Reservoirs, sources and sinks
  publication-title: Annual Review of Fluid Mechanics
– volume: 50
  start-page: 2669
  issue: 9
  year: 2020
  end-page: 2688
  article-title: How spice is stirred in the Bay of Bengal
  publication-title: Journal of Physical Oceanography
– start-page: 5301
  year: 2019
  end-page: 5310
– volume: 28
  year: 2015
– volume: 46
  start-page: 1439
  issue: 6
  year: 2019
  end-page: 1461
  article-title: An annual cycle of submesoscale vertical flow and restratification in the upper ocean
  publication-title: Journal of Physical Oceanography
– year: 2021
– volume: 403
  start-page: 179
  issue: 6766
  year: 2000
  end-page: 182
  article-title: Evidence for enhanced mixing over rough topography in the abyssal ocean
  publication-title: Nature
– volume: 96
  start-page: 1257
  issue: 8
  year: 2015
  end-page: 1279
  article-title: The LatMix summer campaign: Submesoscale stirring in the upper ocean
  publication-title: Bulletin America Meteorology Social
– volume: 40
  start-page: 5194
  issue: 19
  year: 2013
  end-page: 5198
  article-title: Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters
  publication-title: Geophysical Research Letters
– volume: 44
  start-page: 764
  issue: 2
  year: 2014
  end-page: 780
  article-title: Float‐derived isopycnal diffusivities in the dimes experiment
  publication-title: Journal of Physical Oceanography
– volume: 52
  start-page: 2219
  issue: 9
  year: 2022
  end-page: 2235
  article-title: Changes in global ocean circulation due to isopycnal diffusion
  publication-title: Journal of Physical Oceanography
– volume: 14
  issue: 11
  year: 2022
  article-title: A posteriori learning for quasi‐geostrophic turbulence parametrization
  publication-title: Journal of Advances in Modeling Earth Systems
– year: 2014
– volume: 632
  start-page: 1060
  issue: 8027
  year: 2024
  end-page: 1066
  article-title: Neural general circulation models for weather and climate
  publication-title: Nature
– volume: 31
  year: 2018
  article-title: Generalized cross entropy loss for training deep neural networks with noisy labels
  publication-title: Advances in Neural Information Processing Systems
– volume: 118
  start-page: 901
  issue: 2
  year: 2013
  end-page: 916
  article-title: Global surface eddy diffusivities derived from satellite altimetry
  publication-title: Journal of Geophysical Research: Oceans
– volume: 55
  start-page: 103
  issue: 1
  year: 2023
  end-page: 127
  article-title: Submesoscale dynamics in the upper ocean
  publication-title: Annual Review of Fluid Mechanics
– volume: 5
  issue: 1
  year: 2019
  article-title: Ocean mesoscale mixing linked to climate variability
  publication-title: Science Advances
– year: 2025
– start-page: 1457
  year: 2020
  end-page: 1466
– volume: 232
  start-page: 408
  issue: 2–4
  year: 2006
  end-page: 428
  article-title: Sea surface temperature and salinity reconstruction from coral geochemical tracers
  publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology
– volume: 364
  start-page: 701
  issue: 6439
  year: 1993
  end-page: 703
  article-title: Evidence for slow mixing across the pycnocline from an open‐ocean tracer‐release experiment
  publication-title: Nature
– volume: 323
  start-page: 243
  issue: 6085
  year: 1986
  end-page: 244
  article-title: Estimation of oceanic eddy transports from satellite altimetry
  publication-title: Nature
– volume: 17
  start-page: 55
  issue: 1
  year: 2004
  end-page: 64
  article-title: The role of small‐scale topography in turbulent mixing of the global ocean
  publication-title: Oceanography
– volume: 14
  issue: 13
  year: 2022
  article-title: Subsurface temperature reconstruction for the global ocean from 1993 to 2020 using satellite observations and deep learning
  publication-title: Remote Sensing
– year: 2015
– volume: 28
  start-page: 3967
  issue: 20
  year: 2001
  end-page: 3970
  article-title: Arabian Sea and Bay of Bengal exchange of salt and tracers in an ocean model
  publication-title: Geophysical Research Letters
– volume: 18
  start-page: 234
  year: 2015
  end-page: 241
– volume: 54
  start-page: 1889
  issue: 9
  year: 2024
  end-page: 1902
  article-title: Passive tracer dispersion by idealized flows across Rossby numbers
  publication-title: Journal of Physical Oceanography
– volume: 76
  start-page: 466
  issue: 4
  year: 2008
  end-page: 486
  article-title: On the history of meridional overturning circulation schematic diagrams
  publication-title: Elsevier
– volume: 32
  start-page: 2113
  issue: 7
  year: 2002
  end-page: 2130
  article-title: Observations of boundary mixing over the continental slope
  publication-title: Journal of Physical Oceanography
– volume: 2014
  issue: 5
  year: 2014
  article-title: Conditional generative adversarial nets for convolutional face generation. Class project for Stanford CS231N: Convolutional neural networks for visual recognition
  publication-title: Winter semester
– volume: 664
  year: 1981
– volume: 11
  start-page: 376
  issue: 1
  year: 2019
  end-page: 399
  article-title: Applications of deep learning to ocean data inference and subgrid parameterization
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 479
  issue: 2276
  year: 2023
  article-title: Turbulent wave‐balance exchanges in the ocean
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 27
  start-page: 1770
  issue: 8
  year: 1997
  end-page: 1794
  article-title: The vertical partition of oceanic horizontal kinetic energy and the spectrum of global variability
  publication-title: Journal of Physical Oceanography
– volume: 26
  issue: 2
  year: 2012
  article-title: Data‐based estimates of suboxia, denitrification, and N O production in the ocean and their sensitivities to dissolved O
  publication-title: Global Biogeochemical Cycles
– volume: 44
  start-page: 1030
  issue: 3
  year: 2014
  end-page: 1046
  article-title: Global patterns of mesoscale eddy properties and diffusivities
  publication-title: Journal of Physical Oceanography
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  article-title: Physics‐informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: Journal of Computational Physics
– volume: 113
  issue: C5
  year: 2008
  article-title: Isolating the role of mesoscale eddies in mixing of a passive tracer in an eddy resolving model
  publication-title: Journal of Geophysical Research
– volume: 128
  year: 2024
  article-title: High kinetic energy mesoscale eddy identification based on multi‐task learning and multi‐source data
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– year: 2016
– volume: 8
  start-page: 95
  issue: 1
  year: 2016
  end-page: 123
  article-title: Near‐inertial internal gravity waves in the ocean
  publication-title: Annual Review of Marine Science
– volume: 49
  start-page: 415
  issue: 2
  year: 2020
  end-page: 437
  article-title: Dispersion in the open ocean seasonal pycnocline at scales of 1‐10 km and 1‐6 days
  publication-title: Journal of Physical Oceanography
– volume: 46
  start-page: 1285
  issue: 4
  year: 2016
  end-page: 1307
  article-title: Open‐ocean submesoscale motions: A full seasonal cycle of mixed layer instabilities from gliders
  publication-title: Journal of Physical Oceanography
– volume: 53
  start-page: 1711
  issue: 7
  year: 2023
  end-page: 1730
  article-title: Temporal variability of global surface eddy diffusivities: Estimates and machine learning prediction
  publication-title: Journal of Physical Oceanography
– volume: 120
  start-page: 2287
  issue: 3
  year: 2015
  end-page: 2307
  article-title: Along‐isopycnal variability of spice in the north Pacific
  publication-title: Journal of Geophysical Research: Oceans
– volume: 48
  issue: 19
  year: 2021
  article-title: The influence of ocean topography on the upwelling of carbon in the southern ocean
  publication-title: Geophysical Research Letters
– volume: 52
  start-page: 2609
  issue: 11
  year: 2022
  end-page: 2625
  article-title: Turbulent transition of a flow from small to O(1) Rossby numbers
  publication-title: Journal of Physical Oceanography
– volume: 38
  start-page: 2256
  issue: 10
  year: 2008
  end-page: 2269
  article-title: Mesoscale to submesoscale transition in the California current system: Energy balance and flux
  publication-title: Journal of Physical Oceanography
– volume: 42
  start-page: 4249
  issue: 11
  year: 2015
  end-page: 4255
  article-title: Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake
  publication-title: Geophysical Research Letters
– volume: A472
  issue: 2189
  year: 2016
  article-title: Submesoscale currents in the ocean
  publication-title: Proceedings of the Royal Society
– volume: 129
  issue: 1
  year: 2024
  article-title: Anthropogenic carbon in the Arctic Ocean: Perspectives from different transient tracers
  publication-title: Journal of Geophysical Research: Oceans
– volume: 17
  start-page: 293
  year: 1970
  end-page: 301
– volume: 15
  issue: 10
  year: 2023
  article-title: Generative data‐driven approaches for stochastic subgrid parameterizations in an idealized ocean model
  publication-title: Journal of Advances in Modeling Earth Systems
– start-page: 1
  year: 2016
  end-page: 6
– volume: 14
  start-page: 4811
  issue: 11
  year: 2022
  end-page: 4900
  article-title: Global carbon budget 2022
  publication-title: Earth System Science Data
– year: 2013
– ident: e_1_2_10_54_1
  doi: 10.1175/jpo‐d‐21‐0270.1
– ident: e_1_2_10_58_1
– ident: e_1_2_10_24_1
  doi: 10.1016/j.jag.2024.103714
– ident: e_1_2_10_12_1
  doi: 10.1175/jpo‐d‐21‐0205.1
– ident: e_1_2_10_51_1
  doi: 10.1175/jpo‐d‐19‐0019.1
– ident: e_1_2_10_10_1
  doi: 10.1126/sciadv.aav5014
– ident: e_1_2_10_17_1
  doi: 10.5194/essd‐14‐4811‐2022
– ident: e_1_2_10_37_1
  doi: 10.1098/rspa.2016.0117
– ident: e_1_2_10_7_1
  doi: 10.1029/2018ms001472
– ident: e_1_2_10_55_1
  doi: 10.1175/jpo‐d‐15‐0170.1
– ident: e_1_2_10_8_1
  doi: 10.1029/2007jc004510
– ident: e_1_2_10_27_1
– ident: e_1_2_10_49_1
  doi: 10.1175/jpo‐d‐19‐0077.1
– ident: e_1_2_10_59_1
  doi: 10.1016/0011-7471(70)90022-7
– ident: e_1_2_10_28_1
  doi: 10.1175/jpo‐d‐13‐0159.1
– ident: e_1_2_10_61_1
  doi: 10.1175/jpo‐d‐18‐0253.1
– ident: e_1_2_10_26_1
– volume: 31
  year: 2018
  ident: e_1_2_10_63_1
  article-title: Generalized cross entropy loss for training deep neural networks with noisy labels
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_34_1
  doi: 10.1038/35003164
– ident: e_1_2_10_43_1
  doi: 10.1016/j.jcp.2018.10.045
– ident: e_1_2_10_38_1
  doi: 10.1175/1520‐0485(2002)032<2113:oobmot>2.0.co;2
– ident: e_1_2_10_16_1
  doi: 10.1029/2022ms003124
– ident: e_1_2_10_4_1
– ident: e_1_2_10_42_1
  doi: 10.1029/2023jc019999
– ident: e_1_2_10_29_1
  doi: 10.1002/2013jc009421
– ident: e_1_2_10_5_1
  doi: 10.1029/2011gb004209
– ident: e_1_2_10_20_1
  doi: 10.1002/2015gl064100
– ident: e_1_2_10_25_1
  doi: 10.1029/2001gl013422
– ident: e_1_2_10_44_1
  doi: 10.1016/j.pocean.2008.01.005
– ident: e_1_2_10_6_1
  doi: 10.5281/zenodo.15305424
– ident: e_1_2_10_13_1
  doi: 10.1016/j.palaeo.2005.10.014
– ident: e_1_2_10_14_1
  doi: 10.1109/PRRS.2016.7867019
– ident: e_1_2_10_47_1
– ident: e_1_2_10_39_1
  doi: 10.1029/2023ms003681
– ident: e_1_2_10_60_1
  doi: 10.1175/1520‐0485(1997)027<1770:tvpooh>2.0.co;2
– ident: e_1_2_10_53_1
  doi: 10.1098/rspa.2022.0565
– start-page: 5301
  volume-title: International conference on machine learning
  year: 2019
  ident: e_1_2_10_41_1
– ident: e_1_2_10_50_1
  doi: 10.3390/rs14133198
– ident: e_1_2_10_32_1
  doi: 10.1175/jpo‐d‐13‐0175.1
– ident: e_1_2_10_48_1
  doi: 10.1175/jpo‐d‐23‐0132.1
– ident: e_1_2_10_62_1
  doi: 10.1175/jpo‐d‐22‐0251.1
– ident: e_1_2_10_35_1
  doi: 10.1038/364701a0
– ident: e_1_2_10_33_1
  doi: 10.1038/nature14539
– ident: e_1_2_10_40_1
– ident: e_1_2_10_3_1
  doi: 10.1146/annurev‐marine‐010814‐015746
– ident: e_1_2_10_30_1
  doi: 10.1038/s41586‐024‐07744‐y
– ident: e_1_2_10_2_1
  doi: 10.1002/jgrc.20066
– ident: e_1_2_10_45_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_10_9_1
  doi: 10.1029/2021gl095088
– ident: e_1_2_10_31_1
  doi: 10.5670/oceanog.2004.67
– ident: e_1_2_10_11_1
  doi: 10.1175/2008jpo3810.1
– ident: e_1_2_10_57_1
  doi: 10.1145/3394486.3403198
– volume: 2014
  issue: 5
  year: 2014
  ident: e_1_2_10_18_1
  article-title: Conditional generative adversarial nets for convolutional face generation. Class project for Stanford CS231N: Convolutional neural networks for visual recognition
  publication-title: Winter semester
– ident: e_1_2_10_64_1
  doi: 10.1029/2003jc002241
– volume-title: Deep learning
  year: 2016
  ident: e_1_2_10_21_1
– ident: e_1_2_10_36_1
  doi: 10.1146/annurev‐marine‐010814‐015912
– ident: e_1_2_10_46_1
  doi: 10.1175/bams‐d‐14‐00015.1
– ident: e_1_2_10_56_1
  doi: 10.1029/2022gl099400
– ident: e_1_2_10_15_1
  doi: 10.1146/annurev.fluid.40.111406.102139
– ident: e_1_2_10_23_1
  doi: 10.1038/323243a0
– ident: e_1_2_10_22_1
  doi: 10.5194/essd‐15‐5517‐2023
– ident: e_1_2_10_52_1
  doi: 10.1146/annurev‐fluid‐031422‐095147
– ident: e_1_2_10_19_1
  doi: 10.1002/grl.50998
SSID ssj0003320807
Score 2.3045793
Snippet In this paper we examine the possibility of directly predicting passive tracer dynamics from flow fields. We use a two‐vertical‐mode model for generating flows...
Abstract In this paper we examine the possibility of directly predicting passive tracer dynamics from flow fields. We use a two‐vertical‐mode model for...
SourceID doaj
unpaywall
crossref
wiley
SourceType Open Website
Open Access Repository
Index Database
Publisher
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwGA2yF_VBFBXnjT6oTxaz3Jo8eptj4BB1sLeSKyqjG-uG-O9N0m5sIPoi9OmjNOF8ac_5mo8TAM6coYo6pFImuEmJMDR4QMpUSC9PWlA5Eu2aHnus0yfdAR0sHfUVesIqe-AKuCtHJJQ8GFVxQyzSykntvKZhztd1TkRpBLlYKqbCNxhjH4RZ3ekOkQhFPu12IuXSFQ6KVv2bYH1WjOXXpxwOV2Vq5Jn2NtiqBWJyXU1sB6zZYheI4KHho72qabtMniZhgyW0LCcvgdHKUenBtomnHm0nyd17MAAPP8L2QL99_3rbSetDD1LtqROmXCLsnDZEOmGV4cxfUiinYCYUzrSgmWxBromjyhKobQY1whpKxDTTRuJ90ChGhT0ASaasfyWhldgYwhhXmkjsCySNFUYcmiY4n8OQjytvizzuSSORL8PVBDcBo8U9wZE6Bnye8jpP-V95aoKLBcI_jvbxNh_tMsL_65Ty7sNzcBbM4OF_TO4IbISnV71jx6AxnczsiRcbU3Ua19U3Bq3PCA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7o9iA-eEHFikof1Cc7sjZJm8d5mWPgGOpgPpVcvY1t7ILorzdpu7GJiCD0KTRt0nP5zklOvwCcGEUEMaEIKEtUgJkijgOSB4zb8KSKhMEZXdNtizY6uNkl3YV_YXJ-iPmCm7OMzF87Ax8qk_v5gnKAucydNBsZjpJVKFNi4_ESlDutdu3RnSrnitMsPqGi4n3W5fU577KERRll_zqsTftD_vHOe73lcDXDm_omyNlI8zKTt8p0Iiry8xuJ4_-msgUbRTjq13L92YYV3d8B5hg7bGsrLxEf--2R285xBdL-vcPP8WBsRat9C3RSj_yrF0c37pbddqFTv364bATFEQuBtECNgoSHkTFSYW6YFiqh9uJMGIFiJqJYMhLzKkokNkRojKSOkQwjiXhIJZWKR3tQ6g_6eh_8WGjrAJDmkVKY0kRIzCObjslIRGGClAens4-dDnMmjTTbAQ9Zujh5Dy6cJOb3OP7rrGEwekoLc0oN5ognjr4sUViHUhgujY10qbHZvmHcg7O5HH9820wFPDjPJPPrkNLmzZ3jMYzRwV-fewilyWiqj2zEMhHHhUp-AXUj6EA
  priority: 102
  providerName: Unpaywall
Title Neural Networks Predicting Submesoscale Tracer Dispersion
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2025JH000655
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2025JH000655
https://doaj.org/article/f4a0a842288d4e2cbfacf9166f690f9a
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2993-5210
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003320807
  issn: 2993-5210
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2993-5210
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003320807
  issn: 2993-5210
  databaseCode: M~E
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2993-5210
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003320807
  issn: 2993-5210
  databaseCode: 24P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-DupBFBXro-xBPbmYJtlHjr5qKViKWqinZfLygbTSKuLF324mu5YWRBCWPWRDEmZn9puZTL4l5MCZRCWOqTiVuYmFNAlyQEIswbsnDaqcCHRN15201RPtftKvEm54Fqbkh5gk3NAywvcaDRzUuCIbQI5MH7Un7VbA0GSeLDa8K4MazkR3kmPhnNHyxDTDMjWPVLSqffdDnEwPMINKgbx_hSy9D17h8wNeXmYd14A8zTWyWrmM0Wn5jtfJnB1sEImsGr61U5Zxj6PuCLdcsIg5ukWMGw_HXvw28mCk7Si6eEJKcEyNbZJe8_LuvBVXv0GItQdTGufAuHPaCHDSKpOn_gKpnKKZVDzTMsmgQXMtXKKsoNpmVDOuKbBUp9oA3yILg-HAbpMoU9YbKbXAjRFpmistgPuQSXPFWU5NjRz-iKF4LdkuirBLzWQxLa4aOUMZTfogR3VoGI4eikrlCyeAQo4UY7kRlmnlQDvvjabOR-ROQo0cTST862zPjz-zHQfx_7mkon11g1yDGd35X_ddsowPyrqxPbLwNnq3-97ReFP1oE31EKb7-_XXZZ0s9jrd0_tvFh7Lpw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-DtWDKCrW5x7Uk4tpks1ujr5r1VK0grclTx-Utmwr4r83k12LBRGEPYUhWb5N9puZTL4gtO9MohJHVMxFZmImTAIakDIW0rsnDawcC3JNd23efGStp-SpuucUzsKU-hCThBusjPC_hgUOCelKbQBEMn3YnrSagUSTWTTPeIND9EVYZ5JkoZTg8sg0gTo1T1W4Kn73XRz_7GCKloJ6_yKqvfeH8vND9nrTnmugnstltFT5jNFJ-ZFX0IztryIBshq-tV3WcY-iTgF7LlDFHD0AyY0GI4-_jTwbaVtE56-gCQ65sTX0eHnRPWvG1T0IsfZsiuNMEuqcNkw6YZXJuH-kUE7hVCiaapGksoEzzVyiLMPaplgTqrEkXHNtJF1Hc_1B326gKFXWr1JsJTWGcZ4pzST1MZOmipIMmzo6-IYhH5ZyF3nYpiYi_wlXHZ0CRhMbEKkODYPiOa_mfO6YxDIDjbHMMEu0clI7745y50NyJ2QdHU4Q_nW0t5fv0Y4C_H--Ut66ugexwRRv_s98D9Wa3bvb_Pa6fbOFFsCoLCLbRnPj4t3ueK9jrHbDzPoCOBzLPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1JSwMxFMeDVnA5iKJiXeegnhyMWWYmR7XWWrUUF_A2ZHVB2tIF8dubl5kWCyIIcwqPZHiTzP8lefkFoQNnuOKOqDgRmYmZMBwYkDIW0ocnp1g5FnBNd62k8cSaz_y5vOcUzsIUfIjJghuMjPC_hgFue8aVtAGAZPppO282gojyWTTHuBdDQDuz9mSRhVKCiyPTBPLUvFThMvndV3Hys4IpWQr0_iW0MOr05Nen_PiYjlyD9NRX0HIZM0ZnxUdeRTO2s4YEYDV8aavI4x5E7T7suUAWc_QAIjfoDrz_beTVSNt-VHsDJjisja2jp_rl40UjLu9BiLVXUxxnklDntGHSCatMlvhHCuUUToWiqRY8lac408xxZRnWNsWaUI0lSXSijaQbqNLpduwmilJl_SjFVlJjWJJkSjNJ_ZxJU0VJhk0VHY7dkPcK3EUetqmJyH-6q4rOwUcTG4BUh4Ju_yUv-3zumMQyA8ZYZpglWjmpnQ9HE-en5E7IKjqaePjX1t5fx60dB_f_-Up58-oeYIMp3vqf-T6ab9fq-e1162YbLYJNkUO2gyrD_sju-qBjqPZCx_oGMtjKzA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7o9iA-eEHFikof1Cc7sjZJm8d5mWPgGOpgPpVcvY1t7ILorzdpu7GJiCD0KTRt0nP5zklOvwCcGEUEMaEIKEtUgJkijgOSB4zb8KSKhMEZXdNtizY6uNkl3YV_YXJ-iPmCm7OMzF87Ax8qk_v5gnKAucydNBsZjpJVKFNi4_ESlDutdu3RnSrnitMsPqGi4n3W5fU577KERRll_zqsTftD_vHOe73lcDXDm_omyNlI8zKTt8p0Iiry8xuJ4_-msgUbRTjq13L92YYV3d8B5hg7bGsrLxEf--2R285xBdL-vcPP8WBsRat9C3RSj_yrF0c37pbddqFTv364bATFEQuBtECNgoSHkTFSYW6YFiqh9uJMGIFiJqJYMhLzKkokNkRojKSOkQwjiXhIJZWKR3tQ6g_6eh_8WGjrAJDmkVKY0kRIzCObjslIRGGClAens4-dDnMmjTTbAQ9Zujh5Dy6cJOb3OP7rrGEwekoLc0oN5ognjr4sUViHUhgujY10qbHZvmHcg7O5HH9820wFPDjPJPPrkNLmzZ3jMYzRwV-fewilyWiqj2zEMhHHhUp-AXUj6EA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Networks+Predicting+Submesoscale+Tracer+Dispersion&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Bijay%2C+Mayank+Kumar&rft.au=Thomas%2C+Jim&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2025JH000655&rft.externalDBID=10.1029%252F2025JH000655&rft.externalDocID=JGR170070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon