Identifications of Lung Cancer Using Kernel Weighted Fuzzy Local Information C-Means Algorithm

An improved version of the Fuzzy C-Means (FCM) method called Kernel Weighted Fuzzy Local Information C-Means (KWFLICM), which incorporates a Kernel Distance Measure (KDM), and a trade-off Weighted Fuzzy Factor (WFF) for image segmentation is proposed. The WFF considers spatial distance and the inten...

Full description

Saved in:
Bibliographic Details
Published inTraitement du signal Vol. 42; no. 2; pp. 1173 - 1184
Main Authors Karthikeyan, Sampathkumar, Kalaiselvi, Subbarayan, Sheela, John Bosco Joselin Jeya, Ashok, Maram
Format Journal Article
LanguageEnglish
Published Edmonton International Information and Engineering Technology Association (IIETA) 01.04.2025
Subjects
Online AccessGet full text
ISSN0765-0019
1958-5608
1958-5608
DOI10.18280/ts.420247

Cover

Abstract An improved version of the Fuzzy C-Means (FCM) method called Kernel Weighted Fuzzy Local Information C-Means (KWFLICM), which incorporates a Kernel Distance Measure (KDM), and a trade-off Weighted Fuzzy Factor (WFF) for image segmentation is proposed. The WFF considers spatial distance and the intensity difference of all pixels in the surrounding area simultaneously. The KWFLICM algorithm uses WFF to precisely determine the damping extent of pixels next to one another. The target function is improved by adding KDM, making it even more robust to noise and outliers. Adaptive kernel parameters are determined using an efficient bandwidth selection mechanism. The distance variance of each data point is used to calculate these parameters via a process of comparison. The KDM and the parameter-free WFF trade-off improve the segmentation accuracy of the KWFLICM algorithm. Simulation results on actual and simulated images show that the KWFLICM algorithm performs well against noisy images. KWFLICM’s combination of kernel mapping and spatial weighting enables it to produce better segmentation and classification results in lung cancer identification. The KWFLICM algorithm’s noise resilience, accurate boundary detection, and sensitivity to small or complex tumor structures make it especially valuable in lung cancer detection on two benchmark databases, including LIDC and ELCAP.
AbstractList An improved version of the Fuzzy C-Means (FCM) method called Kernel Weighted Fuzzy Local Information C-Means (KWFLICM), which incorporates a Kernel Distance Measure (KDM), and a trade-off Weighted Fuzzy Factor (WFF) for image segmentation is proposed. The WFF considers spatial distance and the intensity difference of all pixels in the surrounding area simultaneously. The KWFLICM algorithm uses WFF to precisely determine the damping extent of pixels next to one another. The target function is improved by adding KDM, making it even more robust to noise and outliers. Adaptive kernel parameters are determined using an efficient bandwidth selection mechanism. The distance variance of each data point is used to calculate these parameters via a process of comparison. The KDM and the parameter-free WFF trade-off improve the segmentation accuracy of the KWFLICM algorithm. Simulation results on actual and simulated images show that the KWFLICM algorithm performs well against noisy images. KWFLICM’s combination of kernel mapping and spatial weighting enables it to produce better segmentation and classification results in lung cancer identification. The KWFLICM algorithm’s noise resilience, accurate boundary detection, and sensitivity to small or complex tumor structures make it especially valuable in lung cancer detection on two benchmark databases, including LIDC and ELCAP.
Author Kalaiselvi, Subbarayan
Ashok, Maram
Sheela, John Bosco Joselin Jeya
Karthikeyan, Sampathkumar
Author_xml – sequence: 1
  givenname: Sampathkumar
  surname: Karthikeyan
  fullname: Karthikeyan, Sampathkumar
– sequence: 2
  givenname: Subbarayan
  surname: Kalaiselvi
  fullname: Kalaiselvi, Subbarayan
– sequence: 3
  givenname: John Bosco Joselin Jeya
  surname: Sheela
  fullname: Sheela, John Bosco Joselin Jeya
– sequence: 4
  givenname: Maram
  surname: Ashok
  fullname: Ashok, Maram
BookMark eNp9kE1LAzEQhoNUsNZe_AUBb8rWZD-S7LEsVosrXizeXNLspN2yTWqSRdpf79L17FyGged9GN5rNDLWAEK3lMyoiAV5DH6WxiRO-QUa0zwTUcaIGKEx4SyLCKH5FZp6vyP9JDRlLBmjr2UNJjS6UTI01nhsNS47s8GFNAocXvmmP17BGWjxJzSbbYAaL7rT6YhLq2SLl0Zbtz-ncRG9gewl83ZjXRO2-xt0qWXrYfq3J2i1ePooXqLy_XlZzMtIUZGGSOtc8pgL4DRnEmKtGVVqTQlj6VrUCgQRWnMGouegVlIyTgjTKks1xGtIJuhh8HbmII8_sm2rg2v20h0rSqpzO1Xw1dBOT98N9MHZ7w58qHa2c6Z_sEpikvE0ZSTvqfuBUs5670D_p_wFG3J0Xw
ContentType Journal Article
Copyright 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.18280/ts.420247
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest One Business
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList ProQuest One Business
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1958-5608
EndPage 1184
ExternalDocumentID 10.18280/ts.420247
10_18280_ts_420247
GroupedDBID 123
8FE
8FG
AABCJ
AAYXX
ABJCF
AENEX
AFKRA
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IEFQH
KBL
L6V
M7S
OK1
PHGZM
PHGZT
PQBIZ
PQGLB
PTHSS
PUEGO
TH9
~02
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
2WC
77J
ADTOC
UNPAY
ID FETCH-LOGICAL-c184t-ff9a7278e7196ae2ff61ccb10664b8dce808ff76e89a7edcaa67006fc54fe2be3
IEDL.DBID UNPAY
ISSN 0765-0019
1958-5608
IngestDate Tue Aug 19 23:30:30 EDT 2025
Sun Jul 13 04:18:25 EDT 2025
Wed Oct 01 06:31:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c184t-ff9a7278e7196ae2ff61ccb10664b8dce808ff76e89a7edcaa67006fc54fe2be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iieta.org/download/file/fid/165406
PQID 3205744609
PQPubID 2069443
PageCount 12
ParticipantIDs unpaywall_primary_10_18280_ts_420247
proquest_journals_3205744609
crossref_primary_10_18280_ts_420247
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Edmonton
PublicationPlace_xml – name: Edmonton
PublicationTitle Traitement du signal
PublicationYear 2025
Publisher International Information and Engineering Technology Association (IIETA)
Publisher_xml – name: International Information and Engineering Technology Association (IIETA)
SSID ssj0000314663
Score 2.2970355
Snippet An improved version of the Fuzzy C-Means (FCM) method called Kernel Weighted Fuzzy Local Information C-Means (KWFLICM), which incorporates a Kernel Distance...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1173
SubjectTerms Algorithms
Annotations
Classification
Damping
Data points
Datasets
Identification
Image databases
Image segmentation
Lung cancer
Machine learning
Medical diagnosis
Medical imaging
Medical screening
Parameters
Pixels
Tradeoffs
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0oHNSD8TOiaDaR60pbyrY9GKNEYhSJMRI52Wx3Z_WABaHEwK93tx-AF67Ndg9vOjvzpjtvAGrKdmzkgU2Vyz3qciuiASJS0WCWL6TUT1O1zy576LmP_WZ_A7pFL4y5VlmcielBLYfC1MjrDUdnFpq7WMHN6IeaqVHm72oxQoPnoxXkdSoxtgllxyhjlaB8d999eV1UXYxYO8vGq3msSU2Ck2uWauZh1ZPJlevoqOX9j1LL1HNrGo_47JcPBitRqL0Hu3n6SG4ze-_DBsYHsLMiKngIH1nvrSqKcWSoSEe7NGkZA49JekmAPOE4xgF5TyujKEl7Op_PSMdENpK3KJm3SYs-o45m5HbwqdFIvr6PoNe-f2s90HyKAhWavSVUqYDrJMVHTzsbR0cpZgsRaSrI3MiXAn3LV8pj6Ot1KAXnpnOHKdF0FToRNo6hFA9jPAHio7SEQhlp3uzaKHjA0HIjLngkNLPhFbgsUAtHmVhGaEiGwTZMJmGGbQWqBaBh7jCTcGneCtQWIK_Z5XT9Lmew7ZhJvekdmyqUkvEUz3X6kEQX-TfxB8ySxls
  priority: 102
  providerName: ProQuest
Title Identifications of Lung Cancer Using Kernel Weighted Fuzzy Local Information C-Means Algorithm
URI https://www.proquest.com/docview/3205744609
https://iieta.org/download/file/fid/165406
UnpaywallVersion publishedVersion
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1958-5608
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000314663
  issn: 0765-0019
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1958-5608
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000314663
  issn: 0765-0019
  databaseCode: 8FG
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB1BcgAOlBYQoSVaiV43sR17sz6GqKGCElUVEeWCtR-zUBGcKnGEml_P7NqhUQ9VLz5Yu5almdG8tzvzBuDYxUmMKo-5S9WQpyrSPEdEbgYiksZaehvUPqfidJZ-uswuG5mc0AtzhZUKN_jWi8UvlO17gSJ62L5vvPHq2m2REe5uQXs2PR99DzqbIuMerIQr5ExySuOy0SIlRhH1q1UvJZbvZ6jsZp9bSPlkXV6rm79qPt_JLpO9ekzRKogS-qKS3711pXtmc0ey8WE__gKeNyCTjWqv2IdHWB7Asx3pwZfwo-7QddsjO7Zw7IwCn429GyxZKCVgn3FZ4px9C-enaNlkvdncsDOf_1jTyOR3szH_gpTz2Gj-c7G8qn79eQWzycnX8SlvZi1wQxyv4s7liqCMxCGFpMLEOREbo4kwilRLa1BG0rmhQEnr0BqlfH-PcCZLHSYaB6-hVS5KfANMoo2MQ6uJXacxGpULjFKtjNKG-I_qwPutDYrrWlKj8FTEW6qoVkVtqQ4cbc1TNGG1KgYJwUsisFHegeP_JrvnK28ftuwQniZ-rm-oyDmCVrVc4zsCG5XuwmM5-diF9oeT6flFt_G5f-Vq2Co
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB3RcKA9VP1CDU3pStDjgu1s1vYBVZASBRKiCoHKCbPenW0PwUkTRyj5cf1tnfUH0As3rpY9h-fxzLzxzhuAXesHPqrY51aokAvlpTxGRK7b0ou0MXS1UPscyf6lOL3qXK3B33oWxh2rrGNiEajNRLse-X47oMqCuIsXf5v-4W5rlPu7Wq_QUNVqBXNQSIxVgx0DXN4RhZsfnHyn9_01CHrHF90-r7YMcE3sJufWxoqSeIQhOaPCwFrpa50SVZIijYzGyIusDSVGdB8arZSbbJFWd4TFIMU22X0B66ItYiJ_60fHox_n910eJw4vy3VuoexwV1BVGqnEdLz9fL4nAsqS4f9Z8aHU3VhkU7W8U-Pxo6zXewOvq3KVHZb-9RbWMHsHrx6JGL6H63LW19bNPzaxbEghhHWdQ81YcSiBDXCW4Zj9LDqxaFhvsVot2dBlUlaNRLmnWZefIWVPdjj-Rejnv28_wOWz4LkJjWyS4UdgERpPWzQp8XTho1axRE-kSqtUE5NSTdipUUumpThH4kiNwzbJ50mJbRNaNaBJ9YHOkwd3asLuPchPWNl62soX2OhfnA2T4clo8AleBm5LcHG-pwWNfLbAz1S65Ol25R8Mbp7bJf8BW6wFpA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kHtSDb7G-WNDrtkmabDfHUiziCw8W9WLYx6yKNZU2Reyvd3aTavEgXnIIuyEwM8z37c58Q8iJDaMQZBoyG8s2i2WgWAoATLd4ILQx-NarfV7zs358fp_cVzI5vhfmBQrpb_CNE4sfStN0AkX4ME3XeOPUtRd5gri7Rhb71zedB6-zyRPmwIq_Qk4EwzQuKi1SZBRBsxg3YmT5bobKfPb5gZRLk_xdfn7IwWAuu_TWyjFFYy9K6IpKXhuTQjX09Jdk4_9-fJ2sViCTdkqv2CALkG-SlTnpwS3yWHbo2tmRHR1aeomBT7vODUbUlxLQCxjlMKB3_vwUDO1NptNPeunyH60amdxu2mVXgDmPdgZPw9FL8fy2Tfq909vuGatmLTCNHK9g1qYSoYyANoakhMhaHmqtkDDyWAmjQQTC2jYHgevAaCldfw-3OoktRApaO6SWD3PYJVSACbQFo5BdxyFomXIIYiW1VBr5j6yT45kNsvdSUiNzVMRZKivGWWmpOjmYmSerwmqctSKEl0hgg7ROTr5N9sdX9v63bJ8sR26ur6_IOSC1YjSBQwQbhTqqvOwLKmbVqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifications+of+Lung+Cancer+Using+Kernel+Weighted+Fuzzy+Local+Information+C-Means+Algorithm&rft.jtitle=Traitement+du+signal&rft.au=Karthikeyan%2C+Sampathkumar&rft.au=Kalaiselvi%2C+Subbarayan&rft.au=Sheela%2C+John+Bosco+Joselin+Jeya&rft.au=Ashok%2C+Maram&rft.date=2025-04-01&rft.issn=0765-0019&rft.eissn=1958-5608&rft.volume=42&rft.issue=2&rft.spage=1173&rft.epage=1184&rft_id=info:doi/10.18280%2Fts.420247&rft.externalDBID=n%2Fa&rft.externalDocID=10_18280_ts_420247
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0765-0019&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0765-0019&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0765-0019&client=summon