Rapid T 1 quantification from high resolution 3D data with model‐based reconstruction

Magnetic resonance imaging protocols for the assessment of quantitative information suffer from long acquisition times since multiple measurements in a parametric dimension are required. To facilitate the clinical applicability, accelerating the acquisition is of high importance. To this end, we pro...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 81; no. 3; pp. 2072 - 2089
Main Authors Maier, Oliver, Schoormans, Jasper, Schloegl, Matthias, Strijkers, Gustav J., Lesch, Andreas, Benkert, Thomas, Block, Tobias, Coolen, Bram F., Bredies, Kristian, Stollberger, Rudolf
Format Journal Article
LanguageEnglish
Published United States 01.03.2019
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
DOI10.1002/mrm.27502

Cover

Abstract Magnetic resonance imaging protocols for the assessment of quantitative information suffer from long acquisition times since multiple measurements in a parametric dimension are required. To facilitate the clinical applicability, accelerating the acquisition is of high importance. To this end, we propose a model-based optimization framework in conjunction with undersampling 3D radial stack-of-stars data. High resolution 3D T maps are generated from subsampled data by employing model-based reconstruction combined with a regularization functional, coupling information from the spatial and parametric dimension, to exploit redundancies in the acquired parameter encodings and across parameter maps. To cope with the resulting non-linear, non-differentiable optimization problem, we propose a solution strategy based on the iteratively regularized Gauss-Newton method. The importance of 3D-spectral regularization is demonstrated by a comparison to 2D-spectral regularized results. The algorithm is validated for the variable flip angle (VFA) and inversion recovery Look-Locker (IRLL) method on numerical simulated data, MRI phantoms, and in vivo data. Evaluation of the proposed method using numerical simulations and phantom scans shows excellent quantitative agreement and image quality. T maps from accelerated 3D in vivo measurements, e.g. 1.8 s/slice with the VFA method, are in high accordance with fully sampled reference reconstructions. The proposed algorithm is able to recover T maps with an isotropic resolution of 1 mm from highly undersampled radial data by exploiting structural similarities in the imaging volume and across parameter maps.
AbstractList Magnetic resonance imaging protocols for the assessment of quantitative information suffer from long acquisition times since multiple measurements in a parametric dimension are required. To facilitate the clinical applicability, accelerating the acquisition is of high importance. To this end, we propose a model-based optimization framework in conjunction with undersampling 3D radial stack-of-stars data. High resolution 3D T maps are generated from subsampled data by employing model-based reconstruction combined with a regularization functional, coupling information from the spatial and parametric dimension, to exploit redundancies in the acquired parameter encodings and across parameter maps. To cope with the resulting non-linear, non-differentiable optimization problem, we propose a solution strategy based on the iteratively regularized Gauss-Newton method. The importance of 3D-spectral regularization is demonstrated by a comparison to 2D-spectral regularized results. The algorithm is validated for the variable flip angle (VFA) and inversion recovery Look-Locker (IRLL) method on numerical simulated data, MRI phantoms, and in vivo data. Evaluation of the proposed method using numerical simulations and phantom scans shows excellent quantitative agreement and image quality. T maps from accelerated 3D in vivo measurements, e.g. 1.8 s/slice with the VFA method, are in high accordance with fully sampled reference reconstructions. The proposed algorithm is able to recover T maps with an isotropic resolution of 1 mm from highly undersampled radial data by exploiting structural similarities in the imaging volume and across parameter maps.
Author Schloegl, Matthias
Benkert, Thomas
Strijkers, Gustav J.
Coolen, Bram F.
Stollberger, Rudolf
Schoormans, Jasper
Block, Tobias
Bredies, Kristian
Maier, Oliver
Lesch, Andreas
Author_xml – sequence: 1
  givenname: Oliver
  surname: Maier
  fullname: Maier, Oliver
  organization: Institute of Medical Engineering Graz University of Technology Graz Austria, BioTechMed‐Graz Graz Austria
– sequence: 2
  givenname: Jasper
  surname: Schoormans
  fullname: Schoormans, Jasper
  organization: Department of Biomedical Engineering and Physics Academic Medical Center Amsterdam Zuidoost The Netherlands
– sequence: 3
  givenname: Matthias
  surname: Schloegl
  fullname: Schloegl, Matthias
  organization: Institute of Medical Engineering Graz University of Technology Graz Austria, BioTechMed‐Graz Graz Austria
– sequence: 4
  givenname: Gustav J.
  surname: Strijkers
  fullname: Strijkers, Gustav J.
  organization: Department of Biomedical Engineering and Physics Academic Medical Center Amsterdam Zuidoost The Netherlands
– sequence: 5
  givenname: Andreas
  surname: Lesch
  fullname: Lesch, Andreas
  organization: Institute of Medical Engineering Graz University of Technology Graz Austria, BioTechMed‐Graz Graz Austria
– sequence: 6
  givenname: Thomas
  surname: Benkert
  fullname: Benkert, Thomas
  organization: Center for Advanced Imaging Innovation and Research New York University School of Medicine New York New York, Bernard and Irene Schwartz Center for Biomedical Imaging New York University School of Medicine New York New York
– sequence: 7
  givenname: Tobias
  surname: Block
  fullname: Block, Tobias
  organization: Center for Advanced Imaging Innovation and Research New York University School of Medicine New York New York, Bernard and Irene Schwartz Center for Biomedical Imaging New York University School of Medicine New York New York
– sequence: 8
  givenname: Bram F.
  surname: Coolen
  fullname: Coolen, Bram F.
  organization: Department of Biomedical Engineering and Physics Academic Medical Center Amsterdam Zuidoost The Netherlands
– sequence: 9
  givenname: Kristian
  surname: Bredies
  fullname: Bredies, Kristian
  organization: BioTechMed‐Graz Graz Austria, Institute for Mathematics and Scientific Computing University of Graz Graz Austria
– sequence: 10
  givenname: Rudolf
  surname: Stollberger
  fullname: Stollberger, Rudolf
  organization: Institute of Medical Engineering Graz University of Technology Graz Austria, BioTechMed‐Graz Graz Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30346053$$D View this record in MEDLINE/PubMed
BookMark eNpt0MlKA0EQBuBGImbRgy8gffUwsXqZpY8SVwgIEvE49PRiWjIzsbsH8eYj-Iw-iZNEPYinguKrgv8fo0HTNgahYwJTAkDPal9PaZ4C3UMjklKa0FTwARpBziFhRPAhGofwDABC5PwADRkwnkHKRujxXq6dxgtM8Esnm-isUzK6tsHWtzVeuqcl9ia0q267ZBdYyyjxq4tLXLfarD7fPyoZjO6VapsQfac28hDtW7kK5uh7TtDD1eVidpPM765vZ-fzRJGCxkQXqiJUs5RnHHReiExxVQgjrQYmbJYTleZaSyYJcFMoa0QKvGJ5HzczxrIJOtn9XXdVbXS59q6W_q38SdiD0x1Qvg3BG_tLCJSb9sq-vXLbXm_P_ljl4raN6KVb_XPxBaobcxg
CitedBy_id crossref_primary_10_1016_j_neuroimage_2022_119680
crossref_primary_10_1016_j_compmedimag_2022_102071
crossref_primary_10_1016_j_media_2021_102017
crossref_primary_10_1002_mrm_30143
crossref_primary_10_1002_mrm_30045
crossref_primary_10_1016_j_compbiomed_2024_108668
crossref_primary_10_1016_j_mri_2024_110239
crossref_primary_10_1002_mrm_30105
crossref_primary_10_1002_mrm_30446
crossref_primary_10_1098_rsta_2020_0196
crossref_primary_10_1002_mrm_29131
crossref_primary_10_3389_fphy_2023_1299522
crossref_primary_10_1002_mrm_29614
crossref_primary_10_1002_mrm_27874
crossref_primary_10_1016_j_media_2024_103148
crossref_primary_10_1002_mrm_28849
crossref_primary_10_3389_fcvm_2023_1285206
crossref_primary_10_3390_s19245371
crossref_primary_10_1016_j_media_2021_102198
crossref_primary_10_1016_j_mrl_2024_200134
crossref_primary_10_3390_appliedmath4030059
crossref_primary_10_21105_joss_02727
crossref_primary_10_1002_mrm_29521
crossref_primary_10_1002_mrm_29664
crossref_primary_10_1002_mrm_28497
crossref_primary_10_1002_mrm_30318
crossref_primary_10_1016_j_jmr_2021_107011
crossref_primary_10_1002_mrm_28679
crossref_primary_10_1002_nbm_4927
crossref_primary_10_1002_mrm_28857
crossref_primary_10_1002_mrm_29846
crossref_primary_10_1002_mrm_29989
crossref_primary_10_1002_mrm_29721
crossref_primary_10_1186_s12968_019_0570_3
crossref_primary_10_1016_j_media_2021_102067
Cites_doi 10.1002/mrm.21236
10.1002/mrm.24158
10.1371/journal.pone.0122611
10.1016/S0730-725X(99)00025-9
10.1137/16M1092015
10.1002/ima.22196
10.1016/j.mri.2017.07.007
10.1137/030601880
10.1002/mrm.26977
10.1002/mrm.22595
10.1002/mrm.22357
10.1002/mrm.10407
10.1109/TMI.2016.2620961
10.1002/mrm.27138
10.1002/mrm.10171
10.1137/15M1023865
10.1002/mrm.25421
10.1109/TMI.2014.2322815
10.1109/TMI.2009.2023119
10.1137/080716542
10.1016/0730-725X(87)90021-X
10.1002/mrm.23128
10.1007/s10851-010-0251-1
10.1002/mrm.22483
10.1088/0266-5611/26/3/035007
10.1109/TMI.2014.2333370
10.1002/mrm.27434.
10.1109/TMI.2006.885337
10.1137/S1052623497318992
10.1109/TSP.2004.831016
10.1002/mrm.24600
10.1137/090769521
10.1007/s10589-012-9476-9
10.1002/mrm.21691
10.1002/mrm.22964
10.1002/mrm.25135
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.25161
10.1002/mrm.24577
10.1016/0730-725X(90)90041-Y
10.1002/mrm.25776
10.1063/1.1684482
10.1002/mrm.26726
ContentType Journal Article
Copyright 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1002/mrm.27502
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2089
ExternalDocumentID 30346053
10_1002_mrm_27502
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: SFB
  grantid: F32-N18
– fundername: Austrian Academy of Sciences (ÖAW)
  grantid: 24966
– fundername: VENI
  grantid: 14348
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CITATION
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c182t-d8cb12d354640d7896c4c89eafd039f671c57dda3a104e8cfe9504b372756eef3
ISSN 0740-3194
IngestDate Thu Apr 03 06:58:50 EDT 2025
Wed Oct 01 02:05:23 EDT 2025
Thu Apr 24 22:54:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords T1 quantification
MRI
variable flip angle
inversion-recovery Look-Locker
constrained reconstruction
imaging
model-based reconstruction
Language English
License 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c182t-d8cb12d354640d7896c4c89eafd039f671c57dda3a104e8cfe9504b372756eef3
PMID 30346053
PageCount 18
ParticipantIDs pubmed_primary_30346053
crossref_primary_10_1002_mrm_27502
crossref_citationtrail_10_1002_mrm_27502
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-00
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2019
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Block KT (e_1_2_8_32_1) 2013; 5
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
Maier O (e_1_2_8_26_1) 2017
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – ident: e_1_2_8_7_1
  doi: 10.1002/mrm.21236
– ident: e_1_2_8_14_1
– start-page: 3855
  volume-title: Improved Accelerated model‐based parameter quantification with total‐generalized‐variation regularization
  year: 2017
  ident: e_1_2_8_26_1
– ident: e_1_2_8_46_1
  doi: 10.1002/mrm.24158
– ident: e_1_2_8_13_1
  doi: 10.1371/journal.pone.0122611
– ident: e_1_2_8_34_1
  doi: 10.1016/S0730-725X(99)00025-9
– ident: e_1_2_8_37_1
  doi: 10.1137/16M1092015
– ident: e_1_2_8_15_1
  doi: 10.1002/ima.22196
– ident: e_1_2_8_20_1
  doi: 10.1016/j.mri.2017.07.007
– ident: e_1_2_8_25_1
  doi: 10.1137/030601880
– ident: e_1_2_8_52_1
  doi: 10.1002/mrm.26977
– ident: e_1_2_8_29_1
  doi: 10.1002/mrm.22595
– ident: e_1_2_8_45_1
  doi: 10.1002/mrm.22357
– ident: e_1_2_8_4_1
  doi: 10.1002/mrm.10407
– ident: e_1_2_8_47_1
  doi: 10.1109/TMI.2016.2620961
– ident: e_1_2_8_50_1
– ident: e_1_2_8_53_1
  doi: 10.1002/mrm.27138
– ident: e_1_2_8_6_1
  doi: 10.1002/mrm.10171
– ident: e_1_2_8_31_1
  doi: 10.1137/15M1023865
– ident: e_1_2_8_22_1
  doi: 10.1002/mrm.25421
– ident: e_1_2_8_17_1
– ident: e_1_2_8_18_1
  doi: 10.1109/TMI.2014.2322815
– ident: e_1_2_8_51_1
– ident: e_1_2_8_9_1
  doi: 10.1109/TMI.2009.2023119
– ident: e_1_2_8_27_1
  doi: 10.1137/080716542
– ident: e_1_2_8_39_1
– volume: 5
  start-page: 6
  year: 2013
  ident: e_1_2_8_32_1
  article-title: Improving the robustness of clinical T1‐weighted MRI using radial VIBE
  publication-title: MAGNETOM Flash
– ident: e_1_2_8_40_1
  doi: 10.1016/0730-725X(87)90021-X
– ident: e_1_2_8_23_1
  doi: 10.1002/mrm.23128
– ident: e_1_2_8_36_1
  doi: 10.1007/s10851-010-0251-1
– ident: e_1_2_8_10_1
  doi: 10.1002/mrm.22483
– ident: e_1_2_8_38_1
  doi: 10.1088/0266-5611/26/3/035007
– ident: e_1_2_8_12_1
  doi: 10.1109/TMI.2014.2333370
– ident: e_1_2_8_44_1
  doi: 10.1002/mrm.27434.
– ident: e_1_2_8_48_1
  doi: 10.1109/TMI.2006.885337
– ident: e_1_2_8_2_1
– ident: e_1_2_8_24_1
  doi: 10.1137/S1052623497318992
– ident: e_1_2_8_8_1
  doi: 10.1109/TSP.2004.831016
– ident: e_1_2_8_11_1
  doi: 10.1002/mrm.24600
– ident: e_1_2_8_28_1
  doi: 10.1137/090769521
– ident: e_1_2_8_35_1
  doi: 10.1007/s10589-012-9476-9
– ident: e_1_2_8_43_1
  doi: 10.1002/mrm.21691
– ident: e_1_2_8_30_1
  doi: 10.1002/mrm.22964
– ident: e_1_2_8_3_1
  doi: 10.1002/mrm.25135
– ident: e_1_2_8_5_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_8_21_1
  doi: 10.1002/mrm.25161
– ident: e_1_2_8_42_1
  doi: 10.1002/mrm.24577
– ident: e_1_2_8_33_1
  doi: 10.1016/0730-725X(90)90041-Y
– ident: e_1_2_8_49_1
– ident: e_1_2_8_19_1
  doi: 10.1002/mrm.25776
– ident: e_1_2_8_41_1
  doi: 10.1063/1.1684482
– ident: e_1_2_8_16_1
  doi: 10.1002/mrm.26726
SSID ssj0009974
Score 2.4580915
Snippet Magnetic resonance imaging protocols for the assessment of quantitative information suffer from long acquisition times since multiple measurements in a...
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage 2072
SubjectTerms Algorithms
Brain - diagnostic imaging
Cerebrospinal Fluid
Computer Simulation
Fourier Analysis
Gray Matter - diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Magnetic Resonance Imaging - methods
Models, Statistical
Phantoms, Imaging
Reproducibility of Results
Wavelet Analysis
White Matter - diagnostic imaging
Title Rapid T 1 quantification from high resolution 3D data with model‐based reconstruction
URI https://www.ncbi.nlm.nih.gov/pubmed/30346053
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0740-3194
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIhAXBAssy0sW4oAUpdixm8cRUWC1UkFaumJvleM4u4FuuloCB078BC78QX4JM7bzKN3DwiWqUqdpPV8938Qz3xDyrETNXuBBIVMxC2XKeZiB2ws1i0zJlQGKbRNk38V7h3L_aHI0Gv0aZC19bfKx_n5hXcn_WBXOgV2xSvYfLNt9KJyA12BfOIKF4XgpGx-os6oI5gHH2kiX9eNzB7FoBJWIA4im_VcIxDTAfFD36NV2wOkyHdCXYRmLXvWCskPaOlPHtXFqz0jdcTGo6o19-ZmqHADeLzHbo9_jOVnZ2gQHGYXa5IP3litzvHRlQ01zUqmO5H9ozqtPn30Pt7dY6PUt2B8PH1NgZVSbp-VXs0Tigu86Go-NX20hEob4Sw6X45QPYCeGaytzTX68n46Y6z204QOcpuzp-ekYteuj3tG1m_t_-b8uK9EpOEcLuHRhL71CrkbgLLAjyPSgVyXLMifu3f6iVrCKRS-6u67RnLWAxRKX-S1y00cc9KWDz20yMvU2uT7zttsm12wSsP5yh3y0eKJzyuk6nijiiSKeaI8nKqYU8UQRT9Ti6fePnxZJdB1Jd8nhm9fzV3uhb7wRagg3m7BIdc6jQkxkLFmRpFmspU4zo8qCiayME64nSVEooSCYN6kuTTZhMhcJ9hIwphT3yFa9qs19QoG9q1zCf16gFCXQ3QIoaBobXqgs1yzdJc_beVpor0qPzVGWiw1r7JKn3dAzJ8Vy0aAdN9ndEOBouPcvHlzm8ofkRg_eR2QLJso8BtbZ5E8sBv4A6JWEVQ
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+T+1+quantification+from+high+resolution+3D+data+with+model%E2%80%90based+reconstruction&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Maier%2C+Oliver&rft.au=Schoormans%2C+Jasper&rft.au=Schloegl%2C+Matthias&rft.au=Strijkers%2C+Gustav+J.&rft.date=2019-03-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=81&rft.issue=3&rft.spage=2072&rft.epage=2089&rft_id=info:doi/10.1002%2Fmrm.27502&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_27502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon