Particle image velocimetry/planar laser-induced fluorescence applied for the study of hydrodynamic aspects of low-viscosity ratio stratified liquid–liquid flow

Stratified liquid–liquid flow is still an open research subject due to the complex interfacial interactions and its hydrodynamic stability in specific operational conditions. Some challenges are predicting velocity profiles related to the average velocities of the phases and the effect of shape fact...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 37; no. 2
Main Authors Miranda-Lugo, P. J., Arrollo-Caballero, Jorge E., Rodriguez, O. M. H.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.02.2025
Subjects
Online AccessGet full text
ISSN1070-6631
1089-7666
DOI10.1063/5.0249653

Cover

Abstract Stratified liquid–liquid flow is still an open research subject due to the complex interfacial interactions and its hydrodynamic stability in specific operational conditions. Some challenges are predicting velocity profiles related to the average velocities of the phases and the effect of shape factors, capillary instability, and secondary flow on the flow pattern transition. Understanding the hydrodynamics of horizontal stratified liquid–liquid pipe flows is a fundamental step for properly modeling the stability of stratified liquid–liquid flows. Some studies have focused on measuring hydrodynamic characteristics of stratified liquid–liquid flows in horizontal or slightly inclined pipes by combining two-dimensional Particle Image Velocimetry (2-D PIV) and Planar Laser-Induced Fluorescence (PLIF) techniques. Nevertheless, this study represents the first attempt to study the case of two low Eötvös numbers (2.2. and 9.7) and low-viscosity ratio flows via synchronizing those techniques in the streamwise and spanwise directions. The 2-D PIV technique was used to measure two-phase velocity profiles and turbulence statistics at the flow's diametrical vertical plane for stable and unstable stratified flow conditions. Simultaneously, the mean interface height was measured through the PLIF technique and a homemade scanning algorithm that identifies the liquid–liquid interface. In addition, the interface's cross-section curvature radius was measured at the flow's cross-sectional plane. The axial velocity profiles showed an S-shape. The appearance of radial velocity components near the pipe wall or the liquid–liquid interface revealed momentum transfer between the two phases, suggesting the existence of secondary flow. The cross-section curvature radius data revealed that the higher the in-situ water volumetric fractions, the more concave the cross-section interface and the more unstable the stratified flow.
AbstractList Stratified liquid–liquid flow is still an open research subject due to the complex interfacial interactions and its hydrodynamic stability in specific operational conditions. Some challenges are predicting velocity profiles related to the average velocities of the phases and the effect of shape factors, capillary instability, and secondary flow on the flow pattern transition. Understanding the hydrodynamics of horizontal stratified liquid–liquid pipe flows is a fundamental step for properly modeling the stability of stratified liquid–liquid flows. Some studies have focused on measuring hydrodynamic characteristics of stratified liquid–liquid flows in horizontal or slightly inclined pipes by combining two-dimensional Particle Image Velocimetry (2-D PIV) and Planar Laser-Induced Fluorescence (PLIF) techniques. Nevertheless, this study represents the first attempt to study the case of two low Eötvös numbers (2.2. and 9.7) and low-viscosity ratio flows via synchronizing those techniques in the streamwise and spanwise directions. The 2-D PIV technique was used to measure two-phase velocity profiles and turbulence statistics at the flow's diametrical vertical plane for stable and unstable stratified flow conditions. Simultaneously, the mean interface height was measured through the PLIF technique and a homemade scanning algorithm that identifies the liquid–liquid interface. In addition, the interface's cross-section curvature radius was measured at the flow's cross-sectional plane. The axial velocity profiles showed an S-shape. The appearance of radial velocity components near the pipe wall or the liquid–liquid interface revealed momentum transfer between the two phases, suggesting the existence of secondary flow. The cross-section curvature radius data revealed that the higher the in-situ water volumetric fractions, the more concave the cross-section interface and the more unstable the stratified flow.
Author Arrollo-Caballero, Jorge E.
Rodriguez, O. M. H.
Miranda-Lugo, P. J.
Author_xml – sequence: 1
  givenname: P. J.
  surname: Miranda-Lugo
  fullname: Miranda-Lugo, P. J.
  organization: Mechanical Engineering Department, Industrial Multiphase Flow Laboratory (LEMI), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100 Santa Angelina, São Carlos – SP 13563-120, Brazil
– sequence: 2
  givenname: Jorge E.
  surname: Arrollo-Caballero
  fullname: Arrollo-Caballero, Jorge E.
  organization: Mechanical Engineering Department, Industrial Multiphase Flow Laboratory (LEMI), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100 Santa Angelina, São Carlos – SP 13563-120, Brazil
– sequence: 3
  givenname: O. M. H.
  surname: Rodriguez
  fullname: Rodriguez, O. M. H.
  organization: Mechanical Engineering Department, Industrial Multiphase Flow Laboratory (LEMI), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100 Santa Angelina, São Carlos – SP 13563-120, Brazil
BookMark eNp9kctKxjAQhYMoeF34BgFXCtUkTdN2KeINBF3ouqTTiUbyNzVJle58B5_AV_NJbPlduzrD8M0cZs4u2ex9j4QccnbKmcrPilMmZK2KfIPscFbVWamU2lzqkmVK5Xyb7Mb4yhjLa6F2yPeDDsmCQ2pX-hnpOzoPdoUpTGeD070O1OmIIbN9NwJ21LjRB4yAPSDVw-Ds0vSBphekMY3dRL2hL1MXfDf1emWB6jggpLj0nf_I3m0EH22aaNDJ-nloUbPscfZttN3P59e6mM38xz7ZMtpFPPjTPfJ0dfl4cZPd3V_fXpzfZcArkbIaS8UEoDIVl0byAlELU9dQaiNbhBLKHAGqViKTnZCiqgQzXYuVbnnLqnyPHK33DsG_jRhT8-rH0M-WTc5LLmspCjFTx2sKgo8xoGmGMH8uTA1nzZJAUzR_CczsyZqNYNNyav8P_Av-B42_
CODEN PHFLE6
Cites_doi 10.1615/MultScienTechn.v2.i1-4.60
10.1016/j.saa.2013.10.062
10.1016/j.ijmultiphaseflow.2022.104122
10.1146/annurev.fluid.29.1.65
10.1016/j.ces.2010.03.045
10.1007/s00348-017-2386-y
10.2118/36609-PA
10.1016/S0301-9322(96)90005-1
10.1016/j.petrol.2018.04.012
10.1016/j.ijmultiphaseflow.2017.12.018
10.1016/j.ijmultiphaseflow.2020.103502
10.1016/j.petrol.2006.07.007
10.1063/1.4944588
10.1016/j.ijmultiphaseflow.2013.09.003
10.1016/0301-9322(83)90059-9
10.1002/aic.11309
10.1016/S0920-4105(01)00155-3
10.1016/j.petrol.2012.09.007
10.1016/j.ijmultiphaseflow.2003.11.011
10.1002/aic.11361
10.1016/S0301-9322(01)00015-5
10.1615/MultScienTechn.v21.i1-2.50
10.1016/j.ijmultiphaseflow.2005.11.001
10.1016/j.ijmultiphaseflow.2012.09.004
10.1016/j.ijmultiphaseflow.2017.07.010
10.1002/aic.17239
10.1007/s00348-016-2142-8
10.1016/S0301-9322(99)00081-6
10.1016/j.ijmultiphaseflow.2016.11.011
ContentType Journal Article
Copyright Author(s)
2025 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2025 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0249653
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0249653
GrantInformation_xml – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  grantid: 88882.379164/2019-01
  funderid: 10.13039/501100002322
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 311057/2020-9
  funderid: 10.13039/501100003593
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 131659/2021-9
  funderid: 10.13039/501100003593
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJGX
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BDMKI
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
AAGWI
AAYXX
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c182t-9e7602ce6f814f415eea2f99c7af4bec7c73ecc8b4e04d2428820fdbe8ab1b083
ISSN 1070-6631
IngestDate Mon Jun 30 12:20:52 EDT 2025
Wed Sep 10 04:16:12 EDT 2025
Thu Feb 27 03:53:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c182t-9e7602ce6f814f415eea2f99c7af4bec7c73ecc8b4e04d2428820fdbe8ab1b083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0535-2323
0000-0002-1787-8923
0000-0003-1578-7996
PQID 3171494252
PQPubID 2050667
PageCount 17
ParticipantIDs scitation_primary_10_1063_5_0249653
crossref_primary_10_1063_5_0249653
proquest_journals_3171494252
PublicationCentury 2000
PublicationDate 20250200
2025-02-01
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 20250200
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2025
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Nordsveen (c31) 2001
Ahmed, John (c6) 2018
Conan, Masbernat, Décarre, Liné (c17) 2007
Rodriguez, Bannwart (c12) 2006
Bannwart (c11) 2001
Zehentbauer, Moretto, Stephen, Thevar, Gilchrist, Pokrajac, Richard, Kiefer (c35) 2014
Angeli, Hewitt (c2) 2000
Chaze, Caballina, Castanet, Lemoine (c36) 2016
Rodriguez, Oliemans (c22) 2006
Lovick, Angeli (c30) 2004
Bochio, Rodriguez (c42) 2022
Oliemans, Ooms (c8) 1986
Boomkamp, Miesen (c9) 1996
Rodriguez, Castro (c41) 2014
Trallero, Sarica, Brill (c1) 1997
Ooms, Segal, van der Wees, Meerhoff, Oliemans (c7) 1983
Chinaud, Park, Angeli (c5) 2017
Kumara, Halvorsen, Melaaen (c26) 2009
Rodriguez, Bannwart (c3) 2008
Joseph, Bai, Chen, Renardy (c10) 1997
Rodriguez, Baldani (c13) 2012
Kushnir, Segal, Ullmann, Brauner (c14) 2017
Bochio, Cely, Teixeira, Rodriguez (c18) 2021
Kumara, Halvorsen, Melaaen (c23) 2010
Ibarra, Zadrazil, Matar, Markides (c15) 2018
Wright, Zadrazil, Markides (c32) 2017
Ibarra, Matar, Markides (c16) 2021
Barmak, Gelfgat, Vitoshkin, Ullmann, Brauner (c25) 2016
Morgan, Markides, Zadrazil, Hewitt (c27) 2013
(2025022615473988000_c38) 2011
(2025022615473988000_c2) 2000; 26
(2025022615473988000_c19) 2024
2025022615473988000_c24
(2025022615473988000_c35) 2014; 121
2025022615473988000_c29
(2025022615473988000_c7) 1983; 10
2025022615473988000_c28
(2025022615473988000_c25) 2016; 28
(2025022615473988000_c3) 2008; 54
(2025022615473988000_c10) 1997; 29
(2025022615473988000_c18) 2021; 67
(2025022615473988000_c27) 2013; 49
(2025022615473988000_c40) 2013
(2025022615473988000_c8) 1986; 2
(2025022615473988000_c1) 1997; 12
(2025022615473988000_c42) 2022; 153
(2025022615473988000_c11) 2001; 32
(2025022615473988000_c31) 2001; 27
(2025022615473988000_c37) 2024
(2025022615473988000_c4) 2015
(2025022615473988000_c23) 2010; 65
(2025022615473988000_c33) 2011
(2025022615473988000_c36) 2016; 57
(2025022615473988000_c22) 2006; 32
(2025022615473988000_c9) 1996; 22
(2025022615473988000_c17) 2007; 53
(2025022615473988000_c34) 2018
(2025022615473988000_c30) 2004; 30
(2025022615473988000_c39) 2011
(2025022615473988000_c32) 2017; 58
(2025022615473988000_c41) 2014; 58
(2025022615473988000_c16) 2021; 135
(2025022615473988000_c12) 2006; 54
(2025022615473988000_c6) 2018; 168
(2025022615473988000_c5) 2017; 90
(2025022615473988000_c13) 2012; 96–97
(2025022615473988000_c14) 2017; 97
(2025022615473988000_c26) 2009; 21
2025022615473988000_c21
(2025022615473988000_c15) 2018; 101
2025022615473988000_c20
References_xml – start-page: 1117
  year: 2000
  ident: c2
  article-title: Flow structure in horizontal oil–water flow
  publication-title: Int. J. Multiphase Flow
– start-page: 114
  year: 2014
  ident: c41
  article-title: Interfacial-tension-force model for the wavy-stratified liquid–liquid flow pattern transition
  publication-title: Int. J. Multiphase Flow
– start-page: 65
  year: 1997
  ident: c10
  article-title: Core-annular flows
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 165
  year: 1997
  ident: c1
  article-title: A study of oil-water flow patterns in horizontal pipes
  publication-title: SPE Prod. Facilities
– start-page: 427
  year: 1986
  ident: c8
  article-title: Core-annular flow of oil and water
  publication-title: Multiphase Sci. Technol.
– start-page: 147
  year: 2014
  ident: c35
  article-title: Fluorescence spectroscopy of rhodamine 6G: Concentration and solvent effects
  publication-title: Spectrochim. Acta A
– start-page: 426
  year: 2018
  ident: c6
  article-title: Liquid–liquid horizontal pipe flow–A review
  publication-title: J. Petroleum Sci. Eng.
– start-page: 127
  year: 2001
  ident: c11
  article-title: Modeling aspects of oil–water core–annular flows
  publication-title: J. Petroleum Sci. Eng.
– start-page: 58
  year: 2016
  ident: c36
  article-title: The saturation of the fluorescence and its consequences for laser-induced fluorescence thermometry in liquid flows
  publication-title: Exp. Fluids
– start-page: 1
  year: 2017
  ident: c5
  article-title: Flow pattern transition in liquid–liquid flows with a transverse cylinder
  publication-title: Int. J. Multiphase Flow
– start-page: 41
  year: 1983
  ident: c7
  article-title: A theoretical model for core-annular flow of a very viscous oil core and a water annulus through a horizontal pipe
  publication-title: Int. J. Multiphase Flow
– start-page: 67
  year: 1996
  ident: c9
  article-title: Classification of instabilities in parallel twophase flow
  publication-title: Int. J. Multiphase Flow
– start-page: 139
  year: 2004
  ident: c30
  article-title: Experimental studies on the dual continuous flow pattern in oil–water flows
  publication-title: Int. J. Multiphase Flow
– start-page: 104122
  year: 2022
  ident: c42
  article-title: Modeling of laminar-turbulent stratified liquid–liquid flow with entrainment
  publication-title: Int. J. Multiphase Flow
– start-page: 140
  year: 2006
  ident: c12
  article-title: Experimental study on interfacial waves in vertical core flow
  publication-title: J. Petroleum Sci. Eng.
– start-page: 323
  year: 2006
  ident: c22
  article-title: Experimental study on oil–water flow in horizontal and slightly inclined pipes
  publication-title: Int. J. Multiphase Flow
– start-page: 20
  year: 2008
  ident: c3
  article-title: Stability analysis of core-annular flow and neutral stability wave number
  publication-title: AlChE J.
– start-page: 1555
  year: 2001
  ident: c31
  article-title: Wave-and turbulence-induced secondary currents in the liquid phase in stratified duct flow
  publication-title: Int. J. Multiphase Flow
– start-page: 103502
  year: 2021
  ident: c16
  article-title: Experimental investigations of upward-inclined stratified oil-water flows using simultaneous two-line planar laser-induced fluorescence and particle velocimetry
  publication-title: Int. J. Multiphase Flow
– start-page: 108
  year: 2017
  ident: c32
  article-title: A review of solid–fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid–liquid and multiphase solid–liquid flows
  publication-title: Exp. Fluids
– start-page: 2754
  year: 2007
  ident: c17
  article-title: Local hydrodynamics in a dispersed-stratified liquid–liquid pipe flow
  publication-title: AlChE J.
– start-page: 99
  year: 2013
  ident: c27
  article-title: Characteristics of horizontal liquid–liquid flows in a circular pipe using simultaneous high-speed laser-induced fluorescence and particle velocimetry
  publication-title: Int. J. Multiphase Flow
– start-page: 51
  year: 2009
  ident: c26
  article-title: Particle image velocimetry, gamma densitometry, and pressure measurements of oil-water flow
  publication-title: Multiphase Sci. Technol.
– start-page: 140
  year: 2012
  ident: c13
  article-title: Prediction of pressure gradient and holdup in wavy stratified liquid–liquid inclined pipe flow
  publication-title: J. Petroleum Sci. Eng.
– start-page: e17239
  year: 2021
  ident: c18
  article-title: Experimental and numerical study of stratified viscous oil–water flow
  publication-title: AlChE J.
– start-page: 4332
  year: 2010
  ident: c23
  article-title: Particle image velocimetry for characterizing the flow structure of oil–water flow in horizontal and slightly inclined pipes
  publication-title: Chem. Eng. Sci.
– start-page: 044101
  year: 2016
  ident: c25
  article-title: Stability of stratified two-phase flows in horizontal channels
  publication-title: Phys. Fluids
– start-page: 47
  year: 2018
  ident: c15
  article-title: Dynamics of liquid–liquid flows in horizontal pipes using simultaneous two–line planar laser–induced fluorescence and particle velocimetry
  publication-title: Int. J. Multiphase Flow
– start-page: 78
  year: 2017
  ident: c14
  article-title: Closure relations effects on the prediction of the stratified two-phase flow stability via the two fluid model
  publication-title: Int. J. Multiphase Flow
– ident: 2025022615473988000_c29
– volume: 2
  start-page: 427
  year: 1986
  ident: 2025022615473988000_c8
  article-title: Core-annular flow of oil and water
  publication-title: Multiphase Sci. Technol.
  doi: 10.1615/MultScienTechn.v2.i1-4.60
– volume: 121
  start-page: 147
  year: 2014
  ident: 2025022615473988000_c35
  article-title: Fluorescence spectroscopy of rhodamine 6G: Concentration and solvent effects
  publication-title: Spectrochim. Acta A
  doi: 10.1016/j.saa.2013.10.062
– volume: 153
  start-page: 104122
  year: 2022
  ident: 2025022615473988000_c42
  article-title: Modeling of laminar-turbulent stratified liquid–liquid flow with entrainment
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2022.104122
– year: 2024
  ident: 2025022615473988000_c37
  article-title: Characterising horizontal twophase flows using structured-planar laser-induced fluorescence (S-PLIF) coupled with simultaneous two-phase PIV (S2P-PIV
– volume: 29
  start-page: 65
  year: 1997
  ident: 2025022615473988000_c10
  article-title: Core-annular flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.29.1.65
– volume: 65
  start-page: 4332
  year: 2010
  ident: 2025022615473988000_c23
  article-title: Particle image velocimetry for characterizing the flow structure of oil–water flow in horizontal and slightly inclined pipes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.03.045
– volume: 58
  start-page: 108
  year: 2017
  ident: 2025022615473988000_c32
  article-title: A review of solid–fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid–liquid and multiphase solid–liquid flows
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-017-2386-y
– volume: 12
  start-page: 165
  year: 1997
  ident: 2025022615473988000_c1
  article-title: A study of oil-water flow patterns in horizontal pipes
  publication-title: SPE Prod. Facilities
  doi: 10.2118/36609-PA
– volume: 22
  start-page: 67
  year: 1996
  ident: 2025022615473988000_c9
  article-title: Classification of instabilities in parallel twophase flow
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/S0301-9322(96)90005-1
– volume: 168
  start-page: 426
  year: 2018
  ident: 2025022615473988000_c6
  article-title: Liquid–liquid horizontal pipe flow–A review
  publication-title: J. Petroleum Sci. Eng.
  doi: 10.1016/j.petrol.2018.04.012
– volume: 101
  start-page: 47
  year: 2018
  ident: 2025022615473988000_c15
  article-title: Dynamics of liquid–liquid flows in horizontal pipes using simultaneous two–line planar laser–induced fluorescence and particle velocimetry
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2017.12.018
– volume-title: Introduction to Fluid Mechanics
  year: 2011
  ident: 2025022615473988000_c38
– volume: 135
  start-page: 103502
  year: 2021
  ident: 2025022615473988000_c16
  article-title: Experimental investigations of upward-inclined stratified oil-water flows using simultaneous two-line planar laser-induced fluorescence and particle velocimetry
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2020.103502
– volume-title: Fundamentals of Fluid Fechanics
  year: 2013
  ident: 2025022615473988000_c40
– volume: 54
  start-page: 140
  year: 2006
  ident: 2025022615473988000_c12
  article-title: Experimental study on interfacial waves in vertical core flow
  publication-title: J. Petroleum Sci. Eng.
  doi: 10.1016/j.petrol.2006.07.007
– volume: 28
  start-page: 044101
  year: 2016
  ident: 2025022615473988000_c25
  article-title: Stability of stratified two-phase flows in horizontal channels
  publication-title: Phys. Fluids
  doi: 10.1063/1.4944588
– volume: 58
  start-page: 114
  year: 2014
  ident: 2025022615473988000_c41
  article-title: Interfacial-tension-force model for the wavy-stratified liquid–liquid flow pattern transition
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2013.09.003
– year: 2024
  ident: 2025022615473988000_c19
  article-title: A practical approach to predict velocity profiles and shape factors in horizontal and slightly inclined wavy stratified liquid-liquid pipe flow
– volume: 10
  start-page: 41
  year: 1983
  ident: 2025022615473988000_c7
  article-title: A theoretical model for core-annular flow of a very viscous oil core and a water annulus through a horizontal pipe
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/0301-9322(83)90059-9
– ident: 2025022615473988000_c21
– volume-title: Particle Image Velocimetry: A Practical Guide
  year: 2018
  ident: 2025022615473988000_c34
– start-page: 169
  year: 2015
  ident: 2025022615473988000_c4
  article-title: An experimental study of oil-water flows in horizontal pipes
– volume: 53
  start-page: 2754
  year: 2007
  ident: 2025022615473988000_c17
  article-title: Local hydrodynamics in a dispersed-stratified liquid–liquid pipe flow
  publication-title: AlChE J.
  doi: 10.1002/aic.11309
– ident: 2025022615473988000_c28
– volume: 32
  start-page: 127
  year: 2001
  ident: 2025022615473988000_c11
  article-title: Modeling aspects of oil–water core–annular flows
  publication-title: J. Petroleum Sci. Eng.
  doi: 10.1016/S0920-4105(01)00155-3
– volume: 96–97
  start-page: 140
  year: 2012
  ident: 2025022615473988000_c13
  article-title: Prediction of pressure gradient and holdup in wavy stratified liquid–liquid inclined pipe flow
  publication-title: J. Petroleum Sci. Eng.
  doi: 10.1016/j.petrol.2012.09.007
– volume: 30
  start-page: 139
  year: 2004
  ident: 2025022615473988000_c30
  article-title: Experimental studies on the dual continuous flow pattern in oil–water flows
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2003.11.011
– volume: 54
  start-page: 20
  year: 2008
  ident: 2025022615473988000_c3
  article-title: Stability analysis of core-annular flow and neutral stability wave number
  publication-title: AlChE J.
  doi: 10.1002/aic.11361
– volume: 27
  start-page: 1555
  year: 2001
  ident: 2025022615473988000_c31
  article-title: Wave-and turbulence-induced secondary currents in the liquid phase in stratified duct flow
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/S0301-9322(01)00015-5
– volume: 21
  start-page: 51
  year: 2009
  ident: 2025022615473988000_c26
  article-title: Particle image velocimetry, gamma densitometry, and pressure measurements of oil-water flow
  publication-title: Multiphase Sci. Technol.
  doi: 10.1615/MultScienTechn.v21.i1-2.50
– volume: 32
  start-page: 323
  year: 2006
  ident: 2025022615473988000_c22
  article-title: Experimental study on oil–water flow in horizontal and slightly inclined pipes
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2005.11.001
– volume-title: Particle Image Velocimetry
  year: 2011
  ident: 2025022615473988000_c33
– volume: 49
  start-page: 99
  year: 2013
  ident: 2025022615473988000_c27
  article-title: Characteristics of horizontal liquid–liquid flows in a circular pipe using simultaneous high-speed laser-induced fluorescence and particle velocimetry
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2012.09.004
– volume: 97
  start-page: 78
  year: 2017
  ident: 2025022615473988000_c14
  article-title: Closure relations effects on the prediction of the stratified two-phase flow stability via the two fluid model
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2017.07.010
– volume-title: Fluid Mechanics
  year: 2011
  ident: 2025022615473988000_c39
– volume: 67
  start-page: e17239
  year: 2021
  ident: 2025022615473988000_c18
  article-title: Experimental and numerical study of stratified viscous oil–water flow
  publication-title: AlChE J.
  doi: 10.1002/aic.17239
– ident: 2025022615473988000_c24
– volume: 57
  start-page: 58
  year: 2016
  ident: 2025022615473988000_c36
  article-title: The saturation of the fluorescence and its consequences for laser-induced fluorescence thermometry in liquid flows
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-016-2142-8
– volume: 26
  start-page: 1117
  year: 2000
  ident: 2025022615473988000_c2
  article-title: Flow structure in horizontal oil–water flow
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/S0301-9322(99)00081-6
– volume: 90
  start-page: 1
  year: 2017
  ident: 2025022615473988000_c5
  article-title: Flow pattern transition in liquid–liquid flows with a transverse cylinder
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2016.11.011
– ident: 2025022615473988000_c20
SSID ssj0003926
Score 2.4586987
Snippet Stratified liquid–liquid flow is still an open research subject due to the complex interfacial interactions and its hydrodynamic stability in specific...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Capillary flow
Cross-sections
Curvature
Flow distribution
Fluid flow
Fractions
Liquid flow
Momentum transfer
Particle image velocimetry
Phase velocity
Pipe flow
Planar laser induced fluorescence
Radial velocity
Secondary flow
Shape effects
Shape factor
Stability
Stratified flow
Synchronism
Velocity
Velocity distribution
Viscosity
Viscosity ratio
Title Particle image velocimetry/planar laser-induced fluorescence applied for the study of hydrodynamic aspects of low-viscosity ratio stratified liquid–liquid flow
URI http://dx.doi.org/10.1063/5.0249653
https://www.proquest.com/docview/3171494252
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABJ
  databaseName: AIP Complete
  customDbUrl:
  eissn: 1089-7666
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003926
  issn: 1070-6631
  databaseCode: M71
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: http://www.scitation.org/
  providerName: American Institute of Physics
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKEIIbfgaIjoEsQNxU3lrnr7mcplXT1G4TaqXeRbZjj0hd06XNJnbFO_AEvAwPwpNw_JMmlQYCbqLUUhwr5-vxd-zvHCP0gfIg9cDOhPE0gABFCcJUyAj3mOxzTwpuSimNTsPjiX8yDaat1o-Gaqlc8T1xe2deyf9YFdrArjpL9h8su-4UGuAe7AtXsDBc_8rG566tk11q6Y2W_4jsUq701vhgMWNzphckYSgEIu9S7_SrWZkXpoKTThRwDLRSGi6rAtOfv6TgV-1Z9R1mkjGN4mOW35DrbClyI-Qw2OnYurtK9zPLrkr4Bk4-4dmf8Mr8pkmBjeZUmP5gNFlqa0XFsd9YlBhlhV7hIMPywizlnte7VwdFAdDNySHj-hgYm6Zzohf266SKT3laZBelvO2cdUYu_cKtbNCgEkNXWKy2rDZkE26QDZcNTosAb7IPStfWj0kU2vNcKj9vi8s4PNM7pw_ga2CfYE_XUQxtEePNEt2nZ8lgMhwm46Pp-OPiiujTy_QuvzvK5R66T-G11EhIa6kRcNDQal_tSKsKV6G3v37XJi-qg52HwISsKKPBe8ZP0WMXsOADi7RnqCXn2-iJC16wmxqW2-iB-2TP0fcKltjAEjdguW9BiTdAiZugxA6UGECJAZTYgBLnCjdBiR0odfsGKLEBJa5BiS0Kf379Zm-whuMLNBkcjQ-PiTsJhAiIf1ckllHYpUKGqt_zFXBOKRlVcSwipnzwQpGIwK2IPvdl10-BdULc2FUpl33GexyijJdoa57P5SuEA48qKhREOT3PF1Ecp7yrgsiLu5Qz4LZt9K6yQ7KwBV8SI9QIvSRInLHaaLeyUOL8wTIBJt7zY5gDaRu9X1vt953s_LmT1-hR_afYRVuropRvgACv-FuDrl_Lmrxe
linkProvider American Institute of Physics
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+image+velocimetry%2Fplanar+laser-induced+fluorescence+applied+for+the+study+of+hydrodynamic+aspects+of+low-viscosity+ratio+stratified+liquid%E2%80%93liquid+flow&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Miranda-Lugo%2C+P+J&rft.au=Arrollo-Caballero%2C+Jorge+E&rft.au=Rodriguez+O+M+H&rft.date=2025-02-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=37&rft.issue=2&rft_id=info:doi/10.1063%2F5.0249653&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon