Particle image velocimetry/planar laser-induced fluorescence applied for the study of hydrodynamic aspects of low-viscosity ratio stratified liquid–liquid flow
Stratified liquid–liquid flow is still an open research subject due to the complex interfacial interactions and its hydrodynamic stability in specific operational conditions. Some challenges are predicting velocity profiles related to the average velocities of the phases and the effect of shape fact...
Saved in:
Published in | Physics of fluids (1994) Vol. 37; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1070-6631 1089-7666 |
DOI | 10.1063/5.0249653 |
Cover
Abstract | Stratified liquid–liquid flow is still an open research subject due to the complex interfacial interactions and its hydrodynamic stability in specific operational conditions. Some challenges are predicting velocity profiles related to the average velocities of the phases and the effect of shape factors, capillary instability, and secondary flow on the flow pattern transition. Understanding the hydrodynamics of horizontal stratified liquid–liquid pipe flows is a fundamental step for properly modeling the stability of stratified liquid–liquid flows. Some studies have focused on measuring hydrodynamic characteristics of stratified liquid–liquid flows in horizontal or slightly inclined pipes by combining two-dimensional Particle Image Velocimetry (2-D PIV) and Planar Laser-Induced Fluorescence (PLIF) techniques. Nevertheless, this study represents the first attempt to study the case of two low Eötvös numbers (2.2. and 9.7) and low-viscosity ratio flows via synchronizing those techniques in the streamwise and spanwise directions. The 2-D PIV technique was used to measure two-phase velocity profiles and turbulence statistics at the flow's diametrical vertical plane for stable and unstable stratified flow conditions. Simultaneously, the mean interface height was measured through the PLIF technique and a homemade scanning algorithm that identifies the liquid–liquid interface. In addition, the interface's cross-section curvature radius was measured at the flow's cross-sectional plane. The axial velocity profiles showed an S-shape. The appearance of radial velocity components near the pipe wall or the liquid–liquid interface revealed momentum transfer between the two phases, suggesting the existence of secondary flow. The cross-section curvature radius data revealed that the higher the in-situ water volumetric fractions, the more concave the cross-section interface and the more unstable the stratified flow. |
---|---|
AbstractList | Stratified liquid–liquid flow is still an open research subject due to the complex interfacial interactions and its hydrodynamic stability in specific operational conditions. Some challenges are predicting velocity profiles related to the average velocities of the phases and the effect of shape factors, capillary instability, and secondary flow on the flow pattern transition. Understanding the hydrodynamics of horizontal stratified liquid–liquid pipe flows is a fundamental step for properly modeling the stability of stratified liquid–liquid flows. Some studies have focused on measuring hydrodynamic characteristics of stratified liquid–liquid flows in horizontal or slightly inclined pipes by combining two-dimensional Particle Image Velocimetry (2-D PIV) and Planar Laser-Induced Fluorescence (PLIF) techniques. Nevertheless, this study represents the first attempt to study the case of two low Eötvös numbers (2.2. and 9.7) and low-viscosity ratio flows via synchronizing those techniques in the streamwise and spanwise directions. The 2-D PIV technique was used to measure two-phase velocity profiles and turbulence statistics at the flow's diametrical vertical plane for stable and unstable stratified flow conditions. Simultaneously, the mean interface height was measured through the PLIF technique and a homemade scanning algorithm that identifies the liquid–liquid interface. In addition, the interface's cross-section curvature radius was measured at the flow's cross-sectional plane. The axial velocity profiles showed an S-shape. The appearance of radial velocity components near the pipe wall or the liquid–liquid interface revealed momentum transfer between the two phases, suggesting the existence of secondary flow. The cross-section curvature radius data revealed that the higher the in-situ water volumetric fractions, the more concave the cross-section interface and the more unstable the stratified flow. |
Author | Arrollo-Caballero, Jorge E. Rodriguez, O. M. H. Miranda-Lugo, P. J. |
Author_xml | – sequence: 1 givenname: P. J. surname: Miranda-Lugo fullname: Miranda-Lugo, P. J. organization: Mechanical Engineering Department, Industrial Multiphase Flow Laboratory (LEMI), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100 Santa Angelina, São Carlos – SP 13563-120, Brazil – sequence: 2 givenname: Jorge E. surname: Arrollo-Caballero fullname: Arrollo-Caballero, Jorge E. organization: Mechanical Engineering Department, Industrial Multiphase Flow Laboratory (LEMI), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100 Santa Angelina, São Carlos – SP 13563-120, Brazil – sequence: 3 givenname: O. M. H. surname: Rodriguez fullname: Rodriguez, O. M. H. organization: Mechanical Engineering Department, Industrial Multiphase Flow Laboratory (LEMI), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100 Santa Angelina, São Carlos – SP 13563-120, Brazil |
BookMark | eNp9kctKxjAQhYMoeF34BgFXCtUkTdN2KeINBF3ouqTTiUbyNzVJle58B5_AV_NJbPlduzrD8M0cZs4u2ex9j4QccnbKmcrPilMmZK2KfIPscFbVWamU2lzqkmVK5Xyb7Mb4yhjLa6F2yPeDDsmCQ2pX-hnpOzoPdoUpTGeD070O1OmIIbN9NwJ21LjRB4yAPSDVw-Ds0vSBphekMY3dRL2hL1MXfDf1emWB6jggpLj0nf_I3m0EH22aaNDJ-nloUbPscfZttN3P59e6mM38xz7ZMtpFPPjTPfJ0dfl4cZPd3V_fXpzfZcArkbIaS8UEoDIVl0byAlELU9dQaiNbhBLKHAGqViKTnZCiqgQzXYuVbnnLqnyPHK33DsG_jRhT8-rH0M-WTc5LLmspCjFTx2sKgo8xoGmGMH8uTA1nzZJAUzR_CczsyZqNYNNyav8P_Av-B42_ |
CODEN | PHFLE6 |
Cites_doi | 10.1615/MultScienTechn.v2.i1-4.60 10.1016/j.saa.2013.10.062 10.1016/j.ijmultiphaseflow.2022.104122 10.1146/annurev.fluid.29.1.65 10.1016/j.ces.2010.03.045 10.1007/s00348-017-2386-y 10.2118/36609-PA 10.1016/S0301-9322(96)90005-1 10.1016/j.petrol.2018.04.012 10.1016/j.ijmultiphaseflow.2017.12.018 10.1016/j.ijmultiphaseflow.2020.103502 10.1016/j.petrol.2006.07.007 10.1063/1.4944588 10.1016/j.ijmultiphaseflow.2013.09.003 10.1016/0301-9322(83)90059-9 10.1002/aic.11309 10.1016/S0920-4105(01)00155-3 10.1016/j.petrol.2012.09.007 10.1016/j.ijmultiphaseflow.2003.11.011 10.1002/aic.11361 10.1016/S0301-9322(01)00015-5 10.1615/MultScienTechn.v21.i1-2.50 10.1016/j.ijmultiphaseflow.2005.11.001 10.1016/j.ijmultiphaseflow.2012.09.004 10.1016/j.ijmultiphaseflow.2017.07.010 10.1002/aic.17239 10.1007/s00348-016-2142-8 10.1016/S0301-9322(99)00081-6 10.1016/j.ijmultiphaseflow.2016.11.011 |
ContentType | Journal Article |
Copyright | Author(s) 2025 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2025 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0249653 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 10_1063_5_0249653 |
GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grantid: 88882.379164/2019-01 funderid: 10.13039/501100002322 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 311057/2020-9 funderid: 10.13039/501100003593 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 131659/2021-9 funderid: 10.13039/501100003593 |
GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABJGX ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BDMKI BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UCJ UQL WH7 XJT ~02 AAGWI AAYXX CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c182t-9e7602ce6f814f415eea2f99c7af4bec7c73ecc8b4e04d2428820fdbe8ab1b083 |
ISSN | 1070-6631 |
IngestDate | Mon Jun 30 12:20:52 EDT 2025 Wed Sep 10 04:16:12 EDT 2025 Thu Feb 27 03:53:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c182t-9e7602ce6f814f415eea2f99c7af4bec7c73ecc8b4e04d2428820fdbe8ab1b083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0535-2323 0000-0002-1787-8923 0000-0003-1578-7996 |
PQID | 3171494252 |
PQPubID | 2050667 |
PageCount | 17 |
ParticipantIDs | scitation_primary_10_1063_5_0249653 crossref_primary_10_1063_5_0249653 proquest_journals_3171494252 |
PublicationCentury | 2000 |
PublicationDate | 20250200 2025-02-01 20250201 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 20250200 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2025 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Nordsveen (c31) 2001 Ahmed, John (c6) 2018 Conan, Masbernat, Décarre, Liné (c17) 2007 Rodriguez, Bannwart (c12) 2006 Bannwart (c11) 2001 Zehentbauer, Moretto, Stephen, Thevar, Gilchrist, Pokrajac, Richard, Kiefer (c35) 2014 Angeli, Hewitt (c2) 2000 Chaze, Caballina, Castanet, Lemoine (c36) 2016 Rodriguez, Oliemans (c22) 2006 Lovick, Angeli (c30) 2004 Bochio, Rodriguez (c42) 2022 Oliemans, Ooms (c8) 1986 Boomkamp, Miesen (c9) 1996 Rodriguez, Castro (c41) 2014 Trallero, Sarica, Brill (c1) 1997 Ooms, Segal, van der Wees, Meerhoff, Oliemans (c7) 1983 Chinaud, Park, Angeli (c5) 2017 Kumara, Halvorsen, Melaaen (c26) 2009 Rodriguez, Bannwart (c3) 2008 Joseph, Bai, Chen, Renardy (c10) 1997 Rodriguez, Baldani (c13) 2012 Kushnir, Segal, Ullmann, Brauner (c14) 2017 Bochio, Cely, Teixeira, Rodriguez (c18) 2021 Kumara, Halvorsen, Melaaen (c23) 2010 Ibarra, Zadrazil, Matar, Markides (c15) 2018 Wright, Zadrazil, Markides (c32) 2017 Ibarra, Matar, Markides (c16) 2021 Barmak, Gelfgat, Vitoshkin, Ullmann, Brauner (c25) 2016 Morgan, Markides, Zadrazil, Hewitt (c27) 2013 (2025022615473988000_c38) 2011 (2025022615473988000_c2) 2000; 26 (2025022615473988000_c19) 2024 2025022615473988000_c24 (2025022615473988000_c35) 2014; 121 2025022615473988000_c29 (2025022615473988000_c7) 1983; 10 2025022615473988000_c28 (2025022615473988000_c25) 2016; 28 (2025022615473988000_c3) 2008; 54 (2025022615473988000_c10) 1997; 29 (2025022615473988000_c18) 2021; 67 (2025022615473988000_c27) 2013; 49 (2025022615473988000_c40) 2013 (2025022615473988000_c8) 1986; 2 (2025022615473988000_c1) 1997; 12 (2025022615473988000_c42) 2022; 153 (2025022615473988000_c11) 2001; 32 (2025022615473988000_c31) 2001; 27 (2025022615473988000_c37) 2024 (2025022615473988000_c4) 2015 (2025022615473988000_c23) 2010; 65 (2025022615473988000_c33) 2011 (2025022615473988000_c36) 2016; 57 (2025022615473988000_c22) 2006; 32 (2025022615473988000_c9) 1996; 22 (2025022615473988000_c17) 2007; 53 (2025022615473988000_c34) 2018 (2025022615473988000_c30) 2004; 30 (2025022615473988000_c39) 2011 (2025022615473988000_c32) 2017; 58 (2025022615473988000_c41) 2014; 58 (2025022615473988000_c16) 2021; 135 (2025022615473988000_c12) 2006; 54 (2025022615473988000_c6) 2018; 168 (2025022615473988000_c5) 2017; 90 (2025022615473988000_c13) 2012; 96–97 (2025022615473988000_c14) 2017; 97 (2025022615473988000_c26) 2009; 21 2025022615473988000_c21 (2025022615473988000_c15) 2018; 101 2025022615473988000_c20 |
References_xml | – start-page: 1117 year: 2000 ident: c2 article-title: Flow structure in horizontal oil–water flow publication-title: Int. J. Multiphase Flow – start-page: 114 year: 2014 ident: c41 article-title: Interfacial-tension-force model for the wavy-stratified liquid–liquid flow pattern transition publication-title: Int. J. Multiphase Flow – start-page: 65 year: 1997 ident: c10 article-title: Core-annular flows publication-title: Annu. Rev. Fluid Mech. – start-page: 165 year: 1997 ident: c1 article-title: A study of oil-water flow patterns in horizontal pipes publication-title: SPE Prod. Facilities – start-page: 427 year: 1986 ident: c8 article-title: Core-annular flow of oil and water publication-title: Multiphase Sci. Technol. – start-page: 147 year: 2014 ident: c35 article-title: Fluorescence spectroscopy of rhodamine 6G: Concentration and solvent effects publication-title: Spectrochim. Acta A – start-page: 426 year: 2018 ident: c6 article-title: Liquid–liquid horizontal pipe flow–A review publication-title: J. Petroleum Sci. Eng. – start-page: 127 year: 2001 ident: c11 article-title: Modeling aspects of oil–water core–annular flows publication-title: J. Petroleum Sci. Eng. – start-page: 58 year: 2016 ident: c36 article-title: The saturation of the fluorescence and its consequences for laser-induced fluorescence thermometry in liquid flows publication-title: Exp. Fluids – start-page: 1 year: 2017 ident: c5 article-title: Flow pattern transition in liquid–liquid flows with a transverse cylinder publication-title: Int. J. Multiphase Flow – start-page: 41 year: 1983 ident: c7 article-title: A theoretical model for core-annular flow of a very viscous oil core and a water annulus through a horizontal pipe publication-title: Int. J. Multiphase Flow – start-page: 67 year: 1996 ident: c9 article-title: Classification of instabilities in parallel twophase flow publication-title: Int. J. Multiphase Flow – start-page: 139 year: 2004 ident: c30 article-title: Experimental studies on the dual continuous flow pattern in oil–water flows publication-title: Int. J. Multiphase Flow – start-page: 104122 year: 2022 ident: c42 article-title: Modeling of laminar-turbulent stratified liquid–liquid flow with entrainment publication-title: Int. J. Multiphase Flow – start-page: 140 year: 2006 ident: c12 article-title: Experimental study on interfacial waves in vertical core flow publication-title: J. Petroleum Sci. Eng. – start-page: 323 year: 2006 ident: c22 article-title: Experimental study on oil–water flow in horizontal and slightly inclined pipes publication-title: Int. J. Multiphase Flow – start-page: 20 year: 2008 ident: c3 article-title: Stability analysis of core-annular flow and neutral stability wave number publication-title: AlChE J. – start-page: 1555 year: 2001 ident: c31 article-title: Wave-and turbulence-induced secondary currents in the liquid phase in stratified duct flow publication-title: Int. J. Multiphase Flow – start-page: 103502 year: 2021 ident: c16 article-title: Experimental investigations of upward-inclined stratified oil-water flows using simultaneous two-line planar laser-induced fluorescence and particle velocimetry publication-title: Int. J. Multiphase Flow – start-page: 108 year: 2017 ident: c32 article-title: A review of solid–fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid–liquid and multiphase solid–liquid flows publication-title: Exp. Fluids – start-page: 2754 year: 2007 ident: c17 article-title: Local hydrodynamics in a dispersed-stratified liquid–liquid pipe flow publication-title: AlChE J. – start-page: 99 year: 2013 ident: c27 article-title: Characteristics of horizontal liquid–liquid flows in a circular pipe using simultaneous high-speed laser-induced fluorescence and particle velocimetry publication-title: Int. J. Multiphase Flow – start-page: 51 year: 2009 ident: c26 article-title: Particle image velocimetry, gamma densitometry, and pressure measurements of oil-water flow publication-title: Multiphase Sci. Technol. – start-page: 140 year: 2012 ident: c13 article-title: Prediction of pressure gradient and holdup in wavy stratified liquid–liquid inclined pipe flow publication-title: J. Petroleum Sci. Eng. – start-page: e17239 year: 2021 ident: c18 article-title: Experimental and numerical study of stratified viscous oil–water flow publication-title: AlChE J. – start-page: 4332 year: 2010 ident: c23 article-title: Particle image velocimetry for characterizing the flow structure of oil–water flow in horizontal and slightly inclined pipes publication-title: Chem. Eng. Sci. – start-page: 044101 year: 2016 ident: c25 article-title: Stability of stratified two-phase flows in horizontal channels publication-title: Phys. Fluids – start-page: 47 year: 2018 ident: c15 article-title: Dynamics of liquid–liquid flows in horizontal pipes using simultaneous two–line planar laser–induced fluorescence and particle velocimetry publication-title: Int. J. Multiphase Flow – start-page: 78 year: 2017 ident: c14 article-title: Closure relations effects on the prediction of the stratified two-phase flow stability via the two fluid model publication-title: Int. J. Multiphase Flow – ident: 2025022615473988000_c29 – volume: 2 start-page: 427 year: 1986 ident: 2025022615473988000_c8 article-title: Core-annular flow of oil and water publication-title: Multiphase Sci. Technol. doi: 10.1615/MultScienTechn.v2.i1-4.60 – volume: 121 start-page: 147 year: 2014 ident: 2025022615473988000_c35 article-title: Fluorescence spectroscopy of rhodamine 6G: Concentration and solvent effects publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2013.10.062 – volume: 153 start-page: 104122 year: 2022 ident: 2025022615473988000_c42 article-title: Modeling of laminar-turbulent stratified liquid–liquid flow with entrainment publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2022.104122 – year: 2024 ident: 2025022615473988000_c37 article-title: Characterising horizontal twophase flows using structured-planar laser-induced fluorescence (S-PLIF) coupled with simultaneous two-phase PIV (S2P-PIV – volume: 29 start-page: 65 year: 1997 ident: 2025022615473988000_c10 article-title: Core-annular flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.29.1.65 – volume: 65 start-page: 4332 year: 2010 ident: 2025022615473988000_c23 article-title: Particle image velocimetry for characterizing the flow structure of oil–water flow in horizontal and slightly inclined pipes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.03.045 – volume: 58 start-page: 108 year: 2017 ident: 2025022615473988000_c32 article-title: A review of solid–fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid–liquid and multiphase solid–liquid flows publication-title: Exp. Fluids doi: 10.1007/s00348-017-2386-y – volume: 12 start-page: 165 year: 1997 ident: 2025022615473988000_c1 article-title: A study of oil-water flow patterns in horizontal pipes publication-title: SPE Prod. Facilities doi: 10.2118/36609-PA – volume: 22 start-page: 67 year: 1996 ident: 2025022615473988000_c9 article-title: Classification of instabilities in parallel twophase flow publication-title: Int. J. Multiphase Flow doi: 10.1016/S0301-9322(96)90005-1 – volume: 168 start-page: 426 year: 2018 ident: 2025022615473988000_c6 article-title: Liquid–liquid horizontal pipe flow–A review publication-title: J. Petroleum Sci. Eng. doi: 10.1016/j.petrol.2018.04.012 – volume: 101 start-page: 47 year: 2018 ident: 2025022615473988000_c15 article-title: Dynamics of liquid–liquid flows in horizontal pipes using simultaneous two–line planar laser–induced fluorescence and particle velocimetry publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2017.12.018 – volume-title: Introduction to Fluid Mechanics year: 2011 ident: 2025022615473988000_c38 – volume: 135 start-page: 103502 year: 2021 ident: 2025022615473988000_c16 article-title: Experimental investigations of upward-inclined stratified oil-water flows using simultaneous two-line planar laser-induced fluorescence and particle velocimetry publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2020.103502 – volume-title: Fundamentals of Fluid Fechanics year: 2013 ident: 2025022615473988000_c40 – volume: 54 start-page: 140 year: 2006 ident: 2025022615473988000_c12 article-title: Experimental study on interfacial waves in vertical core flow publication-title: J. Petroleum Sci. Eng. doi: 10.1016/j.petrol.2006.07.007 – volume: 28 start-page: 044101 year: 2016 ident: 2025022615473988000_c25 article-title: Stability of stratified two-phase flows in horizontal channels publication-title: Phys. Fluids doi: 10.1063/1.4944588 – volume: 58 start-page: 114 year: 2014 ident: 2025022615473988000_c41 article-title: Interfacial-tension-force model for the wavy-stratified liquid–liquid flow pattern transition publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2013.09.003 – year: 2024 ident: 2025022615473988000_c19 article-title: A practical approach to predict velocity profiles and shape factors in horizontal and slightly inclined wavy stratified liquid-liquid pipe flow – volume: 10 start-page: 41 year: 1983 ident: 2025022615473988000_c7 article-title: A theoretical model for core-annular flow of a very viscous oil core and a water annulus through a horizontal pipe publication-title: Int. J. Multiphase Flow doi: 10.1016/0301-9322(83)90059-9 – ident: 2025022615473988000_c21 – volume-title: Particle Image Velocimetry: A Practical Guide year: 2018 ident: 2025022615473988000_c34 – start-page: 169 year: 2015 ident: 2025022615473988000_c4 article-title: An experimental study of oil-water flows in horizontal pipes – volume: 53 start-page: 2754 year: 2007 ident: 2025022615473988000_c17 article-title: Local hydrodynamics in a dispersed-stratified liquid–liquid pipe flow publication-title: AlChE J. doi: 10.1002/aic.11309 – ident: 2025022615473988000_c28 – volume: 32 start-page: 127 year: 2001 ident: 2025022615473988000_c11 article-title: Modeling aspects of oil–water core–annular flows publication-title: J. Petroleum Sci. Eng. doi: 10.1016/S0920-4105(01)00155-3 – volume: 96–97 start-page: 140 year: 2012 ident: 2025022615473988000_c13 article-title: Prediction of pressure gradient and holdup in wavy stratified liquid–liquid inclined pipe flow publication-title: J. Petroleum Sci. Eng. doi: 10.1016/j.petrol.2012.09.007 – volume: 30 start-page: 139 year: 2004 ident: 2025022615473988000_c30 article-title: Experimental studies on the dual continuous flow pattern in oil–water flows publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2003.11.011 – volume: 54 start-page: 20 year: 2008 ident: 2025022615473988000_c3 article-title: Stability analysis of core-annular flow and neutral stability wave number publication-title: AlChE J. doi: 10.1002/aic.11361 – volume: 27 start-page: 1555 year: 2001 ident: 2025022615473988000_c31 article-title: Wave-and turbulence-induced secondary currents in the liquid phase in stratified duct flow publication-title: Int. J. Multiphase Flow doi: 10.1016/S0301-9322(01)00015-5 – volume: 21 start-page: 51 year: 2009 ident: 2025022615473988000_c26 article-title: Particle image velocimetry, gamma densitometry, and pressure measurements of oil-water flow publication-title: Multiphase Sci. Technol. doi: 10.1615/MultScienTechn.v21.i1-2.50 – volume: 32 start-page: 323 year: 2006 ident: 2025022615473988000_c22 article-title: Experimental study on oil–water flow in horizontal and slightly inclined pipes publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2005.11.001 – volume-title: Particle Image Velocimetry year: 2011 ident: 2025022615473988000_c33 – volume: 49 start-page: 99 year: 2013 ident: 2025022615473988000_c27 article-title: Characteristics of horizontal liquid–liquid flows in a circular pipe using simultaneous high-speed laser-induced fluorescence and particle velocimetry publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2012.09.004 – volume: 97 start-page: 78 year: 2017 ident: 2025022615473988000_c14 article-title: Closure relations effects on the prediction of the stratified two-phase flow stability via the two fluid model publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2017.07.010 – volume-title: Fluid Mechanics year: 2011 ident: 2025022615473988000_c39 – volume: 67 start-page: e17239 year: 2021 ident: 2025022615473988000_c18 article-title: Experimental and numerical study of stratified viscous oil–water flow publication-title: AlChE J. doi: 10.1002/aic.17239 – ident: 2025022615473988000_c24 – volume: 57 start-page: 58 year: 2016 ident: 2025022615473988000_c36 article-title: The saturation of the fluorescence and its consequences for laser-induced fluorescence thermometry in liquid flows publication-title: Exp. Fluids doi: 10.1007/s00348-016-2142-8 – volume: 26 start-page: 1117 year: 2000 ident: 2025022615473988000_c2 article-title: Flow structure in horizontal oil–water flow publication-title: Int. J. Multiphase Flow doi: 10.1016/S0301-9322(99)00081-6 – volume: 90 start-page: 1 year: 2017 ident: 2025022615473988000_c5 article-title: Flow pattern transition in liquid–liquid flows with a transverse cylinder publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2016.11.011 – ident: 2025022615473988000_c20 |
SSID | ssj0003926 |
Score | 2.4586987 |
Snippet | Stratified liquid–liquid flow is still an open research subject due to the complex interfacial interactions and its hydrodynamic stability in specific... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Algorithms Capillary flow Cross-sections Curvature Flow distribution Fluid flow Fractions Liquid flow Momentum transfer Particle image velocimetry Phase velocity Pipe flow Planar laser induced fluorescence Radial velocity Secondary flow Shape effects Shape factor Stability Stratified flow Synchronism Velocity Velocity distribution Viscosity Viscosity ratio |
Title | Particle image velocimetry/planar laser-induced fluorescence applied for the study of hydrodynamic aspects of low-viscosity ratio stratified liquid–liquid flow |
URI | http://dx.doi.org/10.1063/5.0249653 https://www.proquest.com/docview/3171494252 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABJ databaseName: AIP Complete customDbUrl: eissn: 1089-7666 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003926 issn: 1070-6631 databaseCode: M71 dateStart: 19940101 isFulltext: true titleUrlDefault: http://www.scitation.org/ providerName: American Institute of Physics |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKEIIbfgaIjoEsQNxU3lrnr7mcplXT1G4TaqXeRbZjj0hd06XNJnbFO_AEvAwPwpNw_JMmlQYCbqLUUhwr5-vxd-zvHCP0gfIg9cDOhPE0gABFCcJUyAj3mOxzTwpuSimNTsPjiX8yDaat1o-Gaqlc8T1xe2deyf9YFdrArjpL9h8su-4UGuAe7AtXsDBc_8rG566tk11q6Y2W_4jsUq701vhgMWNzphckYSgEIu9S7_SrWZkXpoKTThRwDLRSGi6rAtOfv6TgV-1Z9R1mkjGN4mOW35DrbClyI-Qw2OnYurtK9zPLrkr4Bk4-4dmf8Mr8pkmBjeZUmP5gNFlqa0XFsd9YlBhlhV7hIMPywizlnte7VwdFAdDNySHj-hgYm6Zzohf266SKT3laZBelvO2cdUYu_cKtbNCgEkNXWKy2rDZkE26QDZcNTosAb7IPStfWj0kU2vNcKj9vi8s4PNM7pw_ga2CfYE_XUQxtEePNEt2nZ8lgMhwm46Pp-OPiiujTy_QuvzvK5R66T-G11EhIa6kRcNDQal_tSKsKV6G3v37XJi-qg52HwISsKKPBe8ZP0WMXsOADi7RnqCXn2-iJC16wmxqW2-iB-2TP0fcKltjAEjdguW9BiTdAiZugxA6UGECJAZTYgBLnCjdBiR0odfsGKLEBJa5BiS0Kf379Zm-whuMLNBkcjQ-PiTsJhAiIf1ckllHYpUKGqt_zFXBOKRlVcSwipnzwQpGIwK2IPvdl10-BdULc2FUpl33GexyijJdoa57P5SuEA48qKhREOT3PF1Ecp7yrgsiLu5Qz4LZt9K6yQ7KwBV8SI9QIvSRInLHaaLeyUOL8wTIBJt7zY5gDaRu9X1vt953s_LmT1-hR_afYRVuropRvgACv-FuDrl_Lmrxe |
linkProvider | American Institute of Physics |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+image+velocimetry%2Fplanar+laser-induced+fluorescence+applied+for+the+study+of+hydrodynamic+aspects+of+low-viscosity+ratio+stratified+liquid%E2%80%93liquid+flow&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Miranda-Lugo%2C+P+J&rft.au=Arrollo-Caballero%2C+Jorge+E&rft.au=Rodriguez+O+M+H&rft.date=2025-02-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=37&rft.issue=2&rft_id=info:doi/10.1063%2F5.0249653&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |