Measuring Anisotropy in Planar Sets

We define and discuss a pure mathematics formulation of an approach proposed in the physics literature to analysing anistropy of fractal sets. Mathematical Reviews subject classification: Primary: 26A03, 26A04; Secondary: 26A05 Key words: anisotropic dimension spectrum, Hausdorff dimension, anisotro...

Full description

Saved in:
Bibliographic Details
Published inReal analysis exchange Vol. 43; no. 1; pp. 51 - 56
Main Author Toby C. O'Neil
Format Journal Article
LanguageEnglish
Published East Lansing Michigan State University Press 01.01.2018
Subjects
Online AccessGet full text
ISSN0147-1937
1930-1219
DOI10.14321/realanalexch.43.1.0051

Cover

Abstract We define and discuss a pure mathematics formulation of an approach proposed in the physics literature to analysing anistropy of fractal sets. Mathematical Reviews subject classification: Primary: 26A03, 26A04; Secondary: 26A05 Key words: anisotropic dimension spectrum, Hausdorff dimension, anisotropy
AbstractList We define and discuss a pure mathematics formulation of an approach proposed in the physics literature to analysing anistropy of fractal sets. Mathematical Reviews subject classification: Primary: 26A03, 26A04; Secondary: 26A05 Key words: anisotropic dimension spectrum, Hausdorff dimension, anisotropy
We define and discuss a pure mathematics formulation of an approach proposed in the physics literature to analysing anistropy of fractal sets.
Author Toby C. O'Neil
Author_xml – sequence: 1
  fullname: Toby C. O'Neil
  organization: School of Mathematics and Statistics, The Open University, Milton Keynes, MK7 6AA, United Kingdom. email
BookMark eNp1kF1LwzAUhoNMsJv-Bgu7lNZzknRpLsfwCyYK6nVIs1RbalOTFty_t7Mi3nh14OV5XjjvnMxa11pCzhFS5Izipbe60a1u7Kd5SzlLMQXI8IhEKBkkSFHOSATIRTIG4oTMQ6gBGBeQRWR5b3UYfNW-xuu2Cq73rtvHVRs_Hjp9_GT7cEqOS90Ee_ZzF-Tl-up5c5tsH27uNuttYjCnfcJyW2ixE1QXtmTUIC2NLoQFk0mBEhldgc51Rq3OBeV5CZzyncgLI3khR2VBllNv593HYEOvajf48bOgKAJHsQKEkRITZbwLwdtSdb56136vENT3IurvIoozheqwyGheTGYdeud_tX_oLwVmZ_A
ContentType Journal Article
Copyright 2018 Real Analysis Exchange
Copyright Michigan State University Press 2018
Copyright_xml – notice: 2018 Real Analysis Exchange
– notice: Copyright Michigan State University Press 2018
DBID AAYXX
CITATION
4T-
JQ2
DOI 10.14321/realanalexch.43.1.0051
DatabaseName CrossRef
Docstoc
ProQuest Computer Science Collection
DatabaseTitle CrossRef
Docstoc
ProQuest Computer Science Collection
DatabaseTitleList
Docstoc
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1930-1219
EndPage 56
ExternalDocumentID 10_14321_realanalexch_43_1_0051
10.14321/realanalexch.43.1.0051
GroupedDBID -DZ
-ET
123
29P
70C
8R4
8R5
AAOJF
ABDBF
ABIFP
ACGOD
ACIWK
AEEGL
AESBA
AFFOW
AHIZY
ALMA_UNASSIGNED_HOLDINGS
AMVHM
B0M
E3Z
EAP
EBS
EJD
EMI
EMK
EPL
ESX
HDK
OK1
PUASD
RBF
RPE
SJN
TUS
TWZ
WS9
YNT
ZWISI
~8M
88I
8FE
8FG
8G5
AAYXX
ABJCF
ABUWG
AFFNX
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GUQSH
HCIFZ
K6V
K7-
L6V
M2O
M2P
M7S
P62
PADUT
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
Q2X
4T-
ACUHS
JQ2
ID FETCH-LOGICAL-c182t-38eba7d72abef32c12fcab7e0c5971913260a8a52ea87248f0424d78bc94b9ef3
ISSN 0147-1937
IngestDate Fri Jul 25 19:48:55 EDT 2025
Wed Oct 01 02:26:22 EDT 2025
Fri May 30 12:01:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c182t-38eba7d72abef32c12fcab7e0c5971913260a8a52ea87248f0424d78bc94b9ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2104176010
PQPubID 28230
PageCount 6
ParticipantIDs proquest_journals_2104176010
crossref_primary_10_14321_realanalexch_43_1_0051
jstor_primary_realanalexch_43_1_0051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180101
2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 1
  year: 2018
  text: 20180101
  day: 1
PublicationDecade 2010
PublicationPlace East Lansing
PublicationPlace_xml – name: East Lansing
PublicationTitle Real analysis exchange
PublicationYear 2018
Publisher Michigan State University Press
Publisher_xml – name: Michigan State University Press
SSID ssj0034705
Score 2.0285394
Snippet We define and discuss a pure mathematics formulation of an approach proposed in the physics literature to analysing anistropy of fractal sets. Mathematical...
We define and discuss a pure mathematics formulation of an approach proposed in the physics literature to analysing anistropy of fractal sets.
SourceID proquest
crossref
jstor
SourceType Aggregation Database
Index Database
Publisher
StartPage 51
SubjectTerms Anisotropy
Correlation analysis
Ellipses
Fractals
Geometric planes
Mass spectroscopy
Plenary Lectures
Set theory
Spectral correlation
Spectrum analysis
Title Measuring Anisotropy in Planar Sets
URI https://www.jstor.org/stable/10.14321/realanalexch.43.1.0051
https://www.proquest.com/docview/2104176010
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1930-1219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034705
  issn: 0147-1937
  databaseCode: ABDBF
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1930-1219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034705
  issn: 0147-1937
  databaseCode: AMVHM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT4MwEG50e9EH4884nYbEvRkQWrbC4zZdFpP5YLZkb6QtbbIXtmyYGP96rxQY0xmdL4QQOEq_cvfdcXcg1FKkw8AqMht3YmL7bY_bXAGRk7HrKqFgxXDtKI5eOsOJ_zxtT9fN_LPqkpQ74mNrXcl_UIVjgKuukt0B2VIoHIB9wBe2gDBs_4TxKAvwZYGNZLaap8v5Iivj038iYkvQA6ZNU0E-X2XWGCDvQiLfRVFZkMeZgYn2nXud_qJDw9V4QFV5gbdDbSBktKrdTBOkDRSNqjJ9Xr9pUJ9grUKXWWYl2CgYi-MTx3P067s2GsWH8i-2pMzw076FFhVVBUU-ibxIC9pHdawDKDVU7_Yee4PCeBKfFlmn5lHylDwt6mH7mDYIhckp_WZXM7IwPkZHOcu3ugayE7Qnk1N0OCpb5K7O0F0JnrUGz5ollgHP0uCdo8ngadwf2vkfK2wBflpqk0ByRmOKGZeKYOFhJRin0hXgt4FnDFzZZQFrY8kCiv1A6Q_PMQ24CH0ewiUXqJbME3mJLBerUBDgpyFQRCbhMkFjV6l2B3z6gHsN5BaPHS1MY5Lol0lvoFY2PeX5P53WLGYvyhf7KsLgtns6f8q92v3G1-hAr1QTuWqiWrp8kzfA5VJ-m-P_CST5S0c
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+Anisotropy+in+Planar+Sets&rft.jtitle=Real+analysis+exchange&rft.au=Toby+C.+O%27Neil&rft.date=2018&rft.issn=0147-1937&rft.volume=43&rft.issue=1&rft.spage=51&rft_id=info:doi/10.14321%2Frealanalexch.43.1.0051&rft.externalDBID=n%2Fa&rft.externalDocID=10_14321_realanalexch_43_1_0051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-1937&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-1937&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-1937&client=summon